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Biomarkers that can guide cancer therapy based on patients’ individual cancer molecular
signature can enable a more effective treatment with fewer adverse events. Data on
actionable somatic mutations and germline genetic variants, studied by personalized
medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples.
As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes,
liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles
(EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a
heterogeneous population of membrane bound particles, which are released from all cells
and accumulate into body fluids. They contain various proteins, lipids, nucleic acids
(miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and
concentration are changed. Tumor EVs can promote the remodeling of the tumor
microenvironment and pre-metastatic niche formation, and contribute to transfer of
oncogenic potential or drug resistance during chemotherapy. This makes them a
promising source of minimally invasive biomarkers. A limited number of clinical studies
investigated EVs to monitor cancer progression, tumor evolution or drug resistance and
several putative EV-bound protein and RNA biomarkers were identified. This review is
focused on EVs as novel biomarker source for personalized medicine and
pharmacogenomics in oncology. As several pharmacogenes and genes associated
with targeted therapy, chemotherapy or hormonal therapy were already detected in
EVs, they might be used for fine-tuning personalized cancer treatment.
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INTRODUCTION

Advances in the field of genomics, proteomics, and other high-throughput methods for biomarker
determination have enabled the era of personalized medicine. Biomarkers that can guide and
customize therapy for individual patients can enable a more effective treatment with fewer adverse
events (Zhang J. et al., 2018). One of the biggest breakthroughs in personalized medicine was in the

Edited by:
Ron H van Schaik,

Erasmus Medical Center, Netherlands

Reviewed by:
Giuseppe Novelli,

University of Rome Tor Vergata, Italy
Sonja Pavlovic,

University of Belgrade, Serbia

*Correspondence:
Metka Lenassi

metka.lenassi@mf.uni-lj.si

Specialty section:
This article was submitted to

Pharmacogenetics and
Pharmacogenomics,

a section of the journal
Frontiers in Pharmacology

Received: 23 February 2021
Accepted: 19 April 2021
Published: 30 April 2021

Citation:
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field of oncology, as several actionable tumor somatic mutations
that enabled targeted treatment and precision medicine were
identified (Table 1) (Friedman et al., 2015; Syn et al., 2016;
Panagiotara et al., 2017). In precision medicine, genomic
approaches help the clinician to select the most appropriate
treatment based on the individual cancer molecular signature
(Panagiotara et al., 2017). For example, patient stratification
based on actionable somatic mutations is already required
before the initiation of some targeted treatments (Bonanno,
2013; Syn et al., 2016). Additionally, germline genetic variants

are often associated with interindividual variability in treatment
response and occurrence of adverse events (Sim et al., 2013). The
field of pharmacogenomics focuses on genetic variability of genes
involved in drug metabolism or transport, drug target genes and
DNA repair genes that can affect response to various drugs,
including chemotherapy and hormonal therapy and thus
contribute to personalized medicine. Even though several drug
prescribing recommendations are available, only a handful of
pharmacogenetic tests are already required before the initiation of
therapy in clinical practice (Lauschke et al., 2017). Novel

TABLE 1 | List of pharmacogenes associated with targeted cancer therapy and the evidence connecting them with extracellular vesicles (EVs).

Gene Drug Connection with extracellular
vesicles: Examples

Referencesa

ABL1 Imatinib, bosutinib, dasatinib, nilotinib, ponatinib,
vincristine

mRNA detected in various cancer cell EVs Skog et al. (2008), Hong et al. (2009), Chacon-Heszele
et al. (2014), Zhu et al. (2014), He et al. (2015), Fu et al.
(2017), Milani et al. (2017), Kang et al. (2018)

Protein detected in urine EVs (healthy donors)
BCR-ABL1mRNA and protein detected in EVs from
CML cells and in serum EVs of patients with CML

ALK Alectinib, atezolizumab, brigatinib, ceritinib,
crizotinib, lorlatinib, pembrolizumab, ramucirumab

Protein detected in various cancer cell line EVs and
in urine EVs (healthy donors)

Gonzales et al. (2009), Hong et al. (2009), Hurwitz et al.
(2016), Wu et al. (2018), Reclusa et al. (2019)

mRNA detected in colorectal cancer cell EVs
EML4-ALK translocation detected in plasma EVs in
NSCLC

BCR Imatinib, bosutinib, dasatinib, nilotinib, ponatinib,
vincristine

Protein detected in various cancer cell line EVs and
in urine EVs (healthy donors)

Skog et al. (2008), Gonzales et al. (2009), Hong et al.
(2009), Zhu et al. (2014), Hurwitz et al. (2016), Fu et al.
(2017), Liem et al. (2017), Milani et al. (2017), Kang
et al. (2018)

mRNA detected in colorectal cancer and
glioblastoma cell EVs
BCR-ABL1mRNA and protein detected in EVs from
CML cells and in serum EVs of patients with CML

BRAF Binimetinib, cobimetinib, dabrafenib, encorafenib,
trametinib, vemurafenib

mRNA detected in colorectal cancer cell EVs,
melanoma plasma and lymphatic drainage EVs and
glioblastoma plasma EVs

Hong et al. (2009), Hao et al. (2017), Klump et al.
(2018), García-Silva et al. (2019), Pasqualetti et al.
(2019), Song et al. (2019)

DNA detected in melanoma serum EVs and lung
adenocarcinoma pleural-effusion EVs

EGFR Afatinib, atezolizumab, cetuximab, dacomitinib,
erlotinib, gefitinib, osimertinib, panitumumab,
pembrolizumab, ramucirumab

DNA detected in EVs from plasma, cerebrospinal
fluid, bronchoalveolar lavage or pleural effusion of
lung adenocarcinoma, NSCLC or glioblastoma
patients mRNA detected in EVs from plasma or
cerebrospinal fluid of NSCLC or glioblastoma
patients

Skog et al. (2008), Hong et al. (2009), Welton et al.
(2010), Adamczyk et al. (2011), Shao et al. (2012),
Liang et al. (2013), Yamashita et al. (2013), Sinha et al.
(2014), Hurwitz et al. (2016), Figueroa et al. (2017),
Liem et al. (2017), Lee Y. T. et al. (2018),
Castellanos-Rizaldos et al. (2018), Choi et al. (2018),
Krug et al. (2018), Wan et al. (2018), Ortega et al.
(2019), Qu et al. (2019), Song et al. (2019)

Protein detected in various cancer cell line EVs and
plasma EVs of breast cancer patients

ERBB2 Abemaciclib, alpelisib, everolimus, fulvestrant,
lapatinib, neratinib, olaparib, palbociclib,
pertuzumab, ribociclib, talazoparib, tipiracil/
fluridine, trastuzumab

Protein detected in various cancer cell line EVs and
plasma derived EVs in gastric and breast cancer
patients

Skog et al. (2008), Hong et al. (2009), Baran et al.
(2010), Ciravolo et al. (2012), Liang et al. (2013), Sinha
et al. (2014), Gerratana et al. (2015), Hurwitz et al.
(2016), Fang et al. (2017), Liem et al. (2017), Lee J. S.
et al. (2018), Choi et al. (2018), Platko et al. (2019)

mRNA detected in colorectal cancer and
glioblastoma cell EVs and plasma derived EVs in
gastric and breast cancer patients
DNA amplification detected in urine EVs (urothelial
bladder carcinoma)

KIT Imatinib Protein detected in various cancer cell line EVs Atay et al. (2014), Hurwitz et al. (2016)
KRAS Cetuximab, panitumumab, tipiracil/fluridine Protein detected in various cancer cell line EVs,

urine EVs (healthy donors) and EVs from pleural
effusions of lung cancer patients

Gonzales et al. (2009), Hong et al. (2009), Demory
Beckler et al. (2013), Fraser et al. (2013), Liang et al.
(2013), Park et al. (2013), Kahlert et al. (2014), Lee
et al. (2014), Sinha et al. (2014), Hurwitz et al. (2016),
Kamerkar et al. (2017), Liem et al. (2017), Yang S.-
J. et al. (2017), Choi et al. (2018), Möhrmann et al.
(2018)

mRNA detected in colorectal cancer cell EVs
DNA detected in EVs from plasma or serum of
pancreatic cancer patients, NSCLC, advanced
cancers

NRAS Cetuximab, panitumumab Protein detected in various cancer cell line EVs and
in urine EVs (healthy donors)

Gonzales et al. (2009), Hong et al. (2009), Sinha et al.
(2014), Hurwitz et al. (2016), Liem et al. (2017), Choi
et al. (2018), Liu et al. (2020)mRNA detected in colorectal cancer cell EVs

aReferences from individual functional/biomarker EV studies and EV-omics studies from VesiclePedia or Exocarta.
CML, chronic myeloid leukemia; NSCLC, non-small cell lung cancer.
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Goričar et al. Extracellular Vesicles and Personalized Medicine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


biomarkers that would enable additional patient stratification,
continuous disease monitoring or assessment of prognosis and
thus improve treatment outcome are therefore still widely
investigated.

Conventionally, cancer prognostic or predictive biomarkers
are mostly determined in tumor tissue samples (Crowley et al.,
2013). However, cancer is a very complex and heterogeneous
disease, with a lot of factors contributing to its initiation,
progression, development of metastasis or resistance to
treatment (Zhang J. et al., 2018). Treatment resistance is not
only associated with inherent genetic or non-genetic factors, but
can also be acquired during or after treatment (Gong et al., 2012;
Friedman et al., 2015). Tumor phenotype is therefore
heterogeneous and constantly changing and can include
different molecular mechanisms of carcinogenesis (Gong et al.,
2012). With traditional tissue biopsy, only a specific section of the
tumor is analyzed, therefore it does not reflect spatial tumor
heterogeneity and patients may be stratified based on incomplete
data (Crowley et al., 2013; Buder et al., 2016; Panagiotara et al.,
2017). During the course of the treatment, new mutations can
occur or accumulate, which can affect treatment selection or
adjustment. As tissue biopsy is usually performed only at one
time-point, these results are static and do not reflect the temporal
changes of the tumor landscape (Crowley et al., 2013; Panagiotara
et al., 2017). Tissue biopsies also have several other limitations:
they are invasive and can even lead to complications. Enough
material for all analyses cannot always be obtained, and some
tumors are not accessible at all (Crowley et al., 2013; Buder et al.,
2016; Panagiotara et al., 2017). In recent years, circulating tumor
biomarkers are therefore extensively explored as an alternative
minimally invasive approach called liquid biopsy (Mari et al.,
2019).

A liquid biopsy is a test performed on biofluid samples to
detect cancer cells or cancer-derived molecules (Vasconcelos
et al., 2019). During the formation and growth of the tumor,
various components may be released into the body fluids due to
apoptosis, necrosis, or active release. These include circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA),
circulating tumor RNA (ctRNA) and extracellular vesicles
(EVs) (Alimirzaie et al., 2019; Vasconcelos et al., 2019). For
example, ctRNA consists of mRNAs, miRNAs and long-
noncoding RNAs and can be found either in
ribonucleoprotein complexes, CTCs or EVs (Alimirzaie et al.,
2019). All components from cancer tissue accumulate in body
fluids and can be detected using liquid biopsies that reflect the
genetic landscape of the whole cancer tissue. The possibility of
minimally invasive serial sampling enables longitudinal
monitoring of the disease at different time points. Liquid
biopsy can therefore be used for screening or early diagnosis,
assessment of prognosis, measurement of tumor burden and
detection of minimal residual disease, early detection of disease
recurrence, predicting or monitoring treatment response and
detection of treatment resistance (Crowley et al., 2013; Buder
et al., 2016; Mari et al., 2019; Vasconcelos et al., 2019). Most
studies focus on blood-based biomarkers, however, urine,
ascites, pleural effusion, and other biofluids can also be used
(Lee J. S. et al., 2018; Mari et al., 2019).

Studies suggest that assessment of tumor-associated genetic
changes in the blood could identify treatment resistance up to
10 months before radiological methods (Diaz et al., 2012; Misale
et al., 2012). Liquid biopsy approach would therefore enable
clinicians to modify or add treatment to achieve better
response (Crowley et al., 2013). To date, most studies focused
on identifying cancer-related genetic changes in CTCs or ctDNA.
CTCs are intact tumor cells that actively or passively shed from
primary or metastatic tumor into the bloodstream (Alimirzaie
et al., 2019). Still, CTCs are rare events severely outnumbered by
blood cells (1 per 1 ×106–1 × 109), resulting in limitations in CTC
isolation and detection techniques and consequently low
reproducibility of CTC-based tests (Geeurickx and Hendrix,
2020). Cell-free DNA (cfDNA) is fragmented DNA released
from both healthy and tumor tissues from cells undergoing
apoptosis or necrosis. ctDNA represents a subpopulation of
cfDNA originating from cancer cells (Crowley et al., 2013;
Alimirzaie et al., 2019). As ctDNA is highly fragmented
[90–150 base pairs (bp)] and masked by a high background of
total cfDNA, screening for clinically relevant mutations is
challenging (Geeurickx and Hendrix, 2020). Currently, only
five tests are Food and Drug Administration (FDA) approved,
one CTC-based (CellSearch, Menarini Silicon Biosystems) and
four cfDNA-based tests (cobas EGFR Mutation Test v2, Roche
Molecular Systems; Epi proColon, Epigenomics; FoundationOne
Liquid CDx, Foundation Medicine; Guardant360 CDx, Guardant
Health). However, limited sensitivity or specificity as well as
technological and regulatory challenges prevent a more
widespread use in standard clinical practice (Vasconcelos
et al., 2019).

In recent years, EVs emerged as a novel analyte used for liquid
biopsies. In this review, we will focus on EVs as novel source of
biomarkers for personalized medicine and pharmacogenomics in
oncology (Figure 1). As several genes associated with targeted
therapy, chemotherapy or hormonal therapy were already
detected in EVs, they might be used for fine-tuning
personalized cancer treatment.

EXTRACELLULAR VESICLES

EVs are a heterogeneous population of membrane bound
particles, which are released from all cells and accumulate into
various body fluids in vivo (Lee J. S. et al., 2018; Dhondt et al.,
2018; Hur et al., 2018; Johnsen et al., 2019). According to their
size and site of formation, EVs can be broadly divided into three
main categories: exosomes, microvesicles and apoptotic bodies.
Exosomes range from 30 to 150 nm in diameter and are formed as
intraluminal vesicles in multivesicular bodies, which fuse with
plasma membrane to release them extracellularly. Microvesicles
are larger membrane structures, from 100 to 1,000 nm in
diameter, that are formed directly at the plasma membrane by
outward budding. If they are released from tumors and transport
tumor molecular cargo (e.g., oncoproteins), they are referred to as
oncosomes, which were reported to reach up to 10 µm in
diameter (Vagner et al., 2018). In contrast to exosomes and
microvesicles, apoptotic bodies (up to 5 um in diameter) are
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formed during late phase of programmed cell death by membrane
blebbing. Cells can simultaneously use more than one pathway of
EV formation, which can be rerouted during pathogenic
processes (Colombo et al., 2014; van Niel et al., 2018). Due to
this complexity, EV subcellular origin is difficult to establish, and
it is therefore preferred to use the terms small EVs and larger EVs
for EVs <200 and >200 nm in size, respectively, (Théry et al.,
2018).

Increase in plasma EV levels and changes in EV size were
observed in several cancers (Silva et al., 2012; Muller et al., 2015;
Huang et al., 2018; Navarro et al., 2019; Badovinac et al., 2021).
To at least some extent, this is due to present tumor mass (Lai
et al., 2017; Osti et al., 2019; Rodríguez Zorrilla et al., 2019), but
systemic response to disease like inflammation (Roxburgh and
McMillan, 2014; Chan et al., 2019) and response to treatment
(Stevic et al., 2020) could also contribute. Increase in plasma EV
levels is also observed in other diseases such as cardiovascular and
autoimmune (Dickhout and Koenen, 2018; Maione et al., 2020)
and might be connected to common physiological factors like
hypoxia, autophagy or stress that are also often altered in tumors
(Vasconcelos et al., 2019). Importantly, the pathological state of
cell of origin additionally affects molecular composition of
released EVs (van Niel et al., 2018). In general, EVs consist of
a lipid bilayer membrane that surrounds a small amount of
cytosol, and they contain various typical proteins [proteins
involved in membrane trafficking, tetraspanins, adhesion
molecules, cytoskeletal proteins, endosomal proteins (Kowal
et al., 2016; Zhang H. et al., 2018; Théry et al., 2018)], lipids
[ceramide, cholesterol, phosphatidylserine (Skotland et al.,
2020)], nucleic acids [miRNA, mRNA, and DNA (Elzanowska
et al., 2020; O’Brien et al., 2020)] and metabolites (Puhka et al.,
2017). In cancer patients, EVs in body fluids were shown to
accumulate oncogenes, tumor suppressor genes and their
products, signature proteins and RNAs, and mutated genomic
DNA (Zocco et al., 2014; An et al., 2015; González and Falcón-
Pérez, 2015; Rowland et al., 2019; Vasconcelos et al., 2019;
Chennakrishnaiah et al., 2020).

DNA only recently gained attention as an important
constituent of EVs or other extracellular particles and remains
poorly understood. EV-DNA varies in its localization and
structure (Elzanowska et al., 2020; Malkin and Bratman,
2020). It is attached to the surface or is present in the lumen
of EVs and can range in size from 200 bp in small EVs to up to >2
million bp in large EVs. EV-DNA exists as single or double
stranded molecule of genomic or mitochondrial origin, mostly
protected from degradation by bound histones. Reported
heterogeneity might reflect diversity in EV biogenesis, as DNA
content was shown to differ between EV subtypes (Lázaro-Ibáñez
et al., 2014; Vagner et al., 2018; Lázaro-Ibáñez et al., 2019). EV-
DNA is actively secreted from living cells (in contrast to passive
secretion via necrosis), but little is known of the exact
mechanisms. Those might include sequestering of cytosolic
DNA during outward plasma membrane budding or
intraluminal vesicles formation, or shuttling of collapsed
micronuclei (small buddings of nucleus) to multivesicular
bodies (Elzanowska et al., 2020; Malkin and Bratman, 2020).
The latter mechanism is supported by observations of increased
micronuclei production and EV-DNA release after genotoxic
drug exposure (Yokoi et al., 2019). The biological function of
EV-DNA is poorly understood, but the few reported studies
propose their role i) in cellular homeostasis, as excretion of
damaged DNA might prevent induction of apoptosis
(Takahashi et al., 2017), ii) in transfer of genetic material, as
recipient cells might transcribe or integrate DNA into the genome
(Cai et al., 2013; Sansone et al., 2017), and iii) in immune response
as it stimulates pro-inflammatory signaling pathways or anti-
tumor immunity (Kitai et al., 2017; Torralba et al., 2018).
Importantly, EV-DNA is protected from degradation in
biofluids (Jin et al., 2016) and was shown to represent the
entire genome and mutational status of the cell of origin
(Kahlert et al., 2014; Thakur et al., 2014; San Lucas et al.,
2016; Lázaro-Ibáñez et al., 2019).

EVs are important agents of inter-cellular communication that
were implicated in numerous physiological and pathological

FIGURE 1 | The advantages and applications for liquid biopsies using extracellular vesicle DNA in cancer personalized medicine and pharmacogenomics.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6712984

Goričar et al. Extracellular Vesicles and Personalized Medicine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


processes. They were shown to cross extracellular space and even
biological barriers, to interact with and/or transfer molecular
content of the target cells, thereby affecting their cellular
processes (Alvarez-Erviti et al., 2011; Colombo et al., 2014;
van Niel et al., 2018). In cancer, EVs can act locally to
remodel the tumor microenvironment at primary sites
[reviewed in (Vader et al., 2014; Clancy and D’Souza-Schorey,
2018; Nogués et al., 2018)]. EVs (oncosomes) are released from
tumor cells and transport bioactive cargo to neighboring tumor
cells, stromal cells and cells of the immune system, thereby
promoting angiogenesis, immunosuppression, tumor growth
and local invasion. Alternatively, EVs accumulate in diverse
body fluids (e.g., blood, lymphatic fluid) and are transported
to local (e.g., lymph node) or distant sites of metastasis (e.g., lung,
brain, bone, liver), depending on EV-organotropism. There, they
promote pre-metastatic niche formation by inducing
angiogenesis, remodeling of stroma and extracellular matrix,
and by modulating immune responses.

EVs traceability of their cellular origin and its (patho)
physiological state, high concentrations in body fluids and
their ability to protect molecular cargo from degradation
makes them a promising source of minimally invasive
biomarkers. This is especially true in cancer, as EVs
dynamically reflect changes in tumor molecular profiles
depending on disease progression and treatment effectiveness
(An et al., 2015; Syn et al., 2016; Rofi et al., 2019; Vasconcelos
et al., 2019; Chennakrishnaiah et al., 2020; LeBleu and Kalluri,
2020). Compared to other liquid biopsy analytes, EVs represent
multicomponent biomarker platforms that enable concomitant
analyses of several molecules carried in the same vesicles (LeBleu
and Kalluri, 2020). EVs are more abundant in various biofluids
and thus could better represent intra-tumor heterogeneity than
CTCs and also reflect stromal response. They protect their
molecular cargo from degradation, may enrich for cancer cell-
specific DNA and provide better signal-to-noize ratio compared
to ctDNA (Vasconcelos et al., 2019; LeBleu and Kalluri, 2020).
EVs could also help monitor variability in host responses through
immune, epithelial or endothelial-derived EVs (LeBleu and
Kalluri, 2020). Altogether, diagnostics based on EVs could
enable a more comprehensive assessment of cancer diagnosis,
prognosis and progression, which could guide a more
personalized and effective treatment of cancer patients.

Importantly, EVs also contribute to transfer of oncogenic
potential or drug resistance during chemotherapy. For
example, in breast cancer treated with trastuzumab, EV-
specific proteins were upregulated in metastatic patients that
benefited from therapy, but not in those where treatment
failed (Drucker et al., 2020). Alternatively, neoadjuvant breast
cancer therapies with taxanes and anthracyclines induced tumor-
derived EVs with enhanced pro-metastatic capacity (Keklikoglou
et al., 2019). On the other hand, tumor EVs can spread drug
resistance to drug sensitive cells. Systemic temozolomide
treatment in glioblastoma mouse models induced mRNA
expression profile reflective of drug resistance, which was
recapitulated in the transcriptome of released EVs (Garnier
et al., 2018). In oxidative phosphorylation-dependent breast
cancer, horizontal transfer of EV-bound mitochondrial DNA

promoted exit from dormancy of therapy-induced cancer
stem-like cells and lead to endocrine therapy resistance
(Sansone et al., 2017). Additionally, EVs were implicated in
chemotherapy drug (doxorubicin, cisplatin, cetuximab,
pixantrone) efflux in vitro experiments (Shedden et al., 2003;
Safaei et al., 2005; Koch et al., 2016; Fujiwara et al., 2018), a
possible mechanism for reducing their effective concentration at
target sites. Another study showed that malignant lymphoma EVs
carried CD20, which bound therapeutic anti-CD20 antibodies
and protected target cells from antibody attack (Aung et al.,
2011). Comprehensive overviews of experimental data on EVs
relevance in drug resistance are provided in reviews by
Vasconcelos et al. (Vasconcelos et al., 2019) and Maacha et al.
(Maacha et al., 2019).

A limited number of clinical studies investigated EVs to
monitor cancer progression, tumor evolution or drug
resistance and several putative protein and RNA biomarkers
were identified (An et al., 2015; González and Falcón-Pérez,
2015; Dhondt et al., 2018; Vasconcelos et al., 2019). For
example, GPC1-positive EVs were shown to successfully
diagnose pancreatic ductal adenocarcinoma (PDAC) and
correlated with overall survival (Melo et al., 2015), while
EpCAM-positive EVs could predict progression free survival
(Giampieri et al., 2019). In PDAC patients treated with
gemcitabine, high expression of miRNA-155 in tumor tissue
and plasma EVs correlated with poorer prognosis due to
chemoresistance development (Mikamori et al., 2017). In
breast cancer, levels of TRPC5-positive EVs negatively
correlated with chemotherapy outcome and could predict
progression free survival (Wang et al., 2017). Additionally,
levels of EV-associated lncRNA HOTAIR were associated with
tumor burden and aggressiveness of the disease (Tang et al.,
2019). Specific EV-miRNAs were also shown to correlate with
tumor burden and response to therapy in breast cancer
(Rodríguez-Martínez et al., 2019). EV-associated UCH-L1
mRNA was associated with ER-/PR-aggressive breast cancers
subtypes and poor prognosis (Miyoshi et al., 2006), and with
poor response to adjuvant anthracycline/taxane-based
chemotherapy (Ning et al., 2017). HER2-positive breast cancer
patients that did not respond to treatment had higher levels of EV
lncRNA SNHG14 (Dong et al., 2018) or TGF-β1 (Martinez et al.,
2017). Specific EV-associated non-coding RNAs were also
predictive of treatment response to gemcitabine (Wei et al.,
2017), erlotinib (Zhang W. et al., 2018) or cisplatin (Yuwen
et al., 2017) in non-small cell lung cancer (NSCLC).
Interestingly, EVs and their cargo were also associated with
immunosuppression and response to immunotherapy with
immune checkpoint inhibitors (Chen et al., 2018). In
melanoma, EVs carrying immune check-point ligand PD-L1
on their surface, captured the therapeutic anti-PD-1 antibodies
and drove antibody away from target tumor (Chen et al., 2018).
Temporal changes in EV-associated PD-L1 mRNA levels were
associated with response to anti-PD-1 antibodies nivolumab and
pembrolizumab in patients with melanoma and NSCLC (Del Re
et al., 2018). This suggests EV liquid biopsy could be implemented
also in other areas of cancer treatment. Key biomarkers
implicated in cancer personalized medicine and
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pharmacogenomics are described in Extracellular Vesicles and
Cancer Personalized Medicine and Extracellular Vesicles and
Cancer Pharmacogenomics.

EXTRACELLULARVESICLESANDCANCER
PERSONALIZED MEDICINE

In recent years, targetable mutations and personalized medicine
have significantly affected treatment options and outcomes for
cancer patients, especially in solid tumors (Rofi et al., 2019).
Targeted cancer treatment refers to the use of drugs that target
specific molecules in tumor cells or tumor microenvironment
involved in signaling, cell survival and proliferation to prevent the
growth and spread of tumors (Lee Y. T. et al., 2018). Targeted
drugs can be small molecules or monoclonal antibodies. Small
molecules are usually tyrosine kinase inhibitors, proteasome
inhibitors, cyclin-dependent kinase inhibitors or poly ADP-
ribose polymerase inhibitors (Lee Y. T. et al., 2018).
Monoclonal antibodies usually directly or indirectly interrupt
key signaling pathways (Lee Y. T. et al., 2018). Numerous drugs
are used for targeted treatment across several cancer types
(Table 1). However, treatment toxicity and inherent or
acquired resistance to therapy pose a challenge for monitoring
patients and their disease and better biomarkers or tumor
molecular profiling strategies are still needed (Panagiotara
et al., 2017). Currently, individual genetic alterations are used
to guide treatment selection (Crowley et al., 2013). As targeted
treatment is often used in advanced tumors, determination of
genetic profile using tissue biopsy samples obtained at diagnosis is
not optimal as they do not reflect the state of the tumor at the time
of the treatment. Liquid biopsies can be used to identify acquired
mutations or resistance that would allow the selection of the most
efficient treatment (Crowley et al., 2013).

For this review, cancer genome very important
pharmacogenes (VIPs), required pharmacogenetic testing, and
pharmacogenetic recommendations available until June 1st 2020
were extracted from PharmGKB (Whirl-Carrillo et al., 2012).
Data on the association of the selected human genes with
extracellular vesicles was compiled using ExoCarta
(Keerthikumar et al., 2016) and Vesiclepedia (Kalra et al.,
2012; Pathan et al., 2019) databases that represent manually
curated web-based compendiums of EV proteins, RNAs and
lipids. Additional literature was selected using PubMed based
on the following searches: “extracellular vesicles and gene name”
or “exosomes and gene name”. Data from animal studies was not
included.

According to PharmGKB (Whirl-Carrillo et al., 2012), nine
VIPs are associated with cancer genome and personalized
medicine. Genetic testing based on these genes is required by
United States FDA and/or European Medicines Agency (EMA)
for 40 different target drugs (Table 1). All cancer VIPs were
already identified in EVs, usually both on protein and mRNA
level. Additionally, EV-DNA could be used in liquid biopsies
predicting or monitoring response to their target drugs by
monitoring the specific landscape of somatic mutations. A
more detailed description of VIPs related to their functional

and biomarker role as part of EVs is provided in chapters 3.1
through 3.7.

ALK
ALK is a receptor tyrosine kinase important for the development
of the nervous system (Cesi et al., 2018). Genetic rearrangements
or mutations can lead to its constitutive activation and activation
of downstream signaling pathways that affect proliferation and
apoptosis in other differentiated tissues (Cesi et al., 2018; Wu
et al., 2018). ALK therefore functions as an oncogene in several
cancers, including NSCLC and neuroblastoma (Cesi et al., 2018).
ALK fusion occurs in 3–7% of lung cancers, most commonly with
EML4 (Chen et al., 2017). ALK inhibitors (e.g., crizotinib)
improved treatment response and survival in patients with
ALK rearrangements, but acquired treatment resistance is
frequently a problem (Chen et al., 2017). Real-time monitoring
using liquid biopsy could be used to detect the emergence of
resistant mutations, however, there is limited knowledge about
the connection of ALK with EVs (Table 1) (Chen et al., 2017).
Irradiation of ALK-positive NSCLC cells lead to increased
expression of ALK in EVs that were able to activate signaling
pathways in recipient cells (Wu et al., 2018). In a pilot study,
EML4-ALK translocation was detected in plasma-derived EVs of
patients with NSCLC, suggesting that EVs may serve as an
additional tool to guide treatment with ALK inhibitors
(Reclusa et al., 2019).

BCR-ABL1
ABL1 is a proto-oncogene tyrosine kinase involved in cell
differentiation, division, and proliferation. The role of BCR in
not completely understood, but it has serine/threonine kinase
activity and is a GTPase-activating protein. BCR-ABL1 fusion
known as the Philadelphia chromosome that occurs due to a
reciprocal translocation between chromosomes 9 and 22 is the
driver fusion in chronic myeloid leukemia (CML) (Fu et al., 2017;
Jurj et al., 2020). The fusion leads to dysregulation and over-
activation of ABL1 tyrosine kinase domain. Several tyrosine
kinase inhibitors such as imatinib target the fusion protein
and have significantly improved survival of CML patients (Fu
et al., 2017; Jurj et al., 2020). On the other hand, several mutations
in ABL1 gene were associated with imatinib resistance. BCR,
ABL1 and BCR-ABL1 fusion were frequently detected in EVs
(Table 1). EV transfer of the oncogenic BCR-ABL1 transcript was
able to affect signaling in mesenchymal stem cells and increase
their proliferation (Zhu et al., 2014; Fu et al., 2017; Milani et al.,
2017). BCR-ABL1 expression was already detected in serum-
derived EVs of CML patients (Fu et al., 2017; Kang et al.,
2018) and was associated also with response to tyrosine kinase
inhibitors, imatinib resistance and disease remission (Kang et al.,
2018; Liu et al., 2018; Jurj et al., 2020). EVs were also proposed as
a novel biomarker for monitoring minimal residual disease
through the number of BCR-ABL1 copies (Fu et al., 2017; Jurj
et al., 2020).

BRAF
BRAF encodes a serine/threonine-specific mitogen-activated
protein kinase (MAPK) kinase, which is part of the MAPK/
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ERK signaling cascade regulating cell proliferation. Presence of
growth factors activates target membrane receptors, which in
turn activate Ras GTPases that recruit BRAF to the membrane
and induce homo or hetero-dimerization and activation of
downstream ERK (Brummer and McInnes, 2020). BRAF
alterations are important drivers of human cancer, particularly
in melanoma (found in 40–50%), thyroid cancers (10–70%),
colorectal cancers (10%) and NSCLC (3–5%) (Dankner et al.,
2018). The most studied BRAF V600 allele functions as a
hyperactive monomer, uncoupled from upstream regulation by
Ras GTPase, thereby promoting constitutive activation of cell
growth and proliferation (Dankner et al., 2018). BRAF inhibitors
(e.g., dabrafenib and vemurafenib) alone or combined with MEK
inhibitors provide a significant survival benefit, but over time
tumors develop acquired resistance. Some BRAF V600 and non-
V600 tumors also show intrinsic resistance, are insensitive to
inhibitors or even cause paradoxical activation of ERK (Dankner
et al., 2018). Further liquid biopsy biomarkers are needed to
better guide targeted therapies for BRAF mutant cancers. EVs
could serve as a novel source for genotyping BRAF or as
biomarker of disease progression, since V600 mutation was
detected in cancer cell line- and in body fluid-derived EVs in
various cancers (Table 1), and corresponded to disease state,
prognosis or survival (Hong et al., 2009; Thakur et al., 2014; Hao
et al., 2017; Klump et al., 2018; García-Silva et al., 2019;
Pasqualetti et al., 2019; Song et al., 2019).

EGFR
EGFR (also known as ERBB1) encodes a member of the epidermal
growth factor receptor (EGFR) family of receptor tyrosine
kinases, which regulate epithelial cell survival, proliferation,
differentiation, and motility. Binding of one of its seven
ligands (e.g., EGF and TGFα) promotes EGFR homo- or
hetero-dimerization, which through structural rearrangements
promotes trans-autophosphorylation of the cytosolic tyrosine
kinase domains and activation of several signaling pathways
including the Ras/MAPK, PI3K/AKT and PLC/PKC
(Sigismund et al., 2018). EGFR mutations, frequently
combined with overexpression, are important drivers of
human cancers, particularly in glioblastoma (found in 50%),
NSCLC (15–20%) and colorectal cancers (3%). Oncogenic
EGFR (e.g., EGFRvIII, L858R) stimulate receptor homo- and
heterodimerization and abnormal EGFR endocytic trafficking,
which contributes to increased kinase activation and downstream
signaling (Sebastian et al., 2006; Sigismund et al., 2018).
Currently, monoclonal humanized antibodies (cetuximab,
panitumumab) or tyrosine kinase inhibitors (e.g., erlotinib)
targeting oncogenic EGFR show limited response and
frequently evoke resistance in patients (Sebastian et al., 2006;
Sigismund et al., 2018). Liquid biopsy, more specifically EVs,
could contribute to improved cancer progression and therapy
follow-up, as EVs containing EGFR DNA, RNA or protein were
detected in blood, cerebrospinal fluid, bronchoalveolar lavage or
pleural effusions in different cancers (Table 1), which in some
studies correlated with prognosis (Skog et al., 2008; Shao et al.,
2012; Yamashita et al., 2013; Figueroa et al., 2017; Lee J. S. et al.,
2018; Castellanos-Rizaldos et al., 2018; Krug et al., 2018; Wan

et al., 2018; Ortega et al., 2019; Qu et al., 2019; Song et al., 2019).
For example, anticancer agents blocking oncogenic EGFR (e.g.,
dacomitinib, canertinib) stimulated the release of EVs carrying
EGFRvIII and genomic DNA in glioblastoma animal models and
patients (Skog et al., 2008; Montermini et al., 2015; Choi et al.,
2019), and in turn, EV-EGFRvIII were shown to fuse with cancer
cells lacking EGFRvIII and transfer the oncogenic activity (Al-
Nedawi et al., 2008). EV-bound DNA was superior to cfDNA for
EGFR mutation detection in early stage NSCLC (Wan et al.,
2018). In lung adenocarcinoma, mutation status of EV-associated
DNA from pleural effusion correlated with cfDNA (Song et al.,
2019), while presence of mutated EGFR informed about the
EGFR tyrosine kinase inhibitor treatment efficacy (Qu et al.,
2019). EGFR EVs release additionally responded to cetuximab,
TKIs or temozolomide treatment of cells in vitro (Shao et al.,
2012; Montermini et al., 2015; van Dommelen et al., 2016;
Fujiwara et al., 2018). In vitro, EGFR EVs were shown to be
involved in several cancer hallmarks like inducing angiogenesis,
sustaining proliferating signaling, evading growth suppression
and immune destruction, promoting inflammation, resisting cell
death, and activating invasion and metastasis (reviewed in
(Zanetti-Domingues et al., 2020)). Further studies on EVs as
therapy delivery system are also needed, as EVs containing let-7a
reduced tumor size in mice EGFR-expressing breast cancer model
(Ohno et al., 2013).

ERBB2
ERBB2 encodes a receptor tyrosine kinase also known as HER2
that belongs to EGFR family. Presence of growth factors leads to
heterodimerization and activation of MAPK and PI3K signaling
pathways (Graus-Porta et al., 1997). ERBB2 is a proto-oncogene
that is overexpressed in approximately 25% of breast cancers, but
also in gastric and other cancers, leading to malignant
transformation of epithelial cells (Slamon et al., 2011; Fang
et al., 2017; Galli de Amorim et al., 2019). Overexpression
occurs mostly due to gene amplification, but other activating
mutations were also described (Slamon et al., 2011; Galli de
Amorim et al., 2019). ERBB2 overexpression is associated with a
more aggressive phenotype with worse survival because of
increased proliferation, invasiveness and metastasis (Slamon
et al., 2011). On the other hand, ERBB2 represents a target for
several different drugs, both monoclonal antibodies (e.g.,
trastuzumab) and tyrosine kinase inhibitors (e.g., lapatinib and
neratinib). Introduction of targeted treatment significantly
improved response and survival in HER2-positive breast
cancer patients (Slamon et al., 2011). However, not all patients
respond to treatment with trastuzumab and some patients
develop resistance, therefore additional biomarkers are needed
to further improve treatment outcome (Ciravolo et al., 2012; Galli
de Amorim et al., 2019). ERBB2 was frequently identified in EVs
(Table 1). ERBB2 expression was increased in EVs from HER2-
positive cell lines or in blood-derived EVs of cancer patients
(Baran et al., 2010; Ciravolo et al., 2012; Wang et al., 2018).
Studies have shown that ERBB2 expression in blood or urine-
derived EVs correlates with tissue expression and liquid biopsy
may sometimes even be more sensitive to detect ERBB2
overexpression (Fang et al., 2017; Lee D. H. et al., 2018; Platko
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et al., 2019). Additionally, ERBB2 overexpression alters EV
protein composition (Amorim et al., 2014). Studies also
suggest activated ERBB2 in EVs can sequester trastuzumab,
potentially affecting its efficacy (Ciravolo et al., 2012). EVs
could therefore serve as an additional biomarker for
personalized treatment of HER2-positive cancer patients.

KIT
KIT is a proto-oncogene receptor tyrosine kinase that influences
cell growth, survival, proliferation, differentiation and migration
through the activation of downstream signaling pathways (Wu
et al., 2019). Activating KIT mutations are present in 75–85% of
gastrointestinal stromal tumors (GISTs), representing the main
oncogenic driver (von Mehren and Joensuu, 2018; Wu et al.,
2019). Up to 90% ofKITmutations occur in exon 11, making cells
sensitive to tyrosine kinase inhibitor imatinib (von Mehren and
Joensuu, 2018;Wu et al., 2019). However, secondary mutations in
other exons can lead to imatinib resistance (Wu et al., 2019). KIT
was already detected in various cancer cell line EVs (Table 1).
GIST cells were shown to secrete a lot of oncogenic EVs
containing KIT. Uptake of these EVs by stromal cells lead to
their conversion to tumor promoting cells, activation of signaling
pathways, induction of MMP1 expression and increased tumor
cell invasion (Atay et al., 2014). However, the data on monitoring
KIT mutations in EVs is lacking. In one study that included only
three patients, one KIT mutation associated with treatment
resistance was only present in cfDNA (Klump et al., 2018).
Further studies are needed to determine the usefulness of KIT
mutations detection in EVs.

RAS (KRAS, NRAS)
KRAS and NRAS genes encode small membrane-localized
GTPases, important for regulating cell growth, differentiation
and survival. When growth factors bind target cellular receptors
(e.g., receptor tyrosine kinases, G-protein coupled receptors,
integrins), they activate RAS through recruitment of
scaffolding proteins that mediate conversion of inactive GDP-
bound to active GTP-bound form, which in turn activates diverse
MAPK pathways. RAS activity can be further regulated by various
proteins and post-translational modifications (e.g., farnesylation,
palmitoylation, ubiquitination, acetylation) (Gimple and Wang,
2019). RAS alterations are drivers of 20–30% of all human
cancers. KRAS mutations (mostly on the 12th codon) are
exceedingly common in pancreatic adenocarcinomas (found in
94%), colorectal cancers (37%) and lung adenocarcinomas
(20–30%), while NRAS mutations (mostly on 61st codon) are
more common in melanomas (20–30%), thyroid cancers
(10–40%, varies among different types), and leukemias (15%)
(Cerami et al., 2012; Gao et al., 2013). They enhance RAS activity,
effectively uncoupling downstream signaling from growth factor
receptors, thereby promoting tumor cell proliferation, survival,
metabolism, microenvironmental interactions and immune
evasion (Gimple and Wang, 2019). RAS is believed to be an
undruggable target due to its molecular structure, but RAS
signaling can be indirectly targeted through its regulators (e.g.,
cetuximab) or downstream effectors (e.g., vemurafenib). Still,
development of therapeutic resistance is common and indirect

targeting can cause counterproductive effects (e.g., BRAF
inhibitors) (Crowley et al., 2013; Gimple and Wang, 2019).
Importantly, mutant KRAS was shown to affect composition
of EVs released by cancer cells and its DNA and protein
molecules were detected in EVs from blood and pleural
effusion of different cancers (Table 1) (Demory Beckler et al.,
2013; Park et al., 2013; Kahlert et al., 2014; Lee et al., 2014; Yang S.
et al., 2017;Möhrmann et al., 2018). Level of mutant KRAS EVs in
plasma even correlated with response to therapy and tumor
burden with pancreatic cancer (Kahlert et al., 2014; Allenson
et al., 2017; Yang S. et al., 2017; Bernard et al., 2019). Oncogenic
NRAS was detected in EVs from various cell lines and similarly
released by EVs from mouse brain tumor cells (Lee et al., 2014).
When tested in vitro for function, mutant KRAS EVs stimulated
cell proliferation, altered metabolic state and enhanced
invasiveness of recipient cells (Demory Beckler et al., 2013;
Lee et al., 2014; Zhang Q. et al., 2018). Thus mutant KRAS
EVs could be used for rapid, non-invasive and continuous
identification of cancer driver mutations, relevant for
personalized treatment strategies. Further studies on EVs as
therapy delivery system are also needed, as EVs containing
siRNA/shRNA against oncogenic KRAS suppressed cancer and
increased overall survival in multiple mouse models of pancreatic
cancer (Kamerkar et al., 2017).

EXTRACELLULARVESICLESANDCANCER
PHARMACOGENOMICS

Among key pharmacogenes are drug metabolizing enzymes such
as cytochromes P450 (CYP) and UDP-glucuronosyltransreases
(UGT) and ATP-binding cassette (ABC) transporters. CYPs and
UGTs are involved in metabolic clearance of more than 90% of
drugs (Rowland et al., 2019). Activity of CYPs and UGTs is
influenced by their function and expression. Pharmacogenetics
studies have found several genetic variants that modify enzyme
activity (Rodriguez-Antona and Ingelman-Sundberg, 2006),
however, genetic factors are often not sufficient to predict
patient drug exposure (Rowland et al., 2019). Recent evidence
suggests several pharmacogenes are also present in EVs (Kumar
et al., 2017; Gerth et al., 2019; Rowland et al., 2019). For example,
EVs isolated from human plasma contained functional proteins
and mRNAs of different CYPs and UGTs (Kumar et al., 2017;
Rowland et al., 2019). Due to relatively high abundance and
confirmed enzymatic activity, circulating EV CYPs may also have
a physiological role in extrahepatic drug metabolism (Kumar
et al., 2017). For example, CYP2E1 is highly expressed in plasma
EVs and was also associated with exacerbating alcohol and
acetaminophen-induced toxicity in hepatic and extrahepatic
cells (Kumar et al., 2017; Rahman et al., 2019).

CYPs play an important role in the activation or inactivation
of several cancer drugs (Rodriguez-Antona and Ingelman-
Sundberg, 2006). For example, one of the most important
enzymes, CYP3A4, is involved in metabolism of docetaxel,
etoposide, cyclophosphamide, vincristine, and paclitaxel
(Rodriguez-Antona and Ingelman-Sundberg, 2006). Rare
CYP3A4*22 and *1B alleles alter CYP3A4 activity, but
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genotyping cannot explain all interindividual differences in
CYP3A4 expression or function and no drug prescribing
recommendations are currently in use (Rowland et al., 2019).
CYP3A4 activity was confirmed also in plasma EVs (Kumar et al.,
2017; Rowland et al., 2019). Additionally, treatment with
CYP3A4 inductor rifampicin significantly increased CYP3A4
expression in EVs and CYP3A4 expression in plasma EVs
correlated with midazolam clearance (Rowland et al., 2019).
These results suggest that measuring CYP3A4 expression in
EVs could help predict response to drugs metabolized by this
enzyme. However, the patients in published studies were selected
for wild-typeCYP3A4 genotype and further studies evaluating EV
expression of CYP3A4 are needed to evaluate the role of CYP3A4
from EVs. Combination of CYP3A4 genotyping and liquid biopsy
could potentially serve as a novel biomarker for identifying
variability in drug exposure.

Several other pharmacogenes can influence response to cancer
therapy and for some of them, drug prescribing recommendations
(e.g., dose adjustment, alternative drugs) are already available
(Table 2). According to PharmGKB (Whirl-Carrillo et al., 2012),
four cancer pharmacogenes have pharmacogenetic drug prescribing

recommendations from Clinical Pharmacogenetics Implementation
Consortium (CPIC) or Dutch Pharmacogenetics Working Group
(DPWG) (PharmGKB level 1A and 1B clinical annotations).
Additional six genes are also important for predicting response or
adverse events to chemotherapy (PharmGKB level 2A clinical
annotations). Among these ten genes, all except SLC O 1B1 were
previously identified in EVs. Most genes were detected in EVs from
different cancer cell lines (protein and/or mRNA), several were also
detected in urine. A more detailed evaluation of the connection with
EVs is described for UGT1A1, ABCB1, and GSTP1.

UGT1A1
Among pharmacogenes with drug prescribing recommendations,
only uridine diphosphate glucuronosyltransferase 1A (UGT1A1)
was already assessed as a potential biomarker in EVs (Table 2)
(Liu et al., 2020). UGT1A1 catalyzes the glucuronidation of
bilirubin and various xenobiotics, which enables their
elimination (de Man et al., 2018). UGT1A1 is also involved in
inactivation of SN-38, the active metabolite of irinotecan, a
chemotherapeutic drug used for treatment of lung, colon,
gastric, pancreatic, and gynecological cancers (Campbell et al.,

TABLE 2 | List of pharmacogenes associated with cancer therapy and the evidence connecting them with extracellular vesicles (EVs).

Gene Drug Therapy type Connection with extracellular
vesicles: Examples

Referencesa

Genes with pharmacogenetic drug prescribing recommendationsb

CYP2D6 Tamoxifen Hormone
therapy

Protein detected in urine EVs (healthy donors,
patients with nephropathy)

Moon et al. (2011)

DPYD Capecitabine, fluorouracil, tegafur Chemotherapy Protein detected in glioblastoma cells EVs and
in urine EVs (healthy donors)

Fraser et al. (2013), Pavlyukov et al. (2018)

TPMT Mercaptopurine, thioguanine Chemotherapy Protein detected in various cancer cell line EVs
and in urine EVs (healthy donors)

Hong et al. (2009), Wang et al. (2012),
Bijnsdorp et al. (2013), Liang et al. (2013),
Sinha et al. (2014), Liu et al. (2015), Hurwitz
et al. (2016), Liem et al. (2017)

mRNA detected in colorectal cancer cell EVs

UGT1A1 Irinotecan Chemotherapy Protein detected in platelet EVs Dean et al. (2009), Liu et al. (2020)
mRNA detected in plasma derived EVs in lung
adenocarcinoma

Genes with PharmGKB level 2A clinical annotations
ABCB1 Methotrexate Chemotherapy Protein detected in various cancer cell line EVs,

platelet EVs, serum EVs in prostate cancer and
urine EVs (healthy donors)

Dean et al. (2009), Gonzales et al. (2009),
Hong et al. (2009), Kato et al. (2015),
Kharaziha et al. (2015), Hurwitz et al. (2016),
Wang et al. (2019)mRNA detected in colorectal cancer cell EVs

NQ O 1 Alkylating agents, anthracyclines and
related substances, fluorouracil, platinum
compounds

Chemotherapy Protein detected in various cancer cell line EVs
and in urine EVs (healthy donors)

Hong et al. (2009), Welton et al. (2010), Wang
et al. (2012), Ji et al. (2013), Hurwitz et al.
(2016), Liem et al. (2017), Choi et al. (2018)mRNA detected in colorectal cancer cell EVs

MTHFR Carboplatin, cisplatin, methotrexate Chemotherapy Protein detected in various cancer cell line EVs Hong et al. (2009), Hurwitz et al. (2016), Liem
et al. (2017)mRNA detected in colorectal cancer cell EVs

GSTP1 Fluorouracil, oxaliplatin,
cyclophosphamide, epirubicin, platinum
compounds

Chemotherapy Protein detected in various cancer cell line EVs
and in urine EVs (healthy donors, prostate
cancer)

Skog et al. (2008), Gonzales et al. (2009),
Hong et al. (2009), Welton et al. (2010), Fraser
et al. (2013), Ji et al. (2013), Paggetti et al.
(2015), Øverbye et al. (2015), Hurwitz et al.
(2016), Yang S. et al. (2017), Lázaro-Ibáñez
et al. (2017), Liem et al. (2017), Choi et al.
(2018), Zhang et al. (2019)

mRNA detected in colorectal cancer and
glioblastoma cell EVs and serum derived EVs in
breast cancer patients

SLCO1B1 Methotrexate Chemotherapy Not reported —

TYMS Capecitabine, fluorouracil Chemotherapy Protein detected in various cancer cell line EVs Skog et al. (2008), Hong et al. (2009), Paggetti
et al. (2015), Hurwitz et al. (2016), Liem et al.
(2017), Choi et al. (2018)

mRNA detected in colorectal cancer and
glioblastoma cell EVs

aReferences from individual functional/biomarker EV studies and EV-omics studies from VesiclePedia or Exocarta.
bPharmacogenetic recommendations from CPIC or DPWG reported in PharmGKB, level 1A and 1B clinical annotations.
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Goričar et al. Extracellular Vesicles and Personalized Medicine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2017; de Man et al., 2018). UGT1A1 is a very polymorphic
enzyme, with over 100 genetic variants described (de Man
et al., 2018). Most studied genetic variants are UGT1A1*6 and
*28. Both are associated with increased irinotecan toxicity,
especially neutropenia and diarrhea, due to increased systemic
exposure to irinotecan and its metabolite (Campbell et al., 2017;
deMan et al., 2018). For carriers of two polymorphic alleles, lower
irinotecan starting dose is recommended (de Man et al., 2018).
When comparing EVs from plasma of patients with lung
adenocarcinoma and benign lung diseases using RNA-Seq,
mRNA expression of UGT1A1 could differentiate between
both groups and was suggested as an additional biomarker in
NSCLC patients (Liu et al., 2020).

ABCB1
ABC transporter ABCB1, also known as multidrug resistance protein
1 (MDR1) or P-glycoprotein, is one of the key genes, involved in the
development of chemoresistance to anticancer drugs (Kharaziha et al.,
2015). ABCB1 is a cell surface glycoprotein that mediates ATP-
dependent efflux of various molecules, including different xenobiotics
(Gong et al., 2012; Kharaziha et al., 2015). Several ABCB1 genetic
variants have been described (e.g., rs1128503, rs2032582, and
rs1045642), but due to inconsistent results, no drug prescribing
recommendations are currently available (Whirl-Carrillo et al.,
2012). However, rs1045642 was associated with methotrexate
toxicity in lymphoma and leukemia (Suthandiram et al., 2014;
Zgheib et al., 2014; Gregers et al., 2015). On the other hand,
ABCB1 was consistently associated with intrinsic or acquired
multidrug resistance and treatment failure in several cancer types
(Gong et al., 2012). EVs were proposed as one of the mechanisms
associated with drug resistance, as they can help efflux
chemotherapeutic (e.g., cisplatin, doxorubicin) from tumor cells
(Samuel et al., 2018; Gluszko et al., 2019). Additionally, EVs were
involved in intercellular transfer of drug resistance fromdrug-resistant
to sensitive cells via ABCB1 (Table 2) (Bebawy et al., 2009; Gong et al.,
2012; Kato et al., 2015; Kharaziha et al., 2015; Maacha et al., 2019;
Vasconcelos et al., 2019; Wang et al., 2019). ABCB1 was enriched in
EVs from various drug-resistant cancer cells after chemotherapy
(Wang et al., 2019) and was associated with acquired resistance to
docetaxel (Kato et al., 2015; Kharaziha et al., 2015). ABCB1 expression
was also increased in serum derived EVs from prostate cancer
patients, resistant to docetaxel (Kato et al., 2015). Detection of
ABCB1 expression in EVs with liquid biopsy could therefore serve
as an important biomarker of cancer treatment resistance.

GSTP1
Glutathione S-transferase pi 1 (GSTP1) is a phase II metabolic
enzyme involved in the detoxification of various anti-cancer drugs
and other carcinogens. GSTP1 catalyzes their conjugation with
glutathione (Yang S.-J. et al., 2017). Two common non-
synonymous polymorphisms, rs1695 and rs1138272, affect the
electrophile-binding active site of the enzyme and alter enzyme
activity (Ali-Osman et al., 1997). GSTP1 genetic variability was
associated with toxicity and efficacy of numerous
chemotherapeutics, especially platinum compounds (Stoehlmacher
et al., 2004; Lamas et al., 2011; Goricar et al., 2015). However, no drug
prescribing recommendations are currently available due to

inconsistent results among cancer types (Whirl-Carrillo et al.,
2012; Campbell et al., 2016). GSTP1 was frequently identified in
EVs (Table 2). GSTP1 expression was increased in EVs from 5-
fluorouracil or adriamycin resistant cancer cell lines (Yang S.-J. et al.,
2017; Zhang et al., 2019). Additionally, EV-mediated transfer of
GSTP1 was associated with intercellular transfer of adriamycin
resistance, which is also an important clinical problem (Yang S.-
J. et al., 2017). In breast cancer patients treated with anthracycline/
taxane chemotherapy, GSTP1 mRNA expression was increased in
serum EVs from patients with worse treatment response (Yang S.-
J. et al., 2017). Detection of GSTP1 expression in EVs with liquid
biopsy could therefore serve as an additional biomarker, potentially
improving the predictive value of pharmacogenetics variants.

CONCLUSION AND FUTURE
PERSPECTIVES

EVs have a proven role in transfer of oncogenic potential or drug
resistance during chemotherapy and were proposed as
biomarkers of cancer progression, tumor evolution or drug
resistance in several cancer types. Several pharmacogenes and
genes associated with treatment response were already detected in
EVs in vitro and in vivo, thus they might be used for fine-tuning
personalized cancer treatment. Before implementation in clinical
practice, technical challenges regarding standardization and
repeatability of EV analysis and detection of rare genetic
variants should be addressed. Additionally, sufficient sensitivity
and specificity of the novel biomarker assays should be obtained.
As genetic factors cannot account for all observed variability,
composite biomarkers incorporating genetic factors and other EV
cargo are needed for some drugs. This could further improve
personalized treatment for various drugs used in targeted
treatment and chemotherapy, especially drugs targeting
inducible enzymes of enzymes with poor genotype-phenotype
associations (Gerth et al., 2019; Rodrigues and Rowland, 2019).
All biomarkers and methods for their determination also have to
be validated in independent studies and approved by appropriate
regulatory agencies (Novelli et al., 2010). Several genomic
biomarkers have been recognized, but there are considerable
differences between EMA and FDA recommendations in
summary of product characteristics labels (Shekhani et al.,
2020). Consensus among regulators would further contribute
to clinical implementation of key biomarkers.

In conclusion, EVs are emerging as liquid biopsy analytes that
have several advantages and could be used in various applications
in oncology, from treatment stratification to detection of
treatment response or resistance, enabling new possibilities in
personalized medicine or pharmacogenomics.
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