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Integrated transcriptomic 
correlation network analysis 
identifies COPD molecular 
determinants
Paola Paci   1*, Giulia Fiscon   1, Federica Conte   1, Valerio Licursi2, Jarrett Morrow3, 
Craig Hersh3, Michael Cho   3, Peter Castaldi3, Kimberly Glass3, Edwin K. Silverman3 & 
Lorenzo Farina4

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Network-
based analysis implemented by SWIM software can be exploited to identify key molecular switches 
- called “switch genes” - for the disease. Genes contributing to common biological processes or defining 
given cell types are usually co-regulated and co-expressed, forming expression network modules. 
Consistently, we found that the COPD correlation network built by SWIM consists of three well-
characterized modules: one populated by switch genes, all up-regulated in COPD cases and related 
to the regulation of immune response, inflammatory response, and hypoxia (like TIMP1, HIF1A, SYK, 
LY96, BLNK and PRDX4); one populated by well-recognized immune signature genes, all up-regulated 
in COPD cases; one where the GWAS genes AGER and CAVIN1 are the most representative module 
genes, both down-regulated in COPD cases. Interestingly, 70% of AGER negative interactors are switch 
genes including PRDX4, whose activation strongly correlates with the activation of known COPD GWAS 
interactors SERPINE2, CD79A, and POUF2AF1. These results suggest that SWIM analysis can identify 
key network modules related to complex diseases like COPD.

Chronic obstructive pulmonary disease (COPD) is a devastating lung disease characterized by progressive and 
incompletely reversible airflow obstruction. Like many other common diseases, COPD is a heterogeneous and 
complex syndrome influenced by both genetic and environmental determinants and is one of the main causes of 
morbidity and mortality worldwide. Cigarette smoking is a major environmental risk factor for COPD, but the 
substantial heritability of COPD indicates an important role for genetic determinants as well1. Although multiple 
genetic loci for COPD have been identified by genome-wide association studies (GWAS), the key genes in those 
regions are largely undefined. Various contributors to COPD pathogenesis have been also suggested, including 
protease-antiprotease imbalance, oxidant-antioxidant imbalance, cellular senescence, autoimmunity, chronic 
inflammation, deficient lung growth and development, and ineffective lung repair. However, the pathobiological 
mechanisms for COPD remain incompletely understood2.

COPD susceptibility, like other complex diseases, is rarely caused by a single gene mutation, but is likely influ-
enced by multiple genetic determinants with interconnections between different molecular components. Studying 
the effects of these interconnections on disease susceptibility could lead to improved understanding of COPD 
pathogenesis and the identification of new therapeutic targets. Previous efforts to identify the network of inter-
acting genes and proteins in COPD have included protein-protein interaction (PPI) network studies. McDonald 
and colleagues3 used dmGWAS software to identify a consensus network module within the PPI network based 
on COPD GWAS evidence. Sharma and colleagues4 started with “seed” genes based on well-established COPD 
GWAS genes or Mendelian syndromes that include COPD as part of the syndrome constellation with a random 
walk approach to build a COPD network module of 163 proteins.
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Alternative approaches aiming to gain key insights into the genes driving the underlying disease molecular 
machinery are based on gene expression data. Generally, gene expression levels are compared between different 
groups of samples, and those genes satisfying certain statistical thresholds are selected as the “gold standard list” 
to be interpreted and validated. Recently, this kind of data analysis has been widely used to identify gene expres-
sion differences in lung tissue and blood between COPD cases and controls. Moving forward, in order to identify 
COPD causal genes, transcriptomic approaches can be complementary to genetic studies, as illustrated by studies 
relating differential gene expression to GWAS loci and to genetically predicted gene expression5–7. However, con-
clusions from differential expression analysis are frequently drawn using within-experiment data, thus specificity 
claims depend on the control groups used for reference, potentially leading to inaccurate interpretation8. The 
reasons for this lack of specificity, especially in a highly heterogeneous and complex disease like COPD9, can be 
multifarious. Among technical limitations, it is worth noting that economic restrictions typically limit the num-
ber of expression profiling experiments to a relatively small number of observations, thus preventing the identifi-
cation of slight but significant changes10. Moreover, gene expression differences may be observed only in specific 
cell types and/or at specific stages of disease development. Among conceptual limitations, it is well-known that 
multiple cellular signaling pathways may impact the expression of the same gene making it difficult to identify 
the affected pathway from observing its expression changes10. In addition, cells may use many other mechanisms 
to regulate proteins besides changing the amount of mRNA, so these genes may remain constitutively expressed 
in the face of varying protein concentrations10. To overcome these limitations, it is necessary to complement dif-
ferential expression analysis with other more sophisticated methodologies able to refine the “gold standard list” 
of differentially expressed genes (DEGs) gaining more specificity in the prediction of disease-associated genes.

Among others, popular approaches that start where DEG analysis ends are based on the construction of a 
co-expression network using, for example, Pearson correlation as a similarity index. Currently, two of the most 
promising algorithms for gene expression networks are SWIM (SWItchMiner)11 and WGCNA (Weighted 
Correlation Network Analysis)12,13. Both of them use the correlation structure to construct a gene-gene simi-
larity network, divide the network into modules (groups of genes with similar expression), and identify “driver” 
genes in modules (WGCNA) or intra-modules (SWIM). Morrow and colleagues7 used WGCNA to identify a 
network module differentially expressed in COPD that was related to B lymphocyte pathways. However, previous 
correlation-based network analyses in COPD have not used methods that can identify key molecular switches 
for disease7,14–16.

As matter of fact, WGCNA considers only the right tail (i.e., positive correlation between gene pairs) of the 
correlation distribution. To date, the left tail (i.e., negative correlation between gene pairs) of the correlation 
distribution, and the interpretation of negative edges within a complex network representation of functional 
connectivity, has largely been ignored. The strength of the SWIM methodology is to emphasize the importance 
of negative regulation by explicitly considering the left tail of the correlation distribution. The main property of 
the driver genes identified by SWIM, called “switch genes”, is to be primarily anti-correlated with their partners 
in the correlation network: when switch genes are induced their interaction partners are repressed, and vice versa.

Here, we applied SWIM to lung tissue gene expression data from two well-characterized COPD case-control 
populations to study the differences between lung samples from normal subjects (represented by smokers with 
normal spirometry) and COPD cases. We used the dataset with a larger number of lung tissue samples (i.e., 
GSE47460 with 219 COPD cases and 108 controls) as the “training set” for running SWIM and the dataset of 
Morrow and colleagues7 with a smaller number of samples (i.e., GSE76925 with 111 COPD cases and 40 controls) 
as the “test set” for validating the results.

We found that the COPD correlation network built by SWIM software consists of three modules, of which one 
includes multiple switch genes and is significantly enriched in pathways like: B cell receptor signaling pathway, 
NF-kappa B (NF-κB) signaling pathway, hypoxia, regulation of inflammatory response, regulation of immune 
response, collagen fibril organization, regulation of TGFB production, and extracellular matrix organization. 
We hypothesized that the SWIM approach would both support known pathways and provide evidence for novel 
pathways in COPD pathogenesis.

Results
COPD correlation network.  The network-based analysis implemented by the SWIM software (see 
Materials and Methods section) was exploited to identify disease genes and network modules associated with 
COPD status by using the GSE47460 dataset (training set) containing microarray gene expression profiling of 
lung tissue samples from 219 COPD cases and 108 controls17,18.

Starting from 17530 genes, we obtained 2097 significantly differentially expressed genes (DEGs) at a 1% 
false discovery rate (FDR)19 (Fig. 1 and Supplementary Table 1). We found 1358 DEGs (65%) down-regulated 
in COPD cases and the remaining 739 DEGs (35%) up-regulated (Fig. 1a). Among DEGs, we found 145 genes 
located within genomic regions (+/− 1 Mb from the top SNP) previously identified as containing genome-wide 
significant associations to COPD5 (Supplementary Table 1).

In order to check if the number of GWAS genes included in the DEGs is more than expected by chance, we 
randomly selected 2097 genes (i.e., the number of DEGs) from the original list of 17530 genes and repeated this 
procedure 1000 times. Then, the number of the 145 GWAS genes included in the DEGs was zscore-normalized 
and the p-value for the given z statistics was calculated; the p-value of 0.2 indicates that the number of differen-
tially expressed GWAS genes is equal to what expected by chance. This observation is in accordance with the 
results obtained in7, where the authors showed that COPD GWAS genes were not differentially expressed in lung 
tissue samples.

The DEG matrix of 2097 rows (DEGs) and 327 columns (219 COPD cases + 108 control samples) was used as 
input to SWIM in order to build the COPD gene correlation network based on the Pearson correlation coefficient, 
where a threshold is set for the absolute value of the minimum correlation coefficient necessary to draw an edge 
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(see Materials and Methods section). For the COPD correlation network, we set the correlation threshold equal 
to 0.57, which corresponded to the 98th percentile of the entire correlation distribution (Supplementary Fig. 1).

The obtained COPD correlation network encompasses 1665 nodes and 52513 edges. The most highly con-
nected hub is EMP2 that codes a tetraspan protein of the PMP22/EMP family regulating cell membrane compo-
sition. It is down-regulated in COPD cases (Fold-change = 0.68, FDR =  . ⋅ −1 1 10 7) and is located in a 
genome-wide significant COPD GWAS region with a COPD-associated top SNP about 86 Kb from the transcrip-
tion start site.

Module identification in the COPD correlation network.  In order to detect the community structure 
of the network, SWIM used the k-means clustering algorithm, which partitions n objects (here, network nodes) 
into a predefined number N of clusters (modules). The quality of clustering was evaluated by minimizing the Sum 
of the Squared Error (SSE), depending on the distance of each object to its closest centroid. As a distance measure, 
SWIM used:

ρ= −dist x y x y( , ) 1 ( , )

where ρ x y( , ) is the Pearson correlation between expression profiles of nodes x and y. A reasonable choice of the 
number of clusters is suggested by the position of an elbow in the SSE plot (named “scree plot”) computed as a 
function of the number of clusters (see Materials and Methods section). The COPD correlation ne twork con-
sisted of 3 modules or clusters, varying in size from 190 genes in module 1, 1411 genes in module 2, and 64 genes 
in module 3 (Fig. 2a).

In order to check the quality of the k-means clustering algorithm implemented by SWIM, we grouped genes 
with correlated expression profiles into modules by using complete linkage hierarchical clustering coupled with 
the correlation-based dissimilarity dist x y x y( , ) 1 ( , )ρ= − . We compared detected modules with the ones 
obtained by SWIM with the k-means method, and we found that cluster 1 and cluster 3 are well separated mean-
ing that their cluster detection is highly robust with respect to the clustering algorithm used (Supplementary 
Fig. 2).

Summarizing the profiles of the COPD modules.  To summarize the overall expression profile of a 
given module in the COPD co-expression network, we exploited the module eigengene (Fig. 2b) defined as the 
first principal component of a given module13. We found that the first principal component across all modules is 
able to explain more than 85% of the data variance in each module, i.e. 96.7%, 95.4%, 88.8%, in module 1, module 
2, and module 3, respectively (Fig. 2c). Thus, the module eigengene can be considered a representative gene able 
to condense each module into one profile. In light of this, we found that the eigengenes of module 1 and module 
2 are both down-regulated in COPD cases (p-value = . ⋅ −5 8 10 14 and p-value = . ⋅ −3 6 10 16, respectively), 
whereas the eigengene of module 3 is up-regulated in COPD cases (p-value = 2 9 10 13. ⋅ − ), providing a general 
idea of the overall expression trend of each module.

Then, for each gene in a given module, the module membership can be computed as the correlation between 
its expression profile and the module eigengene13. We found high correlations within modules 1 and 3 with the 
mean module membership, equal to 0.71 and 0.67, respectively. However, the mean mo dule membership of mod 
ule 2 is lower, confirming the result obtained with the hierar chical clustering algorithm (Supplementary Table 3).

The first two genes with the highest membership in module 1 are CAVIN1 and AGER, both down-regulated in 
COPD cases (Fold-change = 0.8 and FDR = . ⋅ −1 8 10 5; Fold-change = 0.65 and FDR = 1 8 10 5. ⋅ − , respectively). 
CAVIN1 encodes a protein that enables the dissociation of paused ternary polymerase I transcription complexes 

Figure 1.  Differentially expressed genes in lung tissue samples. (a) Pie chart represents the percentages of DEGs 
that are up-/down-regulated in COPD cases in comparison to control subjects, based on 1% false discovery rate. 
(b) Heatmap represents DEGs clustered according to genes (rows) and samples (columns) by using one minus 
the Pearson correlation as distance. Colors represent different expression levels increasing from blue to yellow.
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from the 3′ end of pre-rRNA transcripts. This protein regulates rRNA transcription by promoting the dissociation 
of transcription complexes and the reinitiation of polymerase I on nascent rRNA transcripts. This protein also 
localizes to caveolae at the plasma membrane and is thought to play a critical role in the formation of caveolae and 
the stabilization of caveolins. AGER, one of the most down-regulated genes in COPD cases, encodes the advanced 
glycosylation end product (AGE) receptor and interacts with several molecules implicated in homeostasis, devel-
opment, and inflammation (Fig. 3). Interestingly, AGER is one of the most well-known candidate genes located in 
a significant COPD GWAS region with a non-synonymous SNP (located about 2 Kb from the transcription start 
site), which has been associated with multiple COPD-related phenotypes and COPD affection status20,21.

The first gene with the highest module membership in module 2 is CAPN2 that is down-regulated in COPD 
cases (Fold-change = 0.8 and FDR = . ⋅ −7 3 10 7) and encodes the large subunit of the calcium-activated neutral 
protease calpain 2. It is worth emphasizing that smoking activates macrophages to produce several inflammatory 
mediators including proteases22. Increasing evidences indicate that chronic inflammatory and immune responses 
play a crucial role in COPD development and progression22,23. The chronic inflammatory process in COPD 
involves both innate (e.g., neutrophils, macrophages, T cells, innate lymphoid cells, and dendritic cells) and adap-
tive immune response (i.e., T and B lymphocytes)24. In particular, patients affected by COPD show a lung inflam-
mation pattern characterized by an increased number of neutrophils, macrophages, and T and B lymphocytes. 
Consistently, we found that module 2 is more enriched in cell type-specific gene markers (i.e., immune gene sig-
natures) known in literature25, with a total of 67 marker genes representative of six immune populations, all 
up-regulated in COPD cases (see Materials and Methods section, Fig. 3 and Supplementary Table 2).

The first two genes with the highest membership in module 3 are PRDX4 and KCND3, both up-regulated in 
COPD cases (Fold-change = 1.2 and FDR = 4 8 10 4. ⋅ − ; Fold-change = 1.2 and FDR = . ⋅ −9 8 10 6, respectively). 
PRDX4 codes a protein that is an antioxidant enzyme with a key regulatory role in the activation of the transcrip-
tion factor NF-kappaB. Instead, the gene KCND3 codes for potassium channel subfamily D member 3 and is 
located in a genome-wide significant COPD GWAS region, although the COPD-associated top SNP is located 
about 575 Kb from the transcription start site. The expression of PRDX4 is strongly positiv ely correlated in the 
COPD correlation network with SERPINE2, CD79A, and POUF2AF1, which were previously considered as puta-
tive interactors of genes at COPD GWAS loci7. The expression of KCND3 is strongly positively correlated with two 
of them (SERPINE2 and CD79A). Among KEGG pathways and GO Biological Processes enriched in module 3, 
we found annotations related to the regulation of the immune system and inflammatory response (see Materials 
and Methods section and Fig. 3).

Figure 2.  COPD correlation network and module eigengene (a) COPD correlation network where nodes are 
DEGs and a link occurs between them if the absolute value of the Pearson correlation coefficient between their 
expression profiles exceeds the correlation threshold ( | r | > 0.57). Groups of nodes sharing the same color 
represent gene modules obtained by k-means clustering. (b) [UPPER] Heatmap representing genes of module 
3 (rows) across samples (columns). Colors represent different expression levels increasing from blue to yellow. 
Gene expression data are log2-transformed and z-score normalized. [BOTTOM] Bar plot of the expression 
levels of module 3 eigengene (y-axis) across samples (x-axis). Gene expression data are log2-transformed and 
z-score normalized. (c) The percent variability explained by each principal component (PC) computed for 
module 3, known as a Pareto chart, contains both bars and a line graph, where individual values are represented 
in descending order by bars, and the line represents the cumulative total value. The left y-axis represents the 
percentage of the data variance explained by each PC, the right y-axis represents the cumulative distribution, 
and the x-axis represents the PCs that are able to explain 100% of the cumulative distribution. PC1 represents 
the module eigengene and explains about 90% of the data variance.
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Identification and characterization of switch genes.  We classified nodes in the COPD correlation 
network using the date/party/fight-club hub classification system11, based on the Average Pearson Correlation 
Coefficients (APCCs) between the expression profiles of each hub and its nearest neighbors (see Materials and 
Methods section). Then, we assigned a topological role to each node based on their inter- and intra-cluster inter-
actions and thus drew the heat cartography map for the COPD dataset, where party, date, and fight-club hubs 
were easily identified by red, orange, and blue coloring, respectively (Fig. 4a and Supplementary Table 2). Through 
the heat cartography map, we are able to identify switch genes as a special subclass of fight-club hubs (APCC <0) 
characterized by having more links outside than inside their own cluster, while not being hubs in their own cluster 
(i.e., switch genes are fight-club hubs falling in the R4 region of the heat cartography map).

In the heat cartography map drawn for COPD randomized network, we observed a predominance of positive 
correlations and an absence of switch genes (Fig. 4b). To assess statistical significance to this observation, we 
repeated this procedure 1000 times and we calculated the number of switch genes in each COPD randomized 
network. We found that the number of switch genes in each randomized network was always less than three, with 
a mean of 0.6 and a standard deviation of 0.8. Then, the number of 62 switch genes found in the original COPD 
correlation network (Fig. 4a) was zscore-normalized and the p-value for the given z statistics was calculated; the 
p-value ∼ 0 indicates that the observed heat cartography map in the COPD gene expression dataset (Fig. 4a) is 
not a random event.

We found 62 switch genes in the COPD correlation network all resulting in gene up-regulation in COPD cases 
(Fig. 5a and Supplementary Table 4). Most switch genes (74%) fall in module 3 (Fig. 5b) and, mutually, module 
3 is almost entirely populated by switch genes (73%), thus conferring to this module a well-characterized and 
defined signature as switch module.

COPD switch genes are all protein-coding, among which 4 transcription factors - including E2F3, HIF4, 
TAF10 of module 3 and RUNX1 of module 2 - and five other genes located within previously identified 
genome-wide significant COPD GWAS loci5 (Fig. 5c).

Functional annotation analysis of switch genes reveals that they are mainly involved in the regulation of sev-
eral functionalities related to the immune and inflammatory response, mirroring the enrichment results obtained 
for module 3 (Supplementary Fig. 3).

Figure 3.  Module characterization in COPD network. The three boxes represent the three modules obtained 
by k-means clustering from the COPD correlation network. In each module, genes of interest or immune cell 
populations are highlighted. From top to bottom: boxplots in controls (orange boxes) and COPD cases (green 
boxes) of the module 1 eigengene and of the GWAS genes with the highest module 1 membership; bar plots, 
for each immune cell population included in module 2, of the fold-change values of the marker genes in that 
immune cell population; boxplot in controls (orange boxes) and COPD cases (green boxes) of the module 3 
eigengene and the top-enriched GO BP terms and KEGG pathways in this module.
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Figure 4.  Identification of COPD switch genes. (a-b) Heat cartography maps of COPD and randomized 
network obtained by randomly shuffling the edges but preserving the degree of each node. Dots correspond to 
network nodes colored according to their APCC value.

Figure 5.  Characterization of COPD switch genes. (a) The larger pie chart [right] represents the percentages 
of DEGs that are up-/down-regulated in COPD cases in comparison to control subjects. The smaller pie chart 
[left] represents the percentages of switch genes among the up-regulated genes in COPD cases. (b) The pie 
chart represents the percentages of switch genes in each cluster. (c) Tables listing the switch genes that are 
transcription factors [left] and GWAS genes [right]. Switch genes are colored according to their associated 
cluster. (d) Robustness of the COPD correlation network. Blue curve corresponds to the cumulative deletion 
of non-switch hubs (i.e., the first 62 hubs that are not switch genes, sorted by decreasing degree); red curve 
corresponds to the cumulative deletion of the 62 switch genes, sorted by decreasing degree; the green curve 
corresponds to the cumulative deletion of randomly selected nodes. The x-axis represents the cumulative 
fraction of removed nodes with respect to the total number of 1655 network nodes (i.e., x-maximum is 62/1655 
= 0.04), while the y-axis represents the average shortest path.

https://doi.org/10.1038/s41598-020-60228-7


7Scientific Reports |         (2020) 10:3361  | https://doi.org/10.1038/s41598-020-60228-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Note that PRDX4 and KCND3, the first two genes with the highest membership in module 3, are also switch 
genes.

Removal of switch genes.  Scale-free networks show a surprising tolerance against errors and the ability of 
nodes to interact is unaffected even by very high node failure rates. However, this error tolerance is paid at a high 
price in that these networks are extremely vulnerable to attacks, i.e., to the removal of a few nodes that play a vital 
role in maintaining the network’s connectivity26.

We studied the tolerance of the COPD network against the removal of the 62 switch genes by comparing to the 
impact of the removal of the first 62 hubs that are not switch genes (called “non-switch hubs”). Both switch genes 
and non-switch hubs were sorted by decreasing degree and selected to be removed (Fig. 5d). Then, the effect on 
the average shortest path (i.e., the mean of the shortest paths for all possible pairs of nodes in the network) of the 
cumulative node deletion is evaluated.

We found that the removal of switch genes produces a drastic increase of the average shortest path, mirroring 
the effect caused by the deletion of the first 62 non-switch hubs (Fig. 5d). This means that switch genes play a vital 
role in maintaining the network’s connectivity while not being the primary hubs. In fact, the first 62 nodes sorted 
by decreasing degree include only two switch genes (Fig. 6). On the contrary, the removal of 62 randomly selected 
nodes does not affect the integrity of the network (Fig. 5d).

Validation of switch gene identification.  To further assess the validity of the SWIM analysis in iden-
tifying disease genes and modules associated to COPD status, we applied the SWIM software on the GSE76925 
dataset (test set), which contains microarray gene expression profiling of lung tissue samples from 111 COPD 
cases and 40 control smokers with normal lung function7. In this case, starting from 22631 genes, we obtained 887 
significantly DEGs at 15% FDR, of which 493 (56%) were down-regulated in COPD cases, while the remaining 
394 (44%) were up-regulated (Supplementary Table 1). To build the COPD correlation network, we selected a 
correlation threshold equal to 0.55 (corresponding to the 95th percentile of the entire correlation distribution), 
which roughly guarantees to preserve the network integrity. A higher correlation threshold would cause a drastic 
drop in network connectivity.

The obtained COPD correlation network encompassed 667 nodes and 22595 edges, including 103 date hubs, 
348 party hubs, and 71 fight-club hubs. From the COPD correlation network, SWIM extracted 61 switch genes 
all resulting in gene up-regulation in COPD cases (Supplementary Fig. 4a, Supplementary Table 4). By studying 
the tolerance of the COPD correlation network against the removal of the 61 switch genes, similar to the other 
lung tissue gene expression dataset, we found that the removal of switch genes produces a drastic increase of 
the average shortest path, even overcoming the effect caused by the deletion of the first 61 non-switch hubs 

Figure 6.  Degree distribution for each class of hubs. The dashed red lines correspond to the lowest degree (i.e., 
264) of the first 62 (i.e., number of switch genes) nodes sorted by decreasing degree. For each class of hubs, the 
number of nodes that are included in the first 62 sorted nodes is reported.
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(Supplementary Fig. 4b). This strongly supports the hypothesis of their putative key role in preserving the net-
work’s connectivity, while not being the primary network hubs (the first 61 nodes sorted by decreasing degree do 
not include any switch gene).

Notably, the list of 61 switch genes includes SPP1 that encodes adiponectin, which has been suggested as a 
protein biomarker for COPD27 and TUFM, which is probably the best candidate within a strong COPD GWAS 
region on chromosome 1628.

The two analyzed datasets shared only one switch gene, i.e. SSR4, which appears in the top-ten switch genes 
of the training set (GSE47460 dataset) and it is up-regulated in COPD cases in both datasets. Previous analyses 
of gene expression differences in COPD have noted the challenges of finding consistent results across studies29. 
There is marked heterogeneity in the development of COPD even among people with similar cigarette smoking 
histories, which is likely partially explained by genetic variation making the functional understanding of the dis-
ease a formidable challenge. Network-based approaches enable modeling of the complex molecular interactions 
involved in COPD pathogenesis aiding translational understanding of the complex mechanisms underlying the 
disease. These approaches start from the assumption that complex diseases are rarely a consequence of an abnor-
mality in a single gene, but are likely influenced by a network of interacting genes and proteins where diseases can 
be identified with localized perturbation within a certain neighborhood or module30. Therefore, the identification 
of these modules is a prerequisite of a compelling investigation of a certain pathophenotype. In order to inves-
tigate the extent to which the two lists (S1, S2) of switch genes are in close proximity in the Human Interactome 
(i.e., the cellular network of all physical molecular interactions), we used a network proximity measure and inter-
actome database obtained from31:

 
∑=

|| ||
p S S

S
d s s( 1, 2) 1

1
min ( , )

s S s S1 2
1 2

1 2

where the closest distance p S S( 1, 2) is the average shortest path length between switch genes s1 of the list S1 and 
the nearest switch gene s2 of the list S2 (Fig. 7).

To evaluate the significance of the observed network proximity across the two lists of switch genes, we built 
a reference distance distribution corresponding to the expected distance between two randomly selected groups 
of proteins with the same size and degree distribution of the original two sets of switch genes in the human in 
teractome. This procedure was repeated 5000 times (Fig. 7).

Then, the network proximity measure across the two lists of switch genes was zscore-normalized by using the 
mean and the the standard deviation of the reference distance distribution. Subsequently, the p-value for the given 
z statistics was calculated. The obtained p-value <0.05 indicates that the proximity in the human interactome of 
the two lists of switch genes is lower than the mean of the network distances between any two sets of randomly 
selected nodes of the same size and degree.

To further investigate the extent to which the two lists (A, B) of switch genes are in the immediate vicinity of 
each other in the human interactome, we used a network separation measure that tests if the two lists form mod-
ules that are separated or overlap and is defined as follows32:

s A B p
p p

( , )
2AB

AA BB= −
+

where p A B( , ) is the proximity measure above-defined. A value for the separation measure s > =0 means that the 
two lists of genes map to proteins that in the human interactome are topologically separated, otherwise a va lue 
for separation measure s < 0 means that two gene sets are located in the same network neighborhood. By comput-
ing the separation measure between the two lists of switch genes obtained from the COPD training and test set, 
we obtained s = −0.074, meanifng that means that two gene sets are located in the same ne twork neighborhood 
(i.e., they overlap).

Figure 7.  Probability distribution of the network proximity. The network proximity was computed between 
the list of switch genes from the COPD training and test set. The dashed red line corresponds to the observed 
network proximity measure (p=1.8) across the lists of switch genes in the two analyzed datasets. The red area 
represents the probability of observing the test statistic as small as that observed, corresponding to a p-value = 
0.049, or smaller.
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To demonstrate the specificity of COPD switch genes with respect to another lung disease with an inflam-
matory component, we applied SWIM on a dataset from the acute respiratory distress syndrome (ARDS) avail-
able through the GEO public repository at accession number GSE7629333. This dataset collects microarray 
gene expression profiling of 12 lung samples from ARDS patients and 12 samples from paired (i.e., age and 
gender-matched) healthy volunteers (HVTs). The obtained ARDS switch genes were completely different from 
the ones found in the COPD training and test set. By computing the proximity and separation measurements 
between the list of switch genes obtained from the training set and from the ARDS dataset, we found that their 
proximity is not statistically significant (p-value = 0.2) (Supplementary Fig. 5) and their separation is positive, 
meaning that the two lists of switch genes form two modules that are topologically separated in the human inter-
actome (i.e., they do not overlap) (Fig. 8).

Interestingly, by studying the functional annotations of the two lists of switch genes from the COPD training 
and test set, we found that they share COPD-related KEGG pathways (Table 1) and GO biological processes 
(Table 2), namely the NF-κB and toll-like receptor signaling pathways, regulation of immune and inflammatory 
response and key processes in cell development. Among switch genes involved in the NF-κB pathway, we found 
SYK, BLNK, and LY96 in the training set (GSE47460 dataset) and IRAK4 in the test set (GSE76925 dataset), all 
up-regulated in COPD cases. Thus, despite the apparent discrepancy in the lists of switch genes across the two 
datasets, the observed proximity in the human interactome, as well as the shared COPD related functionalities 
suggest they are working together in determining the COPD pathophenotype.

Interestingly, performing the functional enrichment analysis on the list of switch genes obtained from the 
ARDS dataset, we found the same pathways affected as in Table 1.

Switch genes interacting with genes at COPD GWAS loci and with SERPINE2, CD79A and 
POUF2AF1.  Looking at the COPD GWAS regional genes that are nearest network neighbors of switch genes 
in the training set (GSE47460 dataset), we found that switch genes are highly correlated and anti-correlated with 
24 and 36 GWAS genes, respectively (Supplementary Table 5). Since a liberal region around 82 genomic loci asso-
ciated with COPD was included (about +/− 1 Mb), approximately 5% of the genome was encompassed by those 
COPD GWAS regions. Thus, in order to check if the number of GWAS genes included in the positive/negative 

Figure 8.  Schematic SWIM disease modules. Schematic diagram of disease modules identified by SWIM in the 
full interactome between switch genes associated with the three diseases identified in the legend.

KEGG pathways Switch GSE47460 Switch GSE76925

Antigen processing and presentation HSPA4 HSP90AA1;CD8A

Th17 cell differentiation HIF1A;RUNX1 HSP90AA1

Primary immunodeficiency BLNK CD8A

NF-kappa B signaling pathway SYK;BLNK;LY96 IRAK4

Toll-like receptor signaling pathway LY96 SPP1;IRAK4

NOD-like receptor signaling pathway IFI16;CYBA HSP90AA1;IRAK4

PI3K-Akt signaling pathway SYK;EIF4EBP1 HSP90AA1;SPP1

Cellular senescence CHEK2;EIF4EBP1;E2F3 RAD50

Table 1.  Common KEGG functional annotations. Table showing the KEGG pathways shared between the two 
lists of switch genes obtained from the training and test set (i.e., GSE47460 and GSE7925).
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GO Biological Process Switch GSE47460 Switch GSE76925

antigen processing and presentation 
of exogenous peptide antigen via 
MHC class I

CYBA PSMC2

antigen receptor-mediated signaling 
pathway SYK PSMC2

cellular response to cytokine 
stimulus TIMP1;IL13RA2;HIF1A HSP90AA1;IRAK4;EPRS

cellular response to interleukin-1 HIF1A PSMC2;IRAK4

cytokine-mediated signaling pathway SYK;RPLP0;TIMP1;IL13RA2; HIF1A HSP90AA1;PSMC2;IRAK4

innate immune response activating 
cell surface receptor signaling 
pathway

SYK PSMC2

positive regulation of T cell 
proliferation SYK CD24

regulation of cytokine-mediated 
signaling pathway SYK;RUNX1 CD24

regulation of immune response SYK SELL;CD8A

regulation of interleukin-2 
production RUNX1 NAV3

negative regulation of interleukin-2 
production TRIM27 NAV3

neutrophil activation involved in 
immune response PRDX4;SYK;CYBA HSP90AA1;SELL;COPB1;PSMC2;YPEL5;GYG1

neutrophil degranulation PRDX4;CYBA HSP90AA1;SELL;COPB1;PSMC2;YPEL5;GYG1

neutrophil mediated immunity PRDX4;CYBA HSP90AA1;SELL;COPB1;PSMC2;IRAK4;YPEL5;GYG1

neutrophil migration SYK IRAK4

regulation of response to cytokine 
stimulus RUNX1 CD24

positive regulation of I-kappaB 
kinase/NF-kappaB signaling NEK6 IRAK4

regulation of I-kappaB kinase/NF-
kappaB signaling NEK6 IRAK4

toll-like receptor signaling pathway LY96 IRAK4

MyD88-dependent toll-like receptor 
signaling pathway LY96 IRAK4

cellular response to hypoxia HIF1A PSMC2

extracellular matrix disassembly TIMP1 SPP1

extracellular matrix organization GREM1;CYP1B1;TIMP1 SPP1

cellular response to DNA damage 
stimulus BLM;CHEK2 RAD50

regulation of cellular response to 
stress NEK6 HSP90AA1

negative regulation of cell adhesion 
mediated by integrin CYP1B1 PDE3B

negative regulation of angiogenesis SERPINF1 PDE3B

negative regulation of apoptotic 
process GREM1 TOX3

regulation of cell differentiation GREM1;RUNX1 CD24

regulation of cell migration CYP1B1 NAV3

negative regulation of cell migration CYP1B1;TIMP1 NAV3

negative regulation of cell motility CYP1B1 NAV3

negative regulation of cell 
proliferation GREM1;CYP1B1;E2F3;NME1 CTCF

regulation of cell proliferation MCTS1;GREM1;SYK;CYP1B1;TIMP1;NME1 CTCF

regulation of intracellular signal 
transduction ARHGAP22;BLM;CHEK2;TAF10 RAD50;CD24

regulation of signal transduction TIMP1;RUNX1 CD24

regulation of signal transduction by 
p53 class mediator BLM;CHEK2;TAF10 RAD50

regulation of stem cell differentiation RUNX1 PSMC2

negative regulation of Wnt signaling 
pathway GREM1 PSMC2

Table 2.  Common GO BP functional annotations. Table showing the GO Biological Processes shared between 
the two lists of switch genes obtained from the training and test set (i.e., GSE47460 and GSE7925).
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nearest neighbors of COPD switch genes (i.e., 24 and 36 GWAS genes, respectively) is more than expected by 
chance, the nearest neighbors of COPD switch genes were randomly shuffled 1000 times preserving the degree 
of each switch gene and the interaction weights. Then, the original values (non-random values) of GWAS pos-
itive and negative nearest neighbors were z-score-normalized and the p-values for the given z statistics were 
calculated, that are 6.63 × 10−76 and 3.93 × 10−205, respectively. This suggests that the observed number of GWAS 
genes included in the positive/negative nearest neighbors of COPD switch genes (i.e., 24 and 36 GWAS genes, 
respectively) is not a random event.

Interestingly, the list of 36 GWAS genes that are negative nearest neighbors of switch genes encompasses 
AGER and EMP2, which negatively correlate with 26 and 33 switch genes, respectively, of which 24 switch genes 
are in common (Fig. 9 left and Supplementary Table 5). Note that this signature in mainly due to the switch genes 
falling in module 3. In fact, AGER and EMP2 negatively correlates in module 3 with 25 and 30 switch genes, 
respectively, of which 23 switch genes in common, including KCND3, SSR4, LY96, and TIMP1. Overall, the 70% 
of the negative interactors of AGER and/or EMP2 in module 3 are switch genes.

Looking at genes that have been previously considered as putative interactors of genes at COPD GWAS 
loci7, we found that 22 switch genes are strongly positively correlated with SERPINE2, or with CD79A, or with 
POUF2AF1 (Fig. 9 right). Among them, we found PRDX4 and FKBP11 that are positively correlated with all three 
GWAS interactors POUF2AF1, SERPINE2, and CD79A.

WGCNA network analysis.  To test the SWIM performance, we applied the commonly used Weighted 
Gene Coexpression Network Analysis (WGCNA) framework on the COPD training set (GSE47460 dataset) to 
identify gene modules associated with COPD case-control status13. An unsigned network was built by using the 
Pearson correlation metrics and a soft thresholding power equal to 5 was set in order to guarantee a scale-free 
topology (Supplementary Fig. 6a). The final network consisted of 12 modules (labeled by color), ranging in 
size from 43 to 720 genes, each containing a set of unique genes (Supplementary Fig. 6b). The grey module is 
a grouping of genes with outlying gene expression profiles and was not considered further. Tests of association 
between phenotype variables of interest and the module eigengenes were performed for each model and the 
results were summarized in a heatmap (Supplementary Fig. 6c). The phenotype variables predicted dlco, pre-
dicted fev1 (post-bd and pre-bd), predicted fvc (post-bd and pre-bd), and smoker status (i.e, current, ever, or 
never) decrease with COPD disease status, while emphysema increases with COPD disease. To identify groups 
of correlated module eigengenes, a hierarchical clustering methods was exploited quantifying the module sim-
ilarity by eigengene correlation (Supplementary Fig. 6d). The purple and the brown modules were the most 
significantly associated with COPD case-control status (FDR < 0.05). Driver genes in these two modules were 
identified using the module membership measure and the intra-module node degree. We found that driver 
genes for the brown module include EMX1, VWA7, LCE1A; while driver genes for the purple module encom-
pass RPL17, RPL5, CRACR2B (Supplementary Fig. 7). None of these driver genes are known to be related to 
COPD. Moreover, the functional enrichment analysis performed on these two network modules did not dis-
play statistically enriched annotations related to COPD (Supplementary Table 6), whereas SWIM identified the 
module of switch genes that was statistically enriched in COPD-related pathways, like B cell receptor signaling 
pathway (Supplementary Fig. 8).

We then compared this WGCNA analysis on the training set with a recently published WGCNA analysis on 
the COPD dataset we used as test set7, where the authors found that only one module, the cyan one, was most 
significantly associated with COPD case-control status (FDR < 0.05) and significantly enriched in B cell related 
processes. We found that driver genes of cyan module were not the same as the driver genes of the brown mod-
ule from the COPD training set. However, the shared pathways affected in these two modules included NF-κB 
signaling pathway. We then checked if these two modules were or were not in close proximity in the human 
interactome. We found that their proximity was significantly higher than the mean of the random distribution 
(p-value = 0.03) (Supplementary Fig. 9a) and their separation was positive, meaning that the two modules are 
topologically well-separated in the human interactome (i.e., they do not overlap). The same results were found 
for the purple module from the COPD training set with respect to the cyan module from the COPD test set 
(Supplementary Fig. 9b).

SWIM performance evaluation.  To test the SWIM performance, we computed the Receiver Operating 
Characteristic (ROC) probability curve and the corresponding Area Under the Curve (AUC) that represents 
how much a model is capable of distinguishing between classes. Actually, a reliable truth table for COPD spe-
cific genes is hampered by variable definitions of COPD, incomplete consideration of past and current smoking 
status, failure to consider quantitative traits and COPD heterogeneity. To overcome this limitation, we classified 
genes as COPD-specific if they are annotated for COPD specific-pathways (i.e., pathways that were enriched in 
the two lists of switch genes from training set and test set) and we used this definition as the “real association” to 
COPD status for each switch gene: 0 means that the switch gene is not annotated for a COPD-specific pathway, 
while 1 means that the switch gene is annotated for a COPD-specific pathway and thus it can be considered as 
COPD-specific gene. Then, we calculated the capability of SWIM to predict COPD-specific genes by consider-
ing for each switch gene the number of COPD-GWAS gene falling in its interactors in the correlation network: 
greater is the number of COPD-GWAS interactors greater is the probability that SWIM does not fail to consider 
it as COPD-specific gene. According to these criteria, we built a truth table and we calculated the ROC. We found 
that the AUC is 0.7 both for the training set (Supplementary Fig. 10a) and the test set (Supplementary Fig. 10b) 
switch genes, meaning that there is 70% chance that SWIM will be able to distinguish between positive class 
(COPD-specific genes) and negative class (genes that are not COPD-specific).
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Discussion
We analyzed lung tissue gene expression data from two well-characterized COPD case-control populations to 
study the differences between lung samples from normal subjects (represented by smokers with normal spirom-
etry) and COPD cases. We used one dataset as a “training set” to perform the analysis and the other dataset as 
a “test set” to validate the results. We built a COPD correlation network, and we exploited the module-centric 
approach to identify putative COPD molecular determinants that we called “switch genes”.

COPD is characterized by an inflammatory component persisting even after smoking cessation. This inflam-
matory status is heterogeneous, but the key inflammatory cells involved are T cells, B cells, neutrophils, and 
macrophages. Macrophages play a crucial role in orchestrating chronic inflammation in COPD patients and their 
number markedly increases in both the airways and lung parenchyma22. Neutrophils provide powerful proteases 
and are broadly present in acute exacerbations in the lung airways34. The role of B cells and T cells in COPD 
pathogenesis has growing support from the basic science studies of COPD7,35–37. In fact, recent evidence shows a 
strong positive correlation between the COPD severity and the size and number of B cell-rich lymphoid follicles, 
as well as between the amount of alveolar destruction and severity of airflow obstruction and the number of T 
cells24,37.

Several aspects of innate and adaptive immune functions are regulated by the transcription factor NF-κB that 
is a pivotal mediator of inflammatory responses. NF-κB induces the activation of various pro-inflammatory genes 
and serves as a key regulator of the survival, activation and differentiation of innate immune cells and inflam-
matory T cells38. Therefore, the NF-κB deregulation contributes to the pathogenic processes of several diseases 
with inflammatory components. Recently, various therapeutic strategies that target the NF-κB signaling pathway 
have been considered for treatment of inflammatory diseases, such as asthma and COPD39. Among the causes 
responsible for the activation of this pathway, there is the binding of the advanced glycosylation end-products 
(AGEs) to RAGE, the protein encoded by the gene AGER that is one of the most well-known candidate genes 
located in a significant COPD GWAS region. RAGE is a membrane receptor, but also has soluble forms (sRAGE) 
generated mainly by alternative splicing mechanism of the AGER gene. Reduced sRAGE levels are associated with 
heightened inflammation in various chronic conditions, and they are also associated with increased emphysema 
and COPD status20. sRAGE is one of the most promising biomarkers for emphysema40.

In addition to inflammation, our analyses highlighted hypoxia-related pathways. Inflammation shares an 
interdependent relationship with hypoxia. In fact, oxygen passes from the lung tissue to the blood via the lung 
alveoli. COPD damages the lungs, and if they get seriously damaged, hypoxia may occur since the blood does not 
deliver enough oxygen to the alveoli in the lungs. Patients affected by inflammatory diseases show elevated levels 
of hypoxia-inducible factors (HIF), a transcription factor that is stabilized during conditions of hypoxia, and the 
activation of HIF1 signaling pathway has been shown to correlate with a decrease of lung function, reduced qual-
ity of life and progression of COPD41–43. Thus, while hypoxia can elicit tissue inflammation, inflammatory disease 
states are frequently characterized by tissue hypoxia, supporting the hypothesis that hypoxia and inflammation 
are two sides of the same coin44. Besides inducing inflammation, hypoxia causes also the disappearance of caveo-
lae in the epididymal adipose tissue and inhibits the expression of CAVIN1 through HIF145. Caveolae dysfunction 
is implicated in various pathologies, such as muscular dystrophies and pulmonary hypertension in COPD45,46.

Figure 9.  Switch genes interactions. [LEFT] Networks of switch genes negatively correlated with GWAS genes. 
Pink nodes correspond to GWAS genes, blue nodes correspond to switch genes, orange nodes correspond to 
switch genes that are also GWAS genes, larger size nodes correspond to negative nearest neighbor of EMP2. 
The interactions of AGER with its nearest neighbors are highlighted in red. [RIGHT] Sketched network of 
correlations among switch genes and SERPINE2, CD79A, and POUF2AF1.
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Consistent with all these observations, we found that the COPD correlation network built by SWIM software 
consists of three well-characterized modules: one populated by switch genes all up-regulated in COPD cases and 
related to the regulation of immune and inflammatory response; one populated by well-recognized immune 
signature genes all up-regulated in COPD cases; and one where the GWAS gene AGER and CAVIN1 are the most 
representative module genes, both down-regulated in COPD cases. Interestingly, 70% of the negative interactors 
of AGER are switch genes.

Among switch genes involved in NF-κB signaling pathway, we found LY96, BLNK, and SYK (Supplementary 
Fig. 3). In particular: LY96 codes a protein which is associated with toll-like receptor 4 on the cell surface; BLNK 
codes for an adaptor protein that plays a crucial role in B cell development and activation; SYK encodes for a 
tyrosine protein kinase that is involved in coupling activated immunoreceptors to downstream signaling events 
mediating diverse cellular responses, like proliferation, differentiation, and phagocytosis. Among switch genes 
linked to the NF-κB signaling pathway, we found PRDX4 that is associated with neutrophil activation and degran-
ulation and with I-kappaB phosphorylation that is an important step in the NF-κB activation. Moreover, we 
found that the gene expression of PRDX4 strongly correlates with the activation of known COPD GWAS interac-
tors SERPINE2, CD79A, and POUF2AF147–53.

Among switch genes involved in the inflammatory response and hypoxia, sharing an interdependent relation-
ship44, we found TIMP1 and the transcription factor HIF1A (Supplementary Fig. 3). TIMP1 is the tissue inhibitor 
of metalloproteinase-1 related to airway hyperresponsiveness (AHR) in smokers43. AHR is associated with airway 
inflammation and is a predictor of future risk of COPD among smokers43. HIF1A encodes the alpha subunit of 
hypoxia-inducible factor-1 (HIF1) and has been shown to be an essential regulator of the response to hypoxia54. 
Recent data have also suggested that HIF1A plays a major role in COPD, indicating that its high expression may 
be associated with decreased lung function and reduced quality of life, contributing to disease progression41,42.

Among switch genes related to the regulation of immune response, we found the gene CYBA associated with 
the nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling pathway. NOD-like receptors 
are a group of key sensors for lung microbiota and damage and might also indirectly regulate immune responses. 
Thus, they play a key role in multiple infectious as well as acute and chronic sterile inflammatory diseases, such 
as pneumonia and COPD55. CYBA codes for light chain (alpha subunit) of the cytochrome b protein, which has 
been proposed as a primary component of the microbicidal oxidase system of phagocytes and shows selective 
cytoplasmic expression in immune cells.

Furthermore, we found also switch genes involved in other mechanisms beyond chronic inflammation that 
are implicated in the development and the progression of the COPD, such as cellular senescence, apoptosis, and 
oxidative stress (Supplementary Fig. 3)23,24.

In order to evaluate the predictive power of SWIM tool, we computed the ROC probability curve and the 
corresponding AUC for the results obtained studying both COPD training and test set. We used the pathways 
affected in the list of switch genes from the first dataset as predictive for the identification of COPD-specific 
switch genes from the second dataset, and vice versa. In both cases we found that the AUC is 0.7, meaning that 
there is 70% chance that SWIM will be able to distinguish between positive class (COPD-specific genes) and 
negative class (genes that are not COPD-specific).

In order to estimate the capacity of SWIM tool in identifying network disease modules, we compared the results 
of SWIM analysis on COPD training set with the ones obtained by applying the WGCNA method on the same 
dataset. The analysis led to the identification of two most significant network modules but, unfortunately, the list of 
driver genes belonging to these modules was not statistically enriched in pathways known to be related to COPD. 
On the contrary, the switch genes module identified by SWIM analysis on the same dataset was statistically enriched 
in COPD-related pathways, like B cell receptor signaling pathway. These findings demonstrated that switch genes 
identified by SWIM have more biologically meaningful than the driver genes identified by WGCNA. We then com-
pared these results with the ones reported in a recently published paper, where the authors applied the WGCNA 
method on the COPD dataset we used as test set7. We found that the driver genes identified in this paper were not 
the same as the driver genes we identified by exploiting WGCNA analysis on the COPD training set, but they share 
common pathways related to inflammation, including NF-κB signaling pathway. This is not surprising since this 
pathway is common to many lung diseases with an inflammatory component, like ARDS. However, what is actually 
unexpected is that these two lists of driver genes form two modules in the human interactome that are statistically 
significantly separated. This is in stark contrast with the results of SWIM analysis, which showed that the two lists of 
switch genes from the two datasets were in close proximity and overlapped in the human interactome. These finding 
demonstrated that the WGCNA analysis is less specific than SWIM analysis since it found network modules that 
distinguish between two datasets of the same disease as they would be associated to different diseases.

In order to demonstrate the disease specificity of switch genes, we compared the results from SWIM analysis 
obtained on COPD training set with the ones obtained on ARDS, another lung disease with an inflammatory com-
ponent. Interestingly, we found that ARDS switch genes were different than COPD switch genes, but the major path-
ways affected in the two lists were similar and include NF-κB and toll-like receptor signaling pathways, regulation 
of immune and inflammatory response, emphasizing that different diseases often have common underlying mech-
anisms and share intermediate endophenotypes56. We then checked if the list of switch genes from the two different 
lung diseases were close in the human interactome. We found that their proximity was not statistically significant 
and their separation was positive, meaning that the two lists of switch genes form two modules that are topologically 
separated. This suggests that different diseases can share similar endophenotypes, but the network molecular deter-
minants responsible for them are disease-specific. This is in full accord with the fundamental principles of network 
medicine, where disease proteins are assumed not to be randomly scattered, but agglomerate in specific regions of 
the molecular interactome, suggesting the existence of specific disease network modules for each disease. In sum, 
the SWIM analysis of the additional dataset of an inflammatory lung syndrome clearly showed the specificity of our 
approach able to find modules that distinguish between COPD and ARDS.
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Limitations and future directions.  In this study, we have collected a number of clues, ranging from global 
to local properties, from purely computational to more biological ones, aiming to draw a sketch of putative under-
lying mechanisms that could lead to a large-scale transition towards the occurrence of COPD. It is worth noting 
that the computational approach used in this study is based on correlations that are just “associations” and do not 
imply necessarily “causal” relationships. Nevertheless, adding further computational and biological information 
allowed us to zoom-in from global properties (i.e., power laws, fight club hubs, switch genes, etc.) to a small pool 
of genes that could give the promise for a better understanding of the molecular mechanisms underlying the onset 
of COPD.

Moreover, SWIM constructs hard-thresholded networks (or binary networks) in order to remove meaningless 
relationships and thus focus on significant associations between highly correlated nodes. The hard-thresholding 
approach creates binary networks where sub-threshold inter-node correlations are suppressed (edge values set 
to 0), and supra-threshold correlations are compressed (edge values set to 1). This approach could in principle 
lead to a loss of information since small differences in the chosen threshold, or in correlation strength, can result 
in edges being present or absent in the network. However, this limitation is partially overcome by using stricter 
thresholds, thus maximizing the contribution from the strongest correlations and emphasizing the network char-
acteristics of nodes falling in the extreme (positive and negative) tails of the correlation distribution.

An efficient solution to the hard-thresholding problem is to build soft-thresholded networks where thresh-
olding is replaced with a continuous mapping of correlation values into edge weights, which has the effect of sup-
pressing rather than removing weaker connections. In the future we hope to improve the SWIM functionalities 
by proposing different types of “soft” adjacency functions, like a sigmoid or logistic function.

Other limitations of our analysis include the relatively small size of the gene expression datasets and the het-
erogeneous nature of lung tissue samples. Increasing samples size and using data from specific cell types in future 
studies will likely improve the identification of COPD molecular determinants.

Conclusions
Our findings demonstrate that switch genes play an active role in inflammatory responses and regulating the 
immune environment in COPD. Modulating the function of switch genes may be an important mechanism to 
dampen the hypoxia-promoting inflammatory response and may lead to an improved understanding of COPD 
pathogenesis.

The majority of the genes highlighted through the SWIM methodology would not have been identified using 
a traditional GWAS approach. This observation demonstrates how SWIM can aid the identification and the pri-
oritization of novel diagnostic markers or therapeutic candidate genes involved in the etiology of COPD.

Materials and Methods
Datasets.  GSE47460 dataset.  The first dataset analyzed for the present study is available through the GEO 
public repository at accession number GSE47460 published on May 30, 201317,18. This dataset includes microar-
ray gene expression profiling obtained from total RNA extracted from whole lung homogenates from subjects 
undergoing thoracic surgery for clinical indications. These subjects were diagnosed as being controls or having 
interstitial lung disease (ILD) or chronic obstructive pulmonary disease (COPD). All samples are from the Lung 
Tissue Research Consortium (LTRC) and derived from two array platforms with a total of 582 samples: 255 have 
ILD, 219 have COPD, 108 are controls.

In order to compare COPD cases versus control, the gene expression data GSE47460 was analyzed as fol-
lows: ILD samples were removed from the two array platforms and then each array-type was Robust Multi-array 
Average (RMA)-normalized separately57. Then, to “stitch together” the data from the two arrays, we first matched 
genes based on probe-ids (the arrays were quite similar and had many overlapping probes). However, some genes 
were never measured by the same probe (e.g., IREB2). Therefore, we next matched any remaining genes based on 
shared gene-id. After creating a single-merged dataset with both array types together, we treated the array-types 
as “batches” and ran Combat function from R/Bioconductor package SVA to correct for array-specific effects. The 
probe-sets were mapped to official gene symbols by using BioMart – Ensembl tool (https://www.ensembl.org/).

GSE76925 dataset.  The second dataset analyzed for the present study is available through the GEO public repository 
at accession number GSE76925 published on Mar 29, 20177. This dataset collects microarray gene expression profiling 
of lung or airway tissues from subjects with chronic obstructive pulmonary disease (COPD) by using HumanHT-12 
BeadChips (Illumina, San Diego, CA). A total of 111 COPD cases and 40 control smokers with normal lung function 
were collected; all subjects were ex-smokers. The probe-sets were mapped to official gene symbols by using the platform 
GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip) available from GEO repository. Multiple probe meas-
urements of a given gene were collapsed into a single gene measurement by considering the mean.

GSE76293 dataset.  The acute respiratory distress syndrome (ARDS) dataset is available through the GEO 
public repository at accession number GSE76293 published on Apr 11, 201633. This dataset collects microar-
ray gene expression profiling of 12 lung samples from ARDS patients and 12 samples from paired (i.e., age and 
gender-matched) healthy volunteers (HVTs). The probe-sets were mapped to official gene symbols by using the 
platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) available from GEO repository. Multiple 
probe measurements of a given gene were collapsed into a single gene measurement by considering the mean.

Human protein–protein interactome.  The human protein–protein interactome was downloaded from the 
Supplementary Data of31. The authors of31 merged 15 commonly used databases with several types of experi-
mental evidences (e.g., binary PPIs from three-dimensional protein structures; literature-curated PPIs identified 
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by affinity purification followed by mass spectrometry, Y2H, and/or literature-derived low-throughput experi-
ments; signaling networks from literature-derived low-throughput experiments; kinase-substrate interactions 
from literature-derived low-throughput and high-throughput experiments) and their inhouse systematic human 
protein–protein interactome. This updated version of the human interactome is composed of 217,160 protein–
protein interactions (edges or links) connecting 15,970 unique proteins (nodes).

COPD GWAS genes.  COPD genetic risk loci were extracted from5, where the authors performed a 
genome-wide association study (GWAS) for a total of 257,811 individuals (i.e., 35,735 cases and 222,076 controls) 
from 25 different studies, including studies from International COPD Genetics Consortium58 and UK Biobank59, 
that collected genetic and phenotypic data with lung function and cigarette smoking assessment. In particular, the 
authors of59 tested the association of COPD and 6,224,355 variants, identifying 82 loci associated at genome-wide 
significance (p-value <5 10 8⋅ − ). Genetic loci were defined in59 by using a 2 Mb window (+/− 1 Mb) around a 
lead variant (top SNP).

Differentially expressed genes.  To compute the differentially expressed genes (DEGs), we used R sta-
tistical software (v 3.4.4) and the package limma (Fig. 10). For each dataset, we fitted a linear regression model 
(Table 3) to the expression values of each gene (EXP) in order to detect the association with the variable of interest 
representing the case/control condition (COPD). Microarray batch effects were addressed by using age, sex, and 
smoking status (i.e., current, ever, never) for GSE47460 dataset and age, sex, race and pack-years of smoking 
for GSE76925 dataset as clinical phenotypes. For both datasets, two surrogate variables (obtained via the R/
Bioconductor package SVA) were added as further covariates in the linear models (Table 3). The linear models 
were fitted by using least squares regression. Then, an empirical Bayes shrinkage method was used by the package 
limma to obtain a moderated t-test statistic and its p-value. Adjustment for multiple testing were controlled for 
false discovery rate (FDR) method19.

SWIM software.  In order to identify switch genes associated with the transition between control smok-
ers and COPD cases, we run SWIM (Fig. 10), a software for gene co-expression network mining developed in 
MATLAB with a user-friendly Graphical User Interphase (GUI) and freely downloadable11.

SWIM builds a correlation network of differentially expressed genes. Generally, a network corresponds to an 
adjacency matrix =A a[ ]i j,  that encodes the connection strength between each pair of nodes. In unweighted and 
undirected networks, ai j, is equal to 1 if nodes i and j are connected and 0 otherwise. In particular, in unweighted 
and undirected gene correlation networks, ai j,  is equal to 1 if the expression profiles for nodes (i.e., genes) i and j 
are significantly associated across samples. In order to select significant associations, SWIM uses the absolute 
value of the Pearson correlation coefficient as similarity index. In other words, ai j,  is equal to 1 if the absolute 
value of the Pearson correlation coefficient between the expression profiles of nodes i and j is greater than a 
selected significance threshold. For the COPD correlation network, we set the correlation threshold equal to 0.57, 
which corresponded to the 98th percentile of the entire correlation distribution. This choice for the correlation 
threshold stems from two selection criteria (Supplementary Fig. 1). The first criterion is motivated by the obser-
vation that most biological networks display a scale-free distribution of node degree. Therefore, the network 
obtained based on the selected correlation threshold should approximate this topology. Scale-free networks are 
extremely heterogeneous, and their topology is dominated by a few highly connected nodes (hubs), which link 
the rest of the less connected nodes. Indeed, the defining property of scale- free networks is that the probability 
that a node is connected with k other nodes (i.e., the degree distribution P k( ) of a network) decays as a power law 

~ α−P k k( ) . Many biological networks have been shown to be scale-free networks60–62. For evaluating whether the 
COPD gene expression correlation network exhibits a scale-free topology, we calculated the square of the corre-
lation between log(P(k)) and log(k), i.e. the index R-squared, as a function of the Pearson correlation 
(Supplementary Fig. 1a). Since it is biologically implausible that a network contains more hub genes than non-hub 
genes, we multiply R-squared with −1 if the slope α of the regression line between P klog( ( )) and klog( ) is positive 

Figure 10.  Flowchart of gene expression analysis.
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and thus we obtain a signed version of this index. If the R-squared approaches 1, then there is a straight-line rela-
tionship between P klog( ( )) and klog( ) and a scale-free topology is reached. These considerations motivated us to 
choose a correlation threshold that can lead to a net work satisfying scale-free topology at least approximately, e.g. 
signed R-squared >0.812. The second criterion relies on choosing a threshold that should reflect an appropriate 
balance between the number of edges and the number of connected components of the network (Supplementary 
Fig. 1b).

Next, SWIM searches for specific topological properties of the correlation network using the date/party/
fight-club hub classification system, based on the Average Pearson Correlation Coefficients (APCCs) between the 
expression profiles of each hub (i.e., node with degree greater than 561) and its nearest neighbors. Given a node i 
and its ni first nearest neighbors, the APCC value is:

∑ρ=
≠

APCC
n

x x1 ( , )i
i j i

i j

where ρ x x( , )i j  is the Pearson correlation between the expression profiles of node i and its j-th nearest neighbor. 
The authors in11, defined: date hubs as hubs with APCC < 0.5 (i.e., low co-expression with their partners); party 
hubs as hubs with APCC ≥ 0.5 (i.e., high co-expression with their partners); and fight-club hubs as hubs with 
negative APCC values (i.e., inversely correlated with their partners). In the COPD network, SWIM found 92 
fight-club hubs, 489 date hubs, and 795 party hubs.

SWIM then identifies communities in the network by means of the k-means clustering algorithm, employing 
Sum of Squared Errors (SSE) values to determine the appropriate number of clusters, and assigns a role to each 
node by using the Guimera-Amaral approach61, based on the inter and intra-clusters interactions of each node 
quantified by the computation of two statistics: the within-module degree zg and the clusterphobic coefficient Kπ. 
The two parameters are defined as:
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where ki
in is the number of edges of node i to other nodes in its module Ci, ki is the total degree (i.e., number of 

edges emanating from a node) of node i, kCi
 and Ci

σ  are the average and standard deviation of the total degree 
distribution of the nodes in the module Ci. According to Kπ and zg values, the plane is divided into seven regions 
(R1-R7), each defining a specific node role. High zgvalues correspond to nodes that are hubs within their module 
(local hubs), while high values of πK identify nodes that interact mainly outside their community, i.e., having 
much more external than internal links. SWIM colored each node in the plane identified by zg  and πK  according 
to its APCC value, thus defining a heat cartography map.

Finally, SWIM extracts a select set of genes, named switch genes, as a special subclass of fight-club hubs falling 
in the R4 region and thus satisfying the following topological and expression features: (i) not being a hub in their 
own cluster (zg < 2.5); (ii) having many links outside their own cluster (Kπ > 0.8); (iii) having a negative average 
weight of their incident links (APCC <0).

Immune response signatures.  Immune cell-related genes were obtained from25, where the authors iden-
tified 569 marker genes representative of seven immune populations: T cells (85 genes), macrophages (78 genes), 
neutrophils (47 genes), B cells (37 genes), monocytes (37 genes), NK cells (20 genes), plasma cells (14 genes). The 
authors of 25 validated the data-driven definition of each immune signature by association of known markers with 
the specific gene signatures, e.g., CD3D and CD3E (T cells), CD68 and CD163 (macrophages), CD19, CD22, and 
CD79 (B cells), CD14 (monocytes), KIR family (NK cells), and immunoglobulin family members (plasma cells).

Functional enrichment analysis.  The associations between selected genes and functional annotations 
such as KEGG pathways63 and GO terms64 were obtained by using Enrichr65 web tool. P-values were adjusted 
with the Benjamini-Hochberg method and a threshold equal to 0.05 was set to identify functional annotations 
significantly enriched amongst the selected gene lists.

Data availability
Data supporting the findings of this study are available within the article and its supplementary information files.

Dataset Reference
GEO 
Accession Linear Model

training set Peng 201617, Anathy 201818 GSE47460 EXP ~ COPD + age + sex + smoker status + 2 
surrogate_variables

test set Morrow 20177 GSE76925 EXP ~ COPD + age + sex + race + pack years + 2 
surrogate_variables

Table 3.  Linear regression models for association with the variable of interest. In this table the linear regression 
models used to fit each dataset were reported, where EXP refers to the gene expression data, and COPD refers to 
the variable of interest (i.e., case/control condition). Smoker status of GSE47460 dataset corresponds to: current, 
ever, or never.
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