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Xanthine dehydrogenase downregulation promotes TGFβ
signaling and cancer stem cell-related gene expression in
hepatocellular carcinoma
G-L Chen1,2, T Ye1, H-L Chen3, Z-Y Zhao4, W-Q Tang4, L-S Wang3 and J-L Xia1,4

Xanthine dehydrogenase (XDH), a rate-limiting enzyme involved in purine metabolism, has an essential role in inflammatory
cascades. Researchers have known for decades that XDH activity is decreased in some cancers, including hepatocellular carcinoma
(HCC). However, the role of XDH in cancer pathogenesis has not been fully explored. In this study, we showed that low XDH mRNA
levels were correlated with higher tumor stages and poorer prognoses in patients with HCC. Knocking down or inhibiting XDH
promoted migration and invasion but not proliferation of HCC cells. The abovementioned phenotypic changes are dependent on
increases in epithelial-mesenchymal transition marker gene expression and transforming growth factor-β-Smad2/3 signaling
activity in HCC. XDH overexpression suppressed HCC cell invasion in vitro and in vivo. In addition, the expression and activity of XDH
were associated with the expression of CSC-related genes, such as CD44 or CD133, in HCC cells. These data suggest that
downregulated XDH expression may be a useful clinical indicator and contribute to the development and progression of HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC), an inflammation-associated
malignancy,1–3 is one of the most common cancers worldwide.
However, the molecular mechanisms underlying HCC develop-
ment and progression, including metastasis,4,5 in affected patients
have not been fully elucidated. Xanthine dehydrogenase (XDH), a
rate-limiting enzyme involved in purine metabolism,6–9 also
functions as a key regulator of inflammatory cascades.8–10 XDH
activation can produce abundant reactive oxygen or nitrogen
species, which may induce DNA damage and carcinogenesis8,11–13

and promote metastasis.14 XDH-derived oxidative stress or uric
acid regulates multiple intracellular signals,8 such as nuclear
factor-kappaB,15,16 hypoxia-inducible factor-α and peroxisome
proliferator-activated receptor gamma.17 XDH activity is upregu-
lated in the liver during postnatal growth and in the breast during
pregnancy and lactation, suggesting it may be a marker of
differentiation for liver and mammary epithelial cells.8 In contrast
to high levels in non-cancerous livers,18,19 decreased XDH activity
is believed to confer hepatic cancer cells with selective
advantages that are independent of growth rates and degrees
of neoplastic histological differentiation.18,19 Indeed, significant
decreases in XDH activity levels have been reported to be useful
predictors of poor patient prognoses in cancers,8 including breast
cancer,20 gastric cancer,21 ovarian cancer,22 non-small cell lung
cancer23 and colorectal cancer.24 These poor patient prognoses
are believed to involve increased COX-2 (cyclooxygenase-2)20 and
matrix metalloprotease (MMP)-1/-3 expression.8,25 Despite these
intriguing findings, how decreases in XDH activity or expression
contribute to the development and progression of cancers,
including HCC, remains poorly understood.

Interestingly, XDH inhibition promotes skin wound healing in
healthy individuals26 and diabetic patients.27 Knocking out the XDH
gene in mice increased kidney tissue fibrosis and upregulated
transforming growth factor-β (TGFβ) and epithelial-mesenchymal
transition (EMT) gene expression levels.28 The results of these studies
suggested that XDH loss may be linked to TGFβ signaling pathway
activity.25,29 Indeed, the TGFβ signaling pathway1,2,30 can increase
COX-2 and MMP expression31–35 and promote HCC invasion and
progression by inducing EMT and cancer stem cell (CSC)
expression.1,25,36,37 Moreover, therapies targeting TGFβ signaling
appear to be promising in the treatment of HCC.2 However, whether
XDH deficiency induces TGFβ pathway activity, thereby promoting
EMT or CSC marker gene expression in HCC, is unknown.
In the present study, we reported that low XDH expression

levels are an unfavorable clinical indicator in patients with HCC.
Knocking down or inhibiting XDH resulted in TGFβ signaling
pathway-dependent cell migration and invasion caused by EMT-
related gene upregulation in HCC cell lines. We also found that the
expression levels of CSC-related genes can be altered by the
interruption of XDH expression in HCC. These data may improve
our understanding of the role of XDH in the development and
progression of HCC, as well as other cancers with low XDH
expression or activity levels.

RESULTS
Decreased XDH mRNA expression is associated with aggressive
HCC phenotypes
To determine whether XDH can serve as a clinical indicator in
patients with HCC, we analyzed XDH mRNA expression abundance
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in HCC patient samples deposited in public databases, including
the Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus. As shown in Figures 1a and b, lower XDH mRNA levels
were observed in patients with liver cancer, particularly patients
with advanced liver cancer (GSE6764),38 than those in healthy
controls. XDH transcript levels were negatively correlated with
tumor stages in HCC (Figure 1c), suggesting that XDH may be a
useful clinical indicator in patients with HCC. Lower XDH mRNA
expression levels were associated with more active hepatic
inflammation in adjacent tissues (Figure 1d), a finding generally
observed in patients with HCC with shorter disease-free survival.10

HCC patients with lower XDH mRNA levels had a poorer prognosis
than that of patients with higher XDH mRNA levels (Figure 1e).
Furthermore, XDHmRNA levels were inversely correlated with EMT
scores (Figure 1f), which are useful indices for assessing EMT as
proposed by Salt et al.,39 as well as with all detectable MMP mRNA
levels, in TCGA LIHC patient samples (Supplementary Table 3).
Indeed, immunohistochemical staining for XDH in liver samples
from a cohort of patients with HCC (n= 9) showed lower protein
levels than adjacent non-cancerous tissue (Figure 1g). Taken
together, these findings indicate that loss of XDH expression may
be a feature of aggressive HCC.

XDH downregulation promotes cell migration, invasion and EMT
marker gene expression in HCC
To validate the findings of the database analysis, we first profiled
XDH expression in HCC cell lines with different metastatic
capacities. The HCC cell lines with a low metastatic capacity, such
as the HepG2 and Huh7 cell lines, showed higher XDH expression
than that of the cell lines with a high metastatic capacity, such as
the MHCC97H and MHCCLM3 cell lines (Figure 2a). We subse-
quently knocked down XDH expression in HepG2 cells (Figure 2b).
As shown in Figures 2c and d, knocking down XDH increased cell
mobility and invasion in HepG2 cells but did not affect
proliferation in these cells (Supplementary Figure 1a). To confirm
these results at the molecular level, we performed mRNA profiling
of a panel of EMT marker genes. This analysis revealed that the
expression levels of epithelial marker genes, such as E-cadherin,
were downregulated, whereas those of mesenchymal marker
genes, such as N-cadherin, Twist-1, snail-1 and vimentin, were
significantly upregulated in HepG2 cells with stable XDH knock-
down compared with those of control cells (Figure 2e). Western
blot analysis of EMT marker expression also confirmed that
E-cadherin expression levels were decreased, whereas N-cadherin,
Twist-1/2, slug, snail-1 and vimentin expression levels were
increased in HepG2 cells with stable XDH knockdown compared
with those of the control cells (Figure 2f). In addition, oxypurinol
reduced XDH activity (Supplementary Figure 1b) and promoted
cell mobility and invasion but not proliferation in HepG2 cells
(Supplementary Figure 1c–e). Similarity, oxypurinol-induced XDH
inhibition promoted cell mobility and invasion but not prolifera-
tion in Huh7 cells (Supplementary Figure 2a–c). Consistent with
these observations, quantitative real-time polymerase chain
reaction (qRT–PCR) and western blot analysis of EMT marker
genes also confirmed that EMT marker gene levels were increased
in HepG2 (Supplementary Figure 1f, g) and Huh7 cells (Supple-
mentary Figure 2d, e). Collectively, these data indicate that
decreases in XDH expression or activity promote HCC cell
invasiveness.

XDH downregulation induces the TGFβ signaling pathway in HCC
cells
EMT marker gene upregulation is commonly associated with
increases in TGFβ or β-catenin pathway activity in HCC.40

Correlation analysis of tumor samples in TCGA LIHC database
showed that the XDH transcript levels were inversely correlated
with the expression levels of molecules found in the TGFβ-Smads

but not the β-catenin signaling pathway (Supplementary Table 4).
To confirm these findings, we analyzed mRNA and protein levels
in HCC cell lines. We found that neither knockdown nor inhibition
of XDH resulted in significant changes in β-catenin mRNA and
protein expression in HepG2 cells (Figures 2e and f, Supplemen-
tary Figure 1f, g) or Huh7 cells (Supplementary Figure 2d, e).
TGFβ1 and TGFβ3 expression levels were comparable between
XDH-specific small-hairpin RNA (shRNA)-transfected HepG2 cells
and control cells, whereas TGFβ2 expression levels, as well as
phosphorylated Smad2/3 levels, were increased in XDH-specific
shRNA-transfected HepG2 cells compared with those in control
cells (Figures 3a and b). In addition, oxypurinol treatment
increased TGFβ2 mRNA levels, TGFβ3 protein levels and phos-
phorylated Smad2/3 protein levels but decreased TGFβ1 mRNA
levels in HepG2 cells (Figures 3c and d). No changes in TGFβ
mRNA and protein levels were observed in Huh7 cells treated with
oxypurinol (Figures 3e and f). However, induction of phosphory-
lated Smad3 protein expression was observed in Huh7 cells after
oxypurinol treatment (Figure 3f). Taken together, these data
indicate that XDH deficiency may induce TGFβ signaling activation
in HCC cells.

Blocking TGFβ signaling abrogates XDH deficiency-induced cell
migration and invasion in HCC cells
Our observation of XDH downregulation-induced TGFβ signaling
in HCC cells led us to ask whether this phenomenon is the key
downstream effect of XDH knockdown or inhibition in HCC cells.
As shown in Figure 4a, cell migratory ability, which was
represented by coverage percentages, was comparable between
HepG2 cells with stable XDH knockdown and control cells after
GW788388 or pirfenidone was administered to block the TGFβ
signaling pathway. Similarly, oxypurinol-induced increases in cell
migration in HepG2 cells were abrogated by GW788388 or
pirfenidone treatment (Figure 4b). Transwell invasion assays
showed that the abovementioned increases in HepG2 cell
migration were largely abrogated in the shXDH-transfected group
compared with that of the control shRNA-transfected group after
the addition of TGFβ signaling inhibitors (Figure 4c). TGFβ
blockade also inhibited oxypurinol-induced cell invasion in Huh7
cells (Figure 4d). The effects of TGFβ1 alone or oxypurinol alone on
HepG2 cell migration were comparable to those of control
treatments (Figure 4e). However, treatment with a combination
of TGFβ1 and oxypurinol resulted in high levels of HepG2 cell
migration (Figure 4e), suggesting that oxypurinol and TGFβ1 exert
synergistic effects on HepG2 cells. The combination of TGFβ1 and
oxypurinol induced increases in cell migration that were compar-
able to those of TGFβ1 or oxypurinol alone in Huh7 cells
(Figure 4f), suggesting that the cell migration-promoting effects
of oxypurinol are dependent on the TGFβ signaling pathway.
These observations were confirmed by our western blot analysis
of changes in EMT marker gene expression in HepG2 cells
(Figure 4e) and Huh7 cells (Figure 4f). These results suggest that
XDH knockdown- or inhibition-induced cell migration and
invasion are dependent on TGFβ-signaling pathway activation in
HCC cells.

XDH overexpression reduced TGFβ signaling, cell migration and
invasion in MHCC97H cells in vitro and in vivo
To determine whether XDH upregulation downregulates cell
mobility, invasion and TGFβ signaling in cell lines expressing XDH
at low levels, we used a plasmid to overexpress XDH in MHCC97H
cells. As shown in Figures 5a and b, XDH overexpression
suppressed cell migration and invasion but not proliferation in
MHCC97H cells compared with those of control cells
(Supplementary Figure 3a). We noted that both the mRNA
and protein expression levels of Claudin-1 were decreased
in XDH-overexpressing MHCC97H cells compared with those
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of control cells (Figures 5c and d). Furthermore, we noted
that Twist-1 and Vimentin mRNA expression levels, as well as
Twist protein expression levels, were decreased in XDH-
overexpressing MHCC97H cells (Figures 5c and d), supporting
the hypothesis that EMT marker gene expression can be blocked
by XDH. XDH overexpression reduced TGFβ2 and TGFβ3
expression levels and phosphorylated Smad2 expression levels

in MHCC97H cells (Figures 5e and f), indicating that XDH
inhibits TGFβ signaling in HCC cells. Importantly, XDH-
overexpressing MHCC97H cells resulted in a reduced numbers of
metastatic nodules in the lungs (Figure 5g) but did not affect
subcutaneous tumor growth (Supplementary Figure 3b),
indicating that XDH may act as a tumor metastasis suppressor
gene in HCC.
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Figure 1. Decreased XDH mRNA expression levels predict poor prognosis in patients with HCC. (a) Analysis of human XDH mRNA levels in
normal quiescent (n= 10), dysplastic (n= 17), cirrhotic (n= 13), early (n= 18) or advanced HCC (n= 17) livers (clinical data set GSE6764; ref. 38).
The horizontal lines indicate the mean± s.e.m. P-values were calculated by one-way ANOVA (Tukey's multiple comparison test). (b) Analysis of
XDH mRNA levels in normal livers (n= 50) and cancer livers (n= 373) from TCGA LIHC patient samples (n= 423). The horizontal lines indicate
the mean± s.e.m. P-values were calculated by nonparametric Mann–Whitney U-tests. (c) XDH transcript levels in TCGA LIHC patient samples
comprising tumors of different stages. P-values were calculated by unpaired t-tests. (d) XDH mRNA levels in TCGA LIHC patient samples with
active adjacent hepatic tissue inflammation of different types and severities. P-values were calculated by nonparametric Mann–Whitney
U-tests. (e) Kaplan–Meier survival plots of HCC patients stratified by XDH mRNA expression abundance. Log-rank (Mantel–Cox) test. (f) Analysis
of the correlation between EMT scores and XDH mRNA expression levels in TCGA LIHC data set. Pearson’s coefficient analyses were performed
to assess statistical significance. (g) Representative immunohistochemical staining for XDH in paraffin-embedded liver samples from patients
with primary HCC (n= 9). Scale bar, 50 μm. TCGA, the Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; XDH, xanthine
dehydrogenase; HCC, hepatocellular carcinoma; mRNA, messenger RNA. EMT, epithelial-to mesenchymal transition. ns, not significant,
*Po0.05, **Po0.01, ***Po0.001, ****Po0.0001.
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Decreased XDH expression is associated with increased CSC-
related gene expression
Our observation of XDH downregulation-induced EMT marker
expression level and TGFβ-signaling activity upregulation raised
the question of whether decreases in XDH expression levels affect
CSC-related gene expression levels in HCC. Correlation analysis of
a panel of eight CSC-related genes was performed in patient
tumor samples (n= 373) from TCGA LIHC. Interestingly, the mRNA
expression levels of XDH were inversely correlated with the
expression levels of all the genes in question (Supplementary

Table 5). Upregulated CD133 mRNA levels and protein expression
levels were consistently observed in HepG2 cells subjected to
shRNA transfection or oxypurinol treatment compared with those
of control cells (Figures 6a-d). Similarly, increased CD44 mRNA and
protein expression levels were consistently observed in Huh7 cells
treated with oxypurinol compared with those of control cells
(Figures 6e and f). In contrast, decreased CD44 mRNA and protein
expression levels were consistently observed in MHCC97H cells in
which XDH was overexpressed (Figures 6g and h). Collectively,
these data support the idea that XDH downregulation may be a
critical molecular event in HCC development.
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Figure 2. XDH knockdown increases cell migration and invasion in HepG2 cells. (a) Western blot analysis of XDH expression in HCC cell lines.
The band intensities were quantified by ImageJ software. (b) Western blot analysis of XDH knockdown efficiency and quantification of XDH
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DISCUSSION
The impact of decreased XDH activity levels41 on the progression
of HCC is poorly characterized. In this study, we showed that
decreased XDH expression or activity could promote TGFβ-
signaling pathway-dependent liver cancer cell migration, invasion
and metastases to the lungs. In addition, decreased XDH
expression is associated with increased CSC-related gene expres-
sion in HCC. These results may further elucidate how XDH
downregulation promotes disease progression in HCC.

In the current study, we observed that decreased XDH
expression or activity predisposes HCC to display an invasive
phenotype, which is dependent on TGFβ-signaling activation. XDH
loss in breast cancer cells increased the migratory ability of cancer
cells, which is dependent on COX-2 and MMPs expression.25

Indeed, the TGFβ signaling pathway can induce COX-2 and MMP
expression in liver tissue.35,42–44 Moreover, we observed additive
effects of XDH inhibition and TGFβ1 in HepG2 cells, which
supports the increased response to TGFβ1 treatment in
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XDH-deficient breast cancer cells.25 Consistent with TGFβ signal-
ing promotion of pulmonary metastasis of HCC,45 our data
identified an important role of TGFβ-Smad2/3 signaling regulated
by XDH in the process of HCC metastasis. However, how decreases
in XDH expression occur during cancer progression and promote
TGFβ signaling in HCC require future investigation. Whether
XDH-derived oxidative stress or the antioxidant agent uric acid46

regulates the process of HCC metastasis remains unknown.
Here, our data and others8 suggested that loss of XDH

expression contributes to cancer development and progression.
In this regard, medications inhibiting XDH activity to reduce uric
acid levels should be prescribed with caution for cancer patients
or patients at risk for cancer in clinical settings. Although patients
with non-alcoholic fatty liver disease47 or tumor lysis syndrome, as
well as patients receiving cancer chemotherapy, will benefit from
the use of XDH inhibitors because of the effects of these drugs on
uric acid levels, long-term use of these drugs use may cause
serious side effects in such patients.8 In support of this hypothesis,
a recent retrospective cohort study found that use of allopurinol,
an XDH/XOR inhibitor, for 43 months may significantly increase
the incidence of both bladder cancer and all other cancers.48

Moreover, XDH inhibition by allopurinol may help cancer cells to
escape immune surveillance.49 Although recent publications
indicated that advanced cancer patients will benefit from XDH

inhibition,50,51 long-term follow-up of patients receiving XDH
inhibitors treatment may be necessary to prevent detrimental
outcomes.
However, the lack of studies examining the consequences of

conditional XDH knockouts in hepatocytes8 in vivo prompted us to
establish a causal relationship between XDH loss and the
development and progression of HCC. We showed that XDH
deficiency is a useful clinical indicator in patients with HCC and
that XDH downregulation leads to TGFβ signaling pathway
activation. Our findings may also be important for analysis of
the pathogenesis of other cancers with decreased XDH expression
levels.8 Future research on how XDH regulates TGFβ signaling
might lead to new therapeutic targets for HCC.

MATERIALS AND METHODS
Cell lines
The indicated human HCC cell lines (HepG2, Hep3B, Huh7, SMMC-7721,
MHCC97H and MHCCLM3) were maintained in either Dulbecco’s modified
Eagle’s medium (Gibco, Shanghai, China, cat. no. 11965092) or minimum
essential medium (Gibco, cat. no. 32561037) supplemented with 10% fetal
bovine serum (Gibco, cat. no. 10270106), 100 units/ml penicillin and
100 μg/ml streptomycin at 37 °C with 5% CO2 in an incubator. The HepG2
and Hep3B cell lines were purchased from the Cell Resource Center,
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Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences,
Shanghai, China, whereas the MHCC97H, MHCCLM3, SMMC-7721 and
Huh7 cell lines were generously donated by the Liver Cancer Institute of
Fudan University, Zhongshan Hospital, Shanghai, China. The identity of the
cell lines was authenticated with short tandem repeats profiling (FBI,
CODIS). There were no signs of mycoplasma contamination in all cell lines.

Cell proliferation
A WST-1 Cell Proliferation and Cytotoxicity Assay Kit (Beyotime Institute of
Biotechnology, China) was used to detect HCC cell proliferation, as
described in our previous report.52 In brief, the abovementioned cells were
seeded in 96-well culture plates at a density of 2000 cells/well. To evaluate
the effects of oxypurinol (Sigma-Aldrich, Co. LLC., Shanghai, China, cat. no.
O6881), a potent xanthine oxidase inhibitor,53 on cell proliferation, we
incubated the cells with or without 50 μmol/l (μM) oxypurinol. Cell
proliferation was monitored over a 72-h time period and measured
according to the manufacturer’s instruction. All experiments were
performed at least three times and in triplicate.

Cell transfection
MHCC97H cells were transfected with an EX-Mm05336-Lv201 plasmid
(GeneCopoeia, Inc., Guangzhou, China) encapsulated in Lipofectamine
3000 Reagent (Invitrogen, Shanghai, China, cat. no. L3000015), according
to a corresponding transfection protocol, to induce XDH overexpression or
a pEZ-Lv201 control vector, which served as a negative control. Similarly,
HepG2 cells were transfected with shRNA against XDH to knockdown XDH
expression (shXDH) or control shRNA in a lentiviral vector (Biogot
Technology, Co., Ltd., Nanjing, China). Stably transfected cells were
selected using 1–2 μg/ml puromycin (InvivoGen, Shanghai, China, cat.
no. ant-pr-1) for 2 weeks.

Cell migration and invasion assays
For scratch assays, the cells were seeded in six-well plates with regular
media. Serum-free media were used to avoid the confounding effects of
proliferation on the results of the assay. A single scratch was made on the
cell surface within each well using the tip of a sterile 200-μl pipette tip,
after which the cells were washed with phosphate-buffered saline and
cultured in regular media with 10% fetal bovine serum in the presence or
absence of 50 μM oxypurinol, 2 mM GW788388 (Selleck Chemicals,
Shanghai, China, cat. no. S2750), 100 nM pirfenidone (Selleck Chemicals,
cat. no. S2907) or 5 ng/ml recombinant human TGFβ1 (PeproTech, Rocky
Hill, NJ, USA, cat. no. 100-21C) for 48 h. Coverage percentages were
determined by quantifying the open wound area percentages using
CellSens microscope imaging software (Olympus Imaging America Inc.,
Center Valley, PA, USA). For transwell invasion assays, the cells (3.0–
5.0 × 105 per well) were suspended in medium without serum and seeded
on 8-μm membrane inserts pre-coated with basement membrane extract
(Trevigen, Gaithersburg, MD, USA, cat. no. 3455-096-02). The inserts were
placed in wells with complete Dulbecco’s modified Eagle’s medium
containing 10% fetal bovine serum, which served as a chemoattractant.
After 24–48 h, the inserts were removed, washed with phosphate-buffered
saline, fixed in methanol and then stained with crystal violet (0.05% w/v in
methanol). The bottom surfaces of the stained inserts were subsequently
observed under a light microscope, and the numbers of stained cells were
counted in five fields/insert.

Mouse experiment
Male BALBc/nu mice (5 weeks old) were purchased from SLAC (Shanghai
Laboratory Animal Co., Ltd., Shanghai, China) and maintained in a specific
pathogen-free environment at 25 °C under a 12-h light/dark cycle. No
statistical methods were used to estimate sample size. The procedures
used for the intravenous and subcutaneous injections were described
previously by Zhang Y et al.54 and Wang F et al.,55 respectively. In brief, the
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nude mice were injected with 8 × 105 MHCC97H cells stably overexpressing
XDH or control vectors in 0.2 ml of phosphate-buffered saline via the
lateral tail vein (n = 8 per group). Mice were randomized into the control
vector group or XDH overexpression group. After 5 weeks, all the mice
were sacrificed. Their lung tissues were dissected and fixed in 10% formalin
for at least 24 h. The number of tumor colonies in each hematoxylin and
eosin-stained lung tissue specimen was determined using a dissecting
microscope. To evaluate in vivo tumor growth, we subcutaneously injected
8× 106 MHCC97H cells transfected with XDH-overexpression plasmids or
control vectors in 0.2 ml of phosphate-buffered saline into the left or right
flanks of nude mice (n = 8 per group). These mice were sacrificed at
3 weeks post injection. The volumes of the subcutaneous tumors were
blindly measured and calculated using the equation length×width×
width/2. All animal experiments were approved by the Animal Care and
Use Committee of Minhang Hospital, Fudan University, Shanghai.

Xanthine oxidase detection assay
A Xanthine Oxidase Assay Kit (ScienCell, Carlsbad, CA, USA, cat. No. 8458)
was used to detect XDH activity in HCC cells after oxypurinol treatment or
stable XDH knockdown. In brief, the HCC cells (4 × 106 cells) were
homogenized on ice using a Dounce homogenizer and treated with four
volumes of assay buffer. The cells were subsequently centrifuged, and the
supernatant was collected for xanthine oxidase activity measurements,
according to the manufacturer’s instructions.

qRT–PC
mRNA isolation and quantification were performed as previously
reported.52,56 The samples were analyzed in triplicate. β-actin and 18 S
RNA were used as housekeeping genes. The primer sequences are listed in
Supplementary Table 1.

Western blotting
Cell lysates were prepared as previously reported.56 For western blotting,
whole-cell lysates (20–40 μg per well) were separated by 10% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis. The resolved proteins
were transferred to 0.2-μm polyvinylidene difluoride membranes, which were
subsequently immersed in Quickblock blocking buffer (Beyotime Biotechnol-
ogy, China, cat. no. P0233) for 0.5–1 h at room temperature. The membranes
were then incubated with the appropriate primary antibodies (Supplementary
Table 2) overnight at 4 °C before being incubated with the
appropriate horseradish peroxidase-labeled secondary antibodies
(Beyotime Biotechnology) for 2 h at room temperature. The bands
were detected using a BeyoECL Plus Chemiluminescence Detec-
tion Kit (Beyotime Biotechnology). Images were acquired using an
Amersham Imager 600 (GE Healthcare, Russellville, AR, USA).

Immunohistochemical analysis
The immunohistochemical staining procedure was performed as previously
described.52,56 HCC liver samples were obtained after patients provided
written informed consent, according to a protocol approved by the ethics
committee of Zhongshan Hospital, Fudan University. The pathological tissue
sections were stained with antibodies against XDH (Santa Cruz Biotechnology,
Dallas, TX, USA, Cat. # sc-398548) at a 1:200 dilution. Images were acquired
using a Nikon Eclipse 80i microscope equipped with a Sony DXC-390 P digital
camera and NIS-Elements BR2.2 software.

Public database analysis
Liver cancer gene expression data (mRNA, RNAseq z-scores) were retrieved
from liver HCC data sets (LIHC) (Provisional) in the TCGA database using the
UCSC Cancer Genomics Browser54 or the cBioPortal for Cancer Genomics.57,58

Data pertaining to XDH expression abundance, which was found in the Gene
Expression Omnibus data sets (GSE6764),38 were downloaded from the web-
accessible Gene Expression across Normal and Tumor tissue (GENT)
database.59 The EMT score was calculated by determining the difference
between the expression levels of well-known mesenchymal marker genes
and the total expression levels of known epithelial genes.39

Statistical analysis
All results are presented as the mean± s.e.m. Statistical significance was
determined using unpaired Student’s t-tests, the Mann–Whitney U-test, or

one-way analysis of variance with Sidak’s or Tukey’s post-test (two-tailed).
All graphs were generated, and all statistical analyses were performed
using Prism software (GraphPad Software, Inc. La Jolla, CA, USA). For all
analyses, Po0.05 was considered statistically significant (*Po0.05,
**Po0.01, ***Po0.001, ****Po0.0001).
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