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Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of 
phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease 
target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, 
pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature 
mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, 
and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to 
the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight 
tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory 
activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal  mol−1) of the 
compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools 
(principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical 
properties and docking scores (Kcal  mol−1). Pharmacophore analysis of these clusters revealed the functional descriptors of 
phytochemicals, related to the ligand–protein docking interactions. Tripartite network was constructed based on the docking 
scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated 
diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in 
docking performance (10 kcal  mol−1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable 
complex in the near-native physiological condition.
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Introduction

Over the last few years, the pharmaceutical industry faced 
several challenges owing to the ever-rising increase in the 
complexities of diseases worldwide. This significant obstacle 
that the medical community has been facing has instigated 
a much-needed shift in the treatment strategies that are 
currently being employed. A dramatic switch that favors 
multi-target therapeutics and herbo-synthetic combinations 
as complementary or sometimes even alternative therapy is 
being explored [1]. There is enough literature to support the 
claim that secondary metabolites derived from several plants 
are pharmacologically active and have been quite successful 
in treating a wide range of diseases [2, 3]. Plant-based 
medication is not only readily available and affordable, but 
it also causes the least number of side effects. In the hunt for 
therapeutically beneficial novel medications, the medicinal 
plants that have been in use for more than a thousand years 
are being re-examined [4, 5]. Most of these plants and their 

phytochemical extracts are being used globally with little or 
no awareness about their benefits. One such plant extract that 
we consume daily is the tea prepared with the young leaves, 
buds, and stalks of Camellia sinensis (L.) Kuntze (Family: 
Theaceae) [6].

This plant is commonly cultivated commercially in 
tropical and subtropical regions, primarily in the southern 
parts of Asia and its leaf infusion, as tea is the most 
consumed beverage in the world. The pharmacological 
activity of C. sinensis extracts has been proven to help treat 
common ailments like hypertension, diabetes, and obesity. 
It also possesses anticancer, anti-inflammatory, antioxidant, 
and cardiopulmonary-protective properties [7, 8]. Recently, 
tea was reported to have beneficial role in the modulation of 
human gut microbes [9], also. Both black and green teas are 
rich in antioxidant polyphenols such as catechins [10]. These 
polyphenolic antioxidants are known to protect cells from 
intracellular ROS production, hence preventing the oxidative 
destruction cycle, which includes cell membrane rupture, 
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DNA damage, and subsequently necrosis, mutagenesis, and 
cell death [11, 12]. This information can be exploited to 
computationally map the diseases that can be cured using 
these phytochemicals.

Lately, computational methods have been critical in 
the design and discovery of novel medicines for various 
illnesses [13]. The in silico technique of molecular docking 
is currently regarded as one of the most dependable, 
cost-effective, time-saving, and efficient ways for 
screening potential medicines. The use of this approach is 
extensively advocated and accepted, given the abundance 
of phytochemicals with potential pharmacological effects 
[14]. Recently, in silico biology witnessed its extensive 
applications for search and screening of plants drugs 
against various conditions such as acetylcholinesterase 
[15], microbial infections [16] and COVID-19 [17, 18]. 
Pharmacophore approach is often integrated with the 
molecular docking technique to understand the chemistry 
of protein ligand binding interaction. Pharmacophores 
explain the functional groups that are involved in such 
docking interaction. Recently, Oluyori et al. [19] identified 
SARS-CoV-2 inhibitors from bitter cola by using 
pharmacophore modeling. Molecular docking coupled 
with statistical methodology may be considered as to 
obtain accurate and valid results. In our previous studies, 
we successfully applied multivariate statistical models to 
validate our findings [20, 21]. The limiting factor of the 
conventional molecular docking method is that it targets 
a single protein rather than multiple proteins. Network 
pharmacology, also known as polypharmacology method, 
was developed to target multiple proteins and corresponding 
diseases [22]. Choudhary and Singh [23] utilized network 
pharmacology approach for targeting various proteins by 
Piper longum phytochemicals. Li et al. [24] found that the 
phytochemicals of Shenlian extract could target 37 proteins 
by using a similar approach. Recently, Wu et al. [25] used 
this tool for three flower teas (Rosa rugosa, Chrysanthemum 
morifolium, and Citrus aurantium) targeting nonalcoholic 
steatohepatitis [25]. Overall, the network pharmacology 
approach is witnessing an extensive application in the field 
of computational biology; however, such an approach is 
scarce for conventional tea based on C. sinensis leaves. 
Therefore, we believe that the innumerable health benefits 
of tea warrant further study on its phytochemicals and the 
diseases it can be used to treat. Our study is claimed to give 
a new insight on the numerous health benefits of tea by 
combining a revised approach consisting of a combination 
of statistics, pharmacophore alignment, virtual library 
screening and molecular docking.

In the present study, eight important tea compounds 
(Epicatechin, epicatechin gallate, epigallocatechin gallate, 
catechin, quercetin, kaempferol, ellagic acid and gallic acid) 
were docked with thirty target proteins as obtained from 

the virtual databases. Finally, tripartite network consisting 
of phytochemicals, proteins and associated diseases was 
formed with the aid of multivariate principal component 
analysis (PCA) and pharmacophore-based experimentations.

Materials and methods

Data collection

Tea phytochemicals, target proteins, and related illnesses 
were selected after extensive literature mining. Databases 
such as IMPPAT and PubChem were utilized to screen 
out phytochemicals from Camilla chinensis. IMPPAT or 
Indian Medicinal Plants, Phytochemistry, and Therapeutics 
(https:// cb. imsc. res. in/ imppat/ home) is a curated database 
with material from more than 50  specialized books, 
and 7000 research article abstracts on Indian traditional 
plants of ethno botanical value [26]. The structures of the 
compounds can be downloaded in the sdf, mol, pdb, or pdbqt 
formats both two-dimensionally and three-dimensionally 
from this database. PubChem (https:// pubch em. ncbi. nlm. 
nih. gov/) is the world’s largest open access repository of 
publicly available chemical data at the National Institutes 
of Health (NIH) [27]. The phytochemicals identified via 
these servers were further analyzed to find interacting 
proteins and their corresponding diseases using the 
PCIDB (https:// www. genome. jp/ db/ pcidb) web server. 
The Phytochemical Interactions Database, or PCIDB, 
is an open-source web server with over 100,000 records, 
most of them from plants and linked to different protein 
and disease databases [28]. The proteins that interacted 
with the shortlisted phytochemicals were found using the 
UniProt database (https:// www. unipr ot. org/), which houses 
freely accessible information about protein sequences and 
their respective functions [29]. Once these proteins were 
found, the associated diseases were identified using KEGG 
DISEASE (https:// www. genome. jp/ kegg/ disea se/) and 
OMIM (https:// www. ncbi. nlm. nih. gov/ omim) databases. 
The Kyoto Encyclopedia of Genes and Genomes DISEASE 
Database (KEGG) [30] and Online Mendelian Inheritance 
in Man (OMIM) [31] are both open-access databases that 
provide data regarding disease pathways and other gene-
related information. Finally, the drugs designated to target 
the selected proteins were taken from the DrugBank 
database (https:// go. drugb ank. com/) [32].

Preparation of ligands

The Avogadro software was primarily used for the 
preparation of ligand molecules before docking. This 
software serves as a cross-platform molecule editor and 
visualizer for computational chemistry, molecular modeling, 

https://cb.imsc.res.in/imppat/home
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.genome.jp/db/pcidb
https://www.uniprot.org/
https://www.genome.jp/kegg/disease/
https://www.ncbi.nlm.nih.gov/omim
https://go.drugbank.com/
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bioinformatics, materials science, and related fields [33]. 
The three-dimensional structures of the phytochemicals 
selected for the study, namely gallic acid, catechin, 
epigallocatechin gallate, epicatechin, epicatechin gallate, 
quercetin, kaempferol and ellagic acid, were downloaded 
from the PubChem database (https:// pubch em. ncbi. nlm. nih. 
gov/) in the.sdf format and converted to their respective.pdb 
formats using the Avogadro software. Three-dimensional 
structures of the control drug molecules were downloaded 
from the DrugBank database (https:// go. drugb ank. com/) in 
the.pdb formats and were subjected to energy minimization 
and structural optimization by using Avogadro.

Evaluation of drug‑likeness

The SwissADME server (http:// www. swiss adme. 
ch/) was employed to assess the drug-likeness of the 
selected phytochemicals. This tool allows us to compute 
physicochemical descriptors and estimate ADME 
parameters, pharmacokinetic characteristics, drug-like 
nature, and medicinal chemistry friendliness of one or 
more small compounds. Some of the characteristics that 
were taken into account to predict the drug-likeness of 
the compounds were the topological polar surface area 
(TPSA, important for the estimation of brain permeability 
and gastrointestinal absorption of the potential drugs), 
gastrointestinal absorption, PGP substrate, lipophilicity 
(XLOGP3), and water solubility (Log S) [34]. The Lipinski’s 
rule of 5 was also used to predict the drug-likeness of the 
molecules. The rule of 5 indicates that poor absorption or 
penetration is more probable when there are more than 
5 H-bond donors and 10 H-bond acceptors, while molecular 
weight (MWT) is more than 500, and computed Log P 
(CLogP) is greater than 5 [35].

Preparation of receptors

The three-dimensional structures of the protein targets 
were downloaded from the RSCB PDB database (https:// 
www. rcsb. org/). This is a database that stores three-
dimensional structural data for big biological entities 
including proteins and nucleic acids [36]. Out of the thirty 
proteins that were selected for the study, the native structures 
of 28 were retrieved from the PDB database itself. These 
proteins include the carbonic anhydrase 12 [PDB ID: 
1JCZ, 1.55 Å, X Ray Diffraction], Dihydrofolate reductase 
[PDB ID: 1BOZ, 2.10 Å, X Ray Diffraction], Epidermal 
Growth Factor and Receptor [PDB ID: 1IVO, 3.30 Å, X 
Ray Diffraction], Prothrombin [PDB ID: 1A2C, 2.10 Å, X 
Ray Diffraction], Carbonic anhydrase 2 [PDB ID: 12CA, 
2.40 Å, X Ray Diffraction], Receptor tyrosine protein kinase 
erbB-2 [PDB ID: 1MFG, 1.25 Å, X Ray Diffraction], Protein 
kinase C gamma type (PRKCG) [PDB ID:2E73, Solution 

NMR], Neutrophil elastase [PDB ID: 1BOF, 2.20 Å, X Ray 
Diffraction], 72 kDa type IV collagenase [PDB ID: 1CK7, 
2.80  Å, X Ray Diffraction], Hepatocyte growth factor 
receptor [PDB ID: 1FYR, 2.40  Å, X Ray Diffraction], 
Lysosomal alpha-glucosidase [PDB ID: 5KZW, 2.00 Å, X 
Ray Diffraction], Cytochrome P450 2D6 [PDB ID: 2F9Q, 
3.00 Å, X Ray Diffraction], Cyclin-dependent kinase 4 
[PDB ID: 2W96, 2.30 Å, X Ray Diffraction], Angiotensin-
converting enzyme [PDB ID: 1O86, 2.00  Å, X Ray 
Diffraction], Matrix metalloproteinase-9 [PDB ID: 1GKC, 
2.30 Å, X Ray Diffraction], P-selectin [PDB ID: 1G1Q, 
2.40 Å, X Ray Diffraction], Acetylcholinesterase [PDB ID: 
1B41, 2.76 Å, X Ray Diffraction], Carbonic anhydrase 4 
[PDB ID: 1ZNC, 2.80 Å, X Ray Diffraction], G1/S-specific 
cyclin-D1 [PDB ID: 2W96, 2.30 Å, X Ray Diffraction], 
Dipeptidyl peptidase 4 [PDB ID: 1J2E, 2.60 Å, X Ray 
Diffraction], Prostaglandin G/H synthase 2 [PDB ID: 5F19, 
2.04 Å, X Ray Diffraction], Receptor-type tyrosine-protein 
kinase FLT3 [PDB ID: 1RJB, 2.10 Å, X Ray Diffraction], 
PI3-kinase subunit alpha [PDB ID: 2RD0, 3.05 Å, X Ray 
Diffraction], Xanthine dehydrogenase/oxidase [PDB ID: 
2CKZ, 3.20 Å, X Ray Diffraction], Cyclin-dependent kinase 
6 [PDB ID: 1BI7, 3.40 Å, X Ray Diffraction], Protein kinase 
C theta type [PDB ID: 1XJD, 2.00 Å, X Ray Diffraction], 
Potassium voltage-gated channel subfamily H member 2 
or hERG-1 [PDB ID: 1BYM, Solution NMR], and Serine-
protein kinase ATM [PDB ID: 5NP1, 5.70 Å, Electron 
microscopy]. Nonpolar H was removed, and polar H was 
added to the receptor proteins by using AutoDock tool 
maintaining physiological pH.

The structures of the remaining two proteins 
UDP-glucuronosyl t rans fe rase  1–1  and  UDP-
glucuronosyltransferase 1–4 were unavailable, and hence, 
protein structure prediction was performed by homology 
modeling. The SWISS-MODEL server (https:// swiss model. 
expasy. org/) was used for homology modeling [37]. UCSF 
Chimera software was used to further optimize all 3D 
protein structures for docking [38]. The quality assessment 
of the modeled proteins was performed by SwissADME 
MolProbity tool and UCLA-DOE LAB SAVES v6.0: 
PROCHECK tool (https:// saves. mbi. ucla. edu/).

Active site prediction, molecular docking 
and docking validation

The active sites present in the target proteins were predicted 
by CASTp (Computed Atlas of Surface Topography of 
proteins) server. CASTp (http:// sts. bioe. uic. edu/ castp/ 
index. html? 3trg) is a freely accessible server, and the sites 
predicted by the server were used to set the dimensions of 
the grid box while performing docking [39]. The binding 
grid co-ordinates of the thirty proteins are shown in 
Supplementary Table S3. Protein–ligand molecular was 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
http://www.swissadme.ch/
http://www.swissadme.ch/
https://www.rcsb.org/
https://www.rcsb.org/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
https://saves.mbi.ucla.edu/
http://sts.bioe.uic.edu/castp/index.html?3trg
http://sts.bioe.uic.edu/castp/index.html?3trg
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performed by AutoDock Vina software. AutoDock Vina 
relies on a sophisticated gradient optimization method, 
followed by the prediction of the best binding orientation 
of the ligand within the protein cavity [40]. The eight tea 
phytochemicals were docked with all thirty proteins in the 
present study. The phytochemical–protein docking results 
were compared with that of the respective control drugs. 
Finally, the top result for each ligand was superimposed with 
the respective control by using BioVia Discovery Studio 
software, and the similarity of docking poses was examined.

Statistical analysis

Principal component analysis

Minitab 18 statistical software was used to perform principal 
component analysis or PCA to group phytochemicals based 
on the docking scores (binding affinity in Kcal   mol−1). 
This statistical tool allows us to reduce the difficulty 
that accompanies the interpretation of larger data sets. It 
decreases the dimensionality of such datasets, therefore 
improving interpretability, while minimizing data loss. By 
reducing the overall distance between the data and their 
projection onto the PC (principal components), the first PC 
(PC1) maximizes variance. The second and following PCs 
are unrelated to the first, although chosen in the same way 
[41, 42].

Heatmap generation and clustering analysis

A second confirmatory statistical test for clustering of 
docking scores was performed by TBtools software along 
with heat map generation. Pearson correlation methodology 
was used for the statistical clustering. TBtools (a Toolkit 
for Biologists integrating various biological data-handling 
tools) is an open access and stand-alone software suite, with 
various integrated tools. This software is based on simple 
IOS logic (input, output and start) [43].

Structural classification and phytochemical 
alignment

Structural classification of eight (8) phytochemicals of tea 
was performed by the ClassyFire server (http:// class yfire. 
wisha rtlab. com/). Classyfire performs automated structural 
classification of the input molecules. It relies on hierarchical 
chemical classification principle and provides structural 
information as created by ChemOnt [44].

PharmaGist, an open-source server, was used to perform 
pharmacophore analysis of the eight tea compounds. 
Pharmacophore screening is helpful to identify the common 
descriptors or functional groups. Based on the clustering 

of multivariate statistical PCA modeling (Minitab), each 
of the clusters was subjected to pharmacophore analysis. 
PharmaGist analysis is based on the DUD (directory of 
useful decoys) data set, which contains 2950 active ligands 
for 40 different receptors, with 36 decoy compounds for 
each of the active ligands [45]. Three-dimensional structural 
rendering of the output files was performed by PyMol 
software to represent common descriptors.

Tripartite network construction

The tool Cytoscape (https:// cytos cape. org/) allows for 
global datasets and functional annotations to be projected 
and integrated, creating strong visual mappings that span 
these datasets [46]. To understand the interaction among 
phytochemicals, protein targets and associated diseases, a 
tripartite network was constructed using Cytoscape v3.7.2.

Molecular dynamic (MD) simulation

MD simulation was performed as described in our previous 
study [20]. Briefly, GROMACS-2019.2 [47]-based bio-
molecular package was used to perform the molecular 
docking simulation of Epicatechin gallate (ECG)-hepatocyte 
growth factor receptor (PDB id 1FYR) as facilitated by the 
Simlab, the University of Arkansas for Medical Sciences 
(UAMS), Little Rock, USA [48]. GROMOS96 43a1 force 
field was used for the simulation, and a ligand topology 
file was generated by PRODRG software [49]. A triclinic 
grid box was defined for the protein–ligand complex. The 
molecular dynamic simulation was performed in SPC 
water and 0.15 M counter ions  (Na+/Cl−) environment. 
The system was supported with NVT/NPT ensemble 
temperature 300 K and 1 bar atmospheric pressure. The 
pressure and temperature were maintained with Parrinello-
Rahmanbarostat and Parrinello-Danadio-Bussithermostat, 
respectively [50]. The resultant model was energy 
minimized by 5000 steepest descent integrator, and run 
time was fixed for 100 ns. Parameters, namely root-mean-
square deviation (RMSD), radius of gyration (Rg), root-
mean-square flexibility (RMSF) and ligand-H bonds, were 
evaluated for the protein–ligand complex. A comparative 
study was performed with above-mentioned parameters for 
ligand-bound and ligand-free proteins.

Free energy analysis by MM‑PBSA calculation

The free energies of epicatechin gallate (ECG)-hepatocyte 
growth factor receptor (PDB id 1FYR) complex (ΔG_
Vander Waal, ΔG_Electrostatic, ΔG_Polar, ΔG_Non-Polar 
and ΔG_Binding) were estimated by molecular mechanics-
Poisson–Boltzmann solvent-accessible surface area 
(MM-PBSA) method using g-mmbsa package [51].

http://classyfire.wishartlab.com/
http://classyfire.wishartlab.com/
https://cytoscape.org/
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The following equation is performed for calculating ΔG_
Bind (KJ  mol−1):

where ΔG_Comp = the energy of protein–ligand complex, 
G_Prot and G_Lig = individual energy of protein and ligand, 
respectively. The MMPBSA calculation was performed for 
5-ns trajectory.

Results and discussion

Data collections

Tea (C. sinensis) leaves are rich in compounds such as cat-
echin, epicatechin, epicatechin gallate and epigallocatechin 
gallate [3]. Catechin and its derivatives generally consti-
tuted of 30% dry weight of black tea leaves [52]. Epigal-
locatechin gallate was also reported to be the principal 
constituent of green tea [53]. Furthermore, phytochemicals 
such as quercetin, kaempferol, ellagic acid and gallic acid 
were also reported in tea [54, 55]. Considering previously 
reported health benefits, richness and dominance of above-
mentioned phytochemicals in the tea leaves, these eight 
compounds were selected for this study. For instance, cat-
echin–gallic acid esters epicatechin, epicatechin gallate and 
epigallocatechin gallate were reported to have antidiabetic 
and antioxidant properties [6]. Epigallocatechin gallate, in 
particular, also served as a hepatoprotective agent by sup-
pressing cytotoxin-induced cell death [56]. Ellagic acid had 
antioxidant and anti-inflammatory properties. Gallic acid 
and kaempferol displayed anticancer and anti-inflammatory 
activities, while Quercetin had been deemed beneficial in 
cases of hypertension [3]. Based on these findings, eight 
tea phytochemicals, namely epicatechin, epicatechin gal-
late, epigallocatechin gallate, catechin, quercetin, kaemp-
ferol, ellagic acid and gallic acid, were selected for this study 
(Table 1). The schematic presentation of the work is repre-
sented in Fig. 1.

Furthermore, we identified 30 proteins and their 
associated target diseases though database scouting as 
mentioned in the Materials and Methods. In Table 2, we 
tabulated target proteins, associated diseases and control 
drugs of the respective proteins.

Drug‑likeness of the compounds

SwissADME could effectively predict the drug-like 
properties of eight tea phytochemicals. However, it was 
noted in the literature that the drug metabolism should not 
be assessed in one parameter. Hou et al. [83] reported that 
the values obtained from TPSA (total polar surface area) 

ΔG_Bind = G Comp − (G Prot + G Lig)

did not correlate with another drug-likeliness parameter. 
In general, TPSA represents the bioavailability of drug 
candidates, and the recommended range is 20 to 140 Å2 
[82]. Except two compounds, other phytochemicals satisfied 
the criteria (Table 3). Water solubility of the drug-like 
molecules is considered to have a significant impact on 
ADME (absorption, distribution, metabolism and excretion) 
properties, i.e., on the bioavailability of the compounds. The 
parameter Log S represents the intrinsic solubility of the 
candidate drugs in the water. The log value range within 
− 1 to − 5 shows the balancing between the solubility in 
water and lipids [83]. In our study, all the phytochemicals 
are found well within the range of log S (− 1.64 to − 3.70). 
Further, the transcellular passive diffusion is one of the major 
parameters for permeability and absorption of the drug-like 
compounds, and crossing the barrier of the gastrointestinal 
(GI) tract represents such property. Our study showed that 
except epicatechin gallate and epigallocatechin gallate, all 
six phytochemicals had high GI absorption capacity. XlogP3 
is an automatic method and determinant of lipophilicity of 
drug-like molecules. The recommended range of XlogP3 
is 1.48–6.19, and all the compounds passed the criteria. 
p-Glycoprotein substrate (PGP) is a representative of active 
transporter and generally removes the drug molecules 
from the cells, when positive. Except two compounds, all 
other six were found to be PGP negative [84]. Finally, we 
observed minimum Lipinski's violations (0–2). Overall, all 
the compounds were found to be passing one or other drug-
likeness parameters.

Quality analysis of the homology modeled proteins

The homology modeling of two proteins (UDP-
glucuronosyltransferase 1–1: UniProt id P22309 and UDP-
glucuronosyltransferase 1–4: UniProt id P22310) were 
performed by SWISS-Model server, based on the templates 
of PDB id 6KVJ.1.A and 6O86.1.A. The quality analysis 
was done by the parameters MolProbity score, QMEAN and 
GMQE (Global Model Quality Estimate) Z scores. While 
QMEAN represents the degree of nativeness of the modeled 
structure, GMQE (Global Model Quality Estimation) shows 
expected accuracy of the structured models [85]. The results 
of these quality estimates are shown in supplementary tables 
S1 and S2. Finally, Ramachandran plots revealed > 85% 
favorable regions for both the modeled structures (Fig. 
S1 and S2). Overall, despite the unavailability of accurate 
templates for our modeled proteins, we were able to obtain 
moderate quality models.

Molecular docking

Molecular docking is the preferred tool for initial screen-
ing of drug molecules. It eliminates the need for tedious, 
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Table 1  List of selected tea phytochemicals and corresponding chemical classes

S/N Phytochemicals IUPAC name Classes PubChem IF Structures

1 (−)-Epicatechin (EC) (2R,3R)-2-(3-hydroxy-4-methoxyphenyl)-
3,4-dihydro-2H-chromene-3,5,7-triol

Flavonoids-
flavanols

14,332,898

 
2 (−)-Epicatechin gallate (ECG) [(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-di-

hydroxy-3,4-dihydro-2H-chromen-3-yl] 
3,4,5-trihydroxybenzoate

Flavonoids-
flavanols

107,905

 
3 (−)-Epigallocatechin gallate 

(EGCG)
[(2R,3R)-5,7-dihydroxy-2-(3,4,5-

trihydroxyphenyl)-3,4-dihydro-2H-
chromen-3-yl] 3,4,5-trihydroxybenzoate

Flavonoids-
flavanols

65,064

 
4 (+)-Catechin (2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihy-

dro-2H-chromene-3,5,7-triol
Flavonoids-

flavanols
9064

 
5 Quercetin 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

chromen-4-one
Flavonoids-

flavanols
5,280,343

 
6 Kaempferol 3,5,7-trihydroxy-2-(4-hydroxyphenyl)

chromen-4-one
Flavonoids-

flavanols
5,280,863

 
7 Ellagic acid 6,7,13,14-tetrahydroxy-2,9-dioxatetra-

cyclo[6.6.2.04,16.011,15]hexadeca-
1(15),4,6,8(16),11,13-hexaene-3,10-dione

Tannins 5,281,855

 
8 Gallic acid 3,4,5-trihydroxybenzoic acid Benzene and 

substituted 
derivatives-
Hydroxy-
benzoic acid 
derivatives

370
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time-consuming and expensive techniques that were pre-
viously used for drug discovery. AutoDock Vina is one 
of most established and robust open-source molecular 
docking software. This software is considered one of the 
top ranking programs consistent with the screening bench-
mark, known as directory of useful decoys by Watowich 
group [86]. Gaillard 2018 [87] compared the performance 
of AutoDock and AutoDock Vina based on a comparative 
assessment of scoring functions (CASF-2013) and reported 
superior function of AutoDock Vina in all aspects. In our 
previous study, we successfully deployed AutoDock Vina 
to identify piperine as the inhibitor of Dengue and Ebola 
virus enzymes [21]. In this work, all seven phytochemicals, 
except gallic acid, showed substantial inhibitory potential 
against target proteins. Out of all the phytochemicals, epi-
gallocatechin gallate, epicatechin gallate, and quercetin 
have shown maximum coverage, targeting 22, 21 and 20 
proteins, respectively, where the binding scores were bet-
ter than those of the respective controls (Table 4). In the 
molecular docking experiment, we identified the best target 
protein for each of the phytochemicals in terms of binding 
affinity (Kcal  mol−1). Target proteins, namely hepatocyte 
growth factor receptor (PDB id 1FYR), dihydrofolate reduc-
tase (PDB id 1BOZ), prostaglandin G/H synthase 2 (PDB id 
5F19) and angiotensin-converting enzyme (PDB id 1O86), 
on an average was found to be most potential targets by the 
phytochemicals. Epigallocatechin gallate could inhibit the 
progression of tumor genes by blocking DNA methyltrans-
ferases, proteases, and dihydrofolate reductase (DHFR) 
activities [88]. In a recent study, Zong et al. [21] showed that 
this phytochemical prevented aminoglycosides-induced oto-
toxicity in Zebra fish, by blocking several enzymes including 
DHFR [89]. In our work, epigallocatechin gallate scored 
considerably well (− 9.8 kcal  mol−1) against DHFR com-
pared with other target proteins. Tea phytochemicals were 
earlier reported to have strong inhibiting potentials against 
angiotensin-converting enzyme (ACE) protein (Fauzi et al., 
2018) [90]. Epicatechin and kaempferol were found to have 
substantial binding potentials with matrix metalloprotein-
ase (MMP)-9 (PDB id 1GKC) compared to their respective 

controls, both having similar scores − 9 kcal  mol−1. Kan-
barkar and Mishra (2021) [91] recently in their findings 
showed that tea phytochemicals could inhibit MMP protein. 
Kaempferol could modulate the activity of MMP-2 and 9 
proteins [92]. Anticancer activities of tea polyphenols were 
vastly reported in the literature [93, 94]. In their review, 
Cheng et al. (2020) [95] showed the modulating effect of 
Catechin and its derivatives against various types of can-
cer. The flavonoids quercetin and rutin could suppress the 
expressions of multiple oncogenes, including prostaglandin 
synthase 2 and showed antiglioma effects [96]. Consistent 
with these findings, among all 30 target proteins, prostaglan-
din G/H synthase 2 (PDB id 5F19) was the best targeted by 
the phytochemicals catechin and quercetin with the binding 
affinities − 9.2 and − 9.4 kcal  mol−1, respectively. Recently, 
Wang et al. (2021) [97] showed that the tea phytochemi-
cal catechin had strong binding affinity with ACE protein. 
The IC50 value of ellagic acid was shown as 2 mM against 
ACE protein indicating its strong inhibitory potential [98]. 
In consistent with these findings, among all other proteins 
ellagic acid showed the highest binding potential to ACE 
protein (− 8.9 kcal  mol−1) compared with control. Epicat-
echin gallate scored the highest (− 10 kcal  mol−1) against 
hepatocyte growth factor receptor, among all target proteins 
as well as phytochemicals. Hepatocyte growth factor is one 
of the major elements for the development of hepatocellular 
carcinoma [99], and epicatechin gallate is the one of the 
most prominent phytochemicals in tea leaves [100, 101]. 
Elsewhere, it was shown that green tea and epicatechin gal-
late effectively prevented and managed nonalcoholic fatty 
liver diseases (NAFLD) [102]. Further, catechin derivatives 
were reported to be very effective against hepatocellular 
carcinoma [103]. Overall, all these findings were consistent 
with various wet laboratory-based studies, in turn validating 
the accuracy and robustness of our outcomes.

Interaction analysis and docking validation

For amino acid–ligand interaction analysis and dock-
ing pose validation, the best protein–ligand complexes, 

Fig. 1  Schematic representation 
of the study
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Table 2  Target proteins and associated diseases along with control drugs

S/N UniProt ID PDB ID Name of the proteins Diseases Control drugs (Drugbank id)

1 O43570 1JCZ [57] Carbonic anhydrase 12 Hyperchlorhidrosis isolated 
(HCHLH) (H01302, #143,860)

Benzthiazide (DB00562)

2 P00374 1BOZ [58] Dihydrofolate reductase Dihydrofolate reductase (DHFR) 
deficiency (H01197)

Methotrexate (DB00563)

3 P00533 1IVO [59] Epidermal growth factor receptor Oral cancer (H00016), Lung cancer 
(#211,980)

Afatinib (DB08916)

4 P00734 1A2C [60] Prothrombin Prothrombin deficiency, congenital 
(#613,679)

Argatroban (DB08916)

5 P00918 12CA [61] Carbonic anhydrase 2 Combined proximal and distal 
renal tubular acidosis (H00241), 
Osteopetrosis (H00436), 
Osteopetrosis, autosomal 
recessive 3 (#259,730)

Dorzolamide (DB00869)

6 P04626 1MFG [62] Receptor tyrosine-protein kinase 
erbB-2

Gastric cancer (#613,659) Brigatinib (DB12267)

7 P05129 2E73NP Protein kinase C gamma type 
(PRKCG)

Spinocerebellar ataxia (H00063), 
Spinocerebellar ataxia 14 
(#605,361)

Fostamatinib (DB12267)

8 P08246 1B0F [63] Neutrophil elastase Neutropenic disorders (H00100), 
Cyclic neutropenia (#162,800)

Freselestat (DB03925)

9 P08253 1CK7 [64] 72 kDa type IV collagenase Multicentric osteolysis, nodulosis, 
and arthropathy; mona 
(#259,600)

Marimastat (DB00786)

10 P08581 1FYR [65] Hepatocyte growth factor receptor Renal cell carcinoma (H00021), 
Gastric cancer (H00018), 
Hepatocellular carcinoma 
(#114,550)

Crizotinib (DB08865)

11 P10253 5KZW NP Lysosomal alpha-glucosidase Glycogen storage diseases (GSD) 
(H00069), Glycogen storage 
disease ii (#232,300)

Acarbose (DB00284)

12 P10635 2F9Q [66] Cytochrome P450 2D6 Drug metabolism, poor, cyp2d6-
related (#608,902)

Panobinostat (DB06603)

13 P11802 2W96 [67] Cyclin-dependent kinase 4 Cervical cancer (H00030), 
Melanoma, cutaneous malignant, 
susceptibility to, 3 (#609,048)

Palbociclib (DB09073)

14 P12821 1O86 [68] Angiotensin-converting enzyme Allograft rejection (H00083), 
Hemorrhage, intracerebral 
(#614,519)

Perindopril (DB00790)

15 P14780 1GKC [69] Matrix metalloproteinase-9 Penile cancer (H00025), 
Intervertebral disc disease 
(#603,932)

Marimastat (DB00786)

16 P16109 1G1Q [70] P-selectin Stroke, ischemic (#601,367) N-acetyl-alpha-neuraminic 
acid (DB03721)

17 P22303 1B41 [71] Acetylcholinesterase Yt blood group antigen (#112,100) Pyridostigmine (DB00545)
18 P22309 Homologous model UDP-glucuronosyltransferase 1–1 Hyperbilirubinemia (H00208), 

Bilirubin, serum level of, 
quantitative trait locus 1; biliqtl1 
(#601,816)

Adenine (DB00173)

19 P22310 Homologous model UDP-glucuronosyltransferase 1–4 Gilbert syndrome (#143,500) Idelalisib (DB09054)
20 P22748 1ZNC [72] Carbonic anhydrase 4 Retinitis pigmentosa (H00527) Topiramate (DB00273)
21 P24385 2W9Z [67] G1/S-specific cyclin-D1 Oral cancer (H00016), Myeloma, 

multiple (#254,500)
Encorafenib (DB11718)

22 P27487 1J2E [73] Dipeptidyl peptidase 4 Thyroid cancer (H00032) Sitagliptin (DB01261)
23 P35354 5F19 [74] Prostaglandin G/H synthase 2 Cholangiocarcinoma (H00046), 

Penile cancer (H00025), 
Esophageal cancer (H00017)

Icosapent (DB00159)
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namely Epicatechin/Kaempferol-1GKC (UniProt P14780), 
Epicatechin gallate-1FYR (UniProt P08581), Epigal-
locatechin gallate-1BOZ (UniProt P00374), Catechin/
Quercetin-5F19 (UniProt P35354), and Ellagic acid-1O86 
(UniProt P12821), were selected. Control drugs were re-
docked with the respective proteins. Overlaid 3D diagrams 
of phytochemical-control drug pockets are represented in 
Fig. 2. Epicatechin and kaempferol along with the control 
drug marimastat interacted with the common amino acids, 
namely LEU288A, ALA189A, TYR423A and HIS401A, 
of the protein matrix metalloproteinase-9 (PDB id 1GKC) 
through conventional H, Pi-H and other bonds. For the target 
protein hepatocyte growth factor receptor (PDB id 1FYR), 
control drug crizotinib, interacted with the amino acid 
VAL123A through conventional H bond similar to epicat-
echin gallate. Methotrexate and epigallocatechin gallate both 
interacted with the protein dihydrofolate reductase (PDB id 
1BOZ), for the amino acids THR56A, SER59A, AL115A, 
ALA9A and LEU22A. Control drug Icosapent shared the 

similar binding pocket (HIS207B, HIS386B, and HIS388B) 
of the protein Prostaglandin G/H synthase 2 (PDB id 5F19) 
with two phytocompounds, namely catechin and quercetin. 
Finally, ellagic acid similar to its corresponding control drug 
perindopril stabilized its interaction with the target angio-
tensin-converting enzyme through the common amino acids 
GLU123A, ARG124A, TYR135A and SER517A (Table 5).

Statistical analysis

Application of advanced statistical tool and molecular dock-
ing methodology could give insightful information on the 
underlying mechanism of protein–ligand biding affinities. 
Recently, PCA was successfully deployed for understand-
ing the molecular interaction of Mur enzymes and gal-
lomyricitrin [104]. In our previous studies, we used PCA 
tool to categorize phytochemical groups and correlated 
their chemical classes with their docking scores [20, 105]. 

‘H’ KEGG id; ‘#’ OMIM id; NP: Not Published

Table 2  (continued)

S/N UniProt ID PDB ID Name of the proteins Diseases Control drugs (Drugbank id)

24 P36888 1RJB [75] Receptor-type tyrosine-protein 
kinase FLT3

Acute myeloid leukemia (H00003) Sunitinib (DB01268)

25 P42336 2RD0 [76] Phosphatidylinositol 
4,5-bisphosphate 3-kinase 
catalytic subunit alpha isoform or 
PI3-kinase subunit alpha

Ovarian cancer (H00027), Breast 
cancer (#114,480)

Caffeine (DB00201)

26 P47989 2CKZ [77] Xanthine dehydrogenase/oxidase Xanthinuria (H00192) Allopurinol (DB00437)
27 Q00534 1BI7 [78] Cyclin-dependent kinase 6 Stature quantitative trait locus 11 

(612,223)
Palbociclib (DB09073)

28 Q04759 1XJD [79] Protein kinase C theta type Type I diabetes mellitus (H00408) Fostamatinib (DB12010)
29 Q12809 1BYW [80] Potassium voltage-gated channel 

subfamily H member 2 or hERG-
1

Short QT syndrome (H00725, 
#609,620), Long QT syndrome 
(H00720, #613,688)

Ibutilide (DB00308)

30 Q13315 5NP1 [81] Serine-protein kinase ATM Chronic lymphocytic leukemia 
(H00005), DNA repair defects 
(H00094), Ataxia-telangiectasia 
(#208,900)

Caffeine (DB00201)

Table 3  Drug-likeness of the 
phytochemicals

Molecules TPSA (Å2) Lipinski 
violations

GI absorption PGP substrate XLOGP3 Log S

Epicatechin 110.38 0 High Yes 0.36  − 2.22
Epicatechin gallate 177.14 1 Low No 1.53  − 3.70
Epigallocatechin gallate 197.37 2 Low No 1.17  − 3.56
Catechin 110.38 0 High Yes 0.36  − 2.22
Quercetin 131.36 0 High No 1.54  − 3.16
Kaempferol 111.13 0 High No 1.9  − 3.31
Ellagic acid 141.34 0 High No 1.1  − 2.94
Gallic acid 97.99 0 High No 0.7  − 1.64
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Docking outputs from 8 ligands and 30 proteins along with 
the control docking results were taken as inputs for PCA, and 
the results are presented in Fig. 3a. The first principal com-
ponent (PC1) and the second component (PC2) explained 
approximately 61.50 and 1.78% of the variance. Each of 
the principal components shows different dimensions of the 
measured dataset, and all these components are transformed 
into uncorrelated datasets. We observed four distinct clusters 
in the analysis. While cluster 4 consisted only of hydroxy-
benzoic acid derivative gallic acid, cluster 2 had control 
drugs. Ellagic acid and catechin gallate esters epigallocate-
chin gallate and epicatechin gallate were grouped into cluster 
1, and other flavonoids quercetin, catechin, epicatechin and 
kaempferol were found in the cluster 3. Placement of gallic 
acid and control drugs in the separate cluster was indicative 

of comparatively weaker biding affinities to target proteins 
compared to other compounds.

Further, to validate the finding from PCA analysis, we 
performed heat map generation and clustering analysis based 
on the Pearson correlation algorithm (Fig. 3b). All clustering 
algorithms rely on the grouping principle based on the 
input data. Clustering principle is commonly used in gene 
expression experiments; however, we used this statistical 
methodology earlier in molecular docking study [21]. 
Correlation-based clustering method has an advantage over 
the distance-based matrices in terms of scaling irrelevance 
and primary focus on the relativity of output data [106]. In 
this study, we observed a clustering pattern similar to the 
PCA results.

Table 4  Binding affinity (Kcal  mol−1) between compounds and target proteins as generated by Autodock Vina

Bold highlight: Binding affinity (Kcal  mol−1) greater than the control drug (row wise);
*selected for network formation, binding affinity (Kcal   mol−1) greater than the control drug (column wise); EC epicatechin, ECG epicatechin 
gallate, EGCG  epigallocatechin gallate, CAT  catechin, QUE quercetin, KAE kaempferol, and EA ellagic acid, GA gallic acid

Proteins (PDB id) EPC ECG EGCG CAT QUE KAE EA GA Drug

Carbonic anhydrase 12 (1JCZ) − 9.5 − 9.8 − 9.8 − 9.4 − 9.3 − 9.4 − 8.6 − 6.9 − 9.2
Dihydrofolate reductase (1BOZ) − 7.8 − 9.7 − 9.8* − 8.3 − 8.4 − 8.2 − 8.4 − 5.6 − 8.3
Epidermal growth factor receptor (1IVO) − 7.5 − 7.7 − 7.7 − 7.6 − 8.0 − 7.7 − 7.4 − 6.0 − 7.9
Prothrombin (1A2C) − 8.0 − 8.8 − 8.9 − 8.0 − 8.6 − 8.3 − 9.1 − 6.5 − 9.5
Carbonic anhydrase 2 (12CA) − 7.4 − 7.3 − 8.0 − 7.1 − 7.5 − 7.2 − 7.1 − 5.9 − 6.8
Receptor tyrosine-protein kinase erbB-2 (1MFG) − 6.7 − 7.0 − 6.6 − 6.5 − 6.7 − 6.4 − 7.2 − 5.1 − 7.8
Protein kinase C gamma type (PRKCG) (2E73) − 6.5 − 6.3 − 6.3 − 5.8 − 6.4 − 6.5 − 6.5 − 4.7 − 6.5
Neutrophil elastase (1B0F) − 6.5 − 6.8 − 7.3 − 6.6 − 6.8 − 7.6 − 6.2 − 6.3 − 6.4
72 kDa type IV collagenase (1CK7) − 8.6 − 8.6 − 8.6 − 8.8 − 8.9 − 8.8 − 8.3 − 6.6 − 7.2
Hepatocyte growth factor receptor (1FYR) − 9.6 − 10* − 9.9 − 9.4 − 9.9 − 9.6 − 9.7 − 6.1 − 9.8
Lysosomal alpha-glucosidase (5KZW) − 6.5 − 7.6 − 7.0 − 6.8 − 6.5 − 6.3 − 6.7 − 5.5 − 6.6
Cytochrome P450 2D6 (2F9Q) − 8.7 − 8.8 − 9.1 − 8.9 − 9.5 − 9.7 − 8.4 − 6.3 − 10.2
Cyclin-dependent kinase 4 (2W96) − 7.7 − 8.6 − 8.8 − 8.0 − 8.1 − 7.9 − 8.1 − 6.3 − 9.0
Angiotensin-converting enzyme (1O86) − 7.8 − 9.0 − 9.2 − 8.0 − 8.3 − 8.3 − 8.9* − 6.1 − 6.2
Matrix metalloproteinase-9 (1GKC) − 9.0* − 8.4 − 8.2 − 8.9 − 8.8 − 9.0* − 7.3 − 6.5 − 7.4
P-selectin (1G1Q) − 6.6 − 7.6 − 7.4 − 6.3 − 6.7 − 6.5 − 7.3 − 5.9 − 6.2
Acetylcholinesterase (1B41) − 8.3 − 9.3 − 6.6 − 8.3 − 8.8 − 9.1 − 8.9 − 6.7 − 6.3
UDP-glucuronosyltransferase 1–1 (Homologous model) − 7.7 − 7.3 − 7.9 − 7.6 − 7.8 − 7.7 − 7.7 − 6.2 − 5.4
UDP-glucuronosyltransferase 1–4 (Homologous model) − 8.2 − 6.1 − 7.0 − 7.0 − 7.1 − 8.9 − 6.2 − 6.5 − 6.5
Carbonic anhydrase 4 (1ZNC) − 6.7 − 8.5 − 8.4 − 6.9 − 7.4 − 7.5 − 7.2 − 5.4 − 6.9
G1/S-specific cyclin-D1 (2W9Z) − 7.2 − 8.7 − 8.8 − 7.2 − 8.1 − 7.1 − 8.1 − 6.3 − 8.3
Dipeptidyl peptidase 4 (1J2E) − 7.6 − 8.1 − 8.1 − 8.8 − 7.8 − 9.0 − 8.4 − 6.6 − 8.5
Prostaglandin G/H synthase 2 (5F19) − 9.1 − 9.3 − 9.3 − 9.2* − 9.4* − 9.2 − 7.6 − 6.7 − 7.2
Receptor-type tyrosine-protein kinase FLT3 (1RJB) − 6.2 − 7.3 − 7.5 − 6.2 − 6.6 − 6.3 − 6.7 − 5.0 − 6.7
PI3-kinase subunit alpha (2RD0) − 8.9 − 9.3* − 9.3 − 8.6 − 8.1 − 7.8 − 8.6 − 6.7* − 5.9
Xanthine dehydrogenase/oxidase (2CKZ) − 7.9 − 7.5 − 7.4 − 8.0 − 8.0 − 7.9 − 7.6 − 6.0 − 6.2
Cyclin-dependent kinase 6 (1BI7) − 7.3 − 8.7* − 8.6 − 7.7 − 7.9 − 7.5 − 8.5 − 5.5 − 8.5
Protein kinase C theta type (1XJD) − 7.7 − 7.5 − 7.6 − 8.0 − 8.1 − 7.8 − 7.7 − 5.1 − 7.6
hERG-1 (1BYW) − 5.5 − 6.5* − 6.4 − 5.7 − 5.9 − 6.1 − 5.6 − 4.5 − 4.6
Serine-protein kinase ATM (5NP1) − 7.9 − 8.8* − 8.5 − 8.5 − 8.7 − 8.7 − 7.9 − 5.8 − 5.9
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Molecular alignment and pharmacophore analysis

Pharmacophore approach is being extensively used in the 
computer-aided drug discovery. It is defined as the ‘ensem-
ble of various steric and electronic features’ for a particu-
lar molecule. Pharmacophores of ligand entities represent 
functional descriptors (groups) such as aromatic, acceptor, 
and donor that are responsible for interaction with target 
proteins. Recently, we aligned three molecules, namely cur-
cumin, piperine and chloroquine, to understand the com-
mon interacting descriptors with COVID 19 spike protein 
as a target [20]. In a similar study, Oluyori et al., 2022 [19] 
showed that standard aromatic rings of garcinia biflavonoid 
I, garcinia biflavonoid II, kolaflavone and amentoflavone 
were responsible for their interaction with the main pro-
tease and RNA-dependent-RNA polymerase of protein of 
SARS-CoV-2. In this study, based on the PCA/clustering 
outputs, we performed molecular alignment to identify func-
tional pharmacophores of the molecules. For PCA cluster 1 
(ellagic acid, epigallocatechin gallate and epicatechin gal-
late), three H bond acceptors, two H bond donors and one 
aromatic group were identified as common descriptors. On 
the other hand, PCA cluster 3 (quercetin, catechin, epicat-
echin and kaempferol) had three H bond donors, one H bond 
acceptor and two aromatic groups as common functional 
groups (Fig. 4). Further, we observed alignment scores for 
PCA cluster and 2 as 26.638 and 33.237, respectively (Figs. 
S1 and S2). Alignment scores represent the overall align-
ment performance of the input molecules. Two-dimensional 
interaction diagrams of the best ranked ligands with their 
respective target proteins showed the identified descriptors 
as functional pharmacophores (Fig. 5).

Phytochemical interaction with target proteins 
and respective diseases

Network pharmacology is an advanced technique, which 
enables researchers to identify multiple targets for their 
candidate compounds in the shortest time possible. This is 
an emerging methodology in drug discovery studies and is 
being extensively used in phytochemical-based research. In 
our earlier study, we successfully deployed network pharma-
cology approach to identify multiple disease targets of gin-
ger phytochemicals [107]. Recently, Sarkar et al. [108] used 
this methodology to identify targets for mango constituent. 
Tea compounds were essentially reported to have multiple 
health benefits and diseases modulating role; however, the 

application of a network pharmacology approach for these 
tea molecules is scarce to the best of our knowledge. Never-
theless, a few such works were presented for non-Camellia 
sinensis tea [109, 110]. In this work, a tri-partite network 
consisting phytochemicals, proteins and associated diseases 
is constructed based on the top docking score (binding affin-
ity Kcal  mol−1) for each of the phytocompounds (Fig. 6). 
Target proteins and their related diseases are presented in 
Table 2. Gallic acid did not qualify due to overall weak bind-
ing affinities toward target proteins. While the result was 
analyzed, it was found that epicatechin and kaempferol both 
were connected with the common target (1GKC, matrix met-
alloproteinase-9). Matrix metalloproteinase-9 is associated 
with diseases such as like intervertebral disc disease and 
penile cancer.

Molecular dynamic simulation

The computer-assisted molecular docking simulation tool 
is very useful in computational biology study to deter-
mine the accuracy and stability of the docked complex in 
a near-native physiological environment. Kushwaha et al. 
[111] recently exhibited the binding stability of querce-
tin-3-rutinoside-7-glucoside at the active site of SARS-
Cov-2  Mpro by using MD simulation tool. Similarly, Islam 
et al. [112] use MD simulation tool to evaluate the dock-
ing potential of the selected phytochemicals against the 
main protease of SARS-CoV-2. In our study, epicatechin 
gallate (ECG)-hepatocyte growth factor receptor (PDB 
id 1FYR) complex scored highest (− 10 kcal   mol−1) in 
terms of binding affinity and was analyzed for under-
standing the stability and conformational dynamics of the 
complex using MD simulation tool. The results obtained 
collectively from all the four parameters, namely RMSD, 
RMSF, gyration and ligand–protein H bonds, clearly 
showed that the complex formed by the phytochemical 
ECG was stable and could effectively bind with the tar-
get protein hepatocyte growth factor receptor. Root mean 
square deviation (RMSD) is indicative of inter-residual 
interactions within protein. We performed a 100-ns simu-
lation for both apo and bound states of the selected pro-
tein. We observed a gradual increment of the RMSD in 
both the states up to 20 ns, and thereafter, a stable RMSD 
was observed throughout the remaining simulation time 
within the range of 0.25–0.35 nm on an average. Overall, 
marginally higher RMSD values were seen for the bound 
state protein (~ 0.31 nm) than the apo state (~ 0.25 nm), 
possibly due to the introduction of the ligand (ECG) into 
the structure (Fig. 7a). A similar observation was reported 
for radius of gyration (Rg). The compactness of the protein 
structure in the free and bound forms was analyzed in Rg 
analysis (Fig. 7b). Before beginning the simulation, the Rg 
values of apo and bound states were calculated as 1.7 and 

Fig. 2  Superimposed three-dimensional docking interaction between 
control drugs and phytochemicals to target proteins (Uniprot id), 
along with H bond interactions; catechin (CAT), epigallocatechin gal-
late (EGCG), epicatechin (EC), epicatechin gallate (ECG), quercetin 
(QUE), kaempferol (KAE), and ellagic acid (EA)

◂
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Table 5  Amino acid residues interacting with the phytochemicals

Compound Protein name(UniProt ID/
PDB ID)

Amino acid interactions

H Bonds Pi-H bonds Other bonds

Control (Marimastat) Matrix metalloproteinase-9 
(P14780/1GKC)

GLY186A, LEU188A, 
ALA189A, PRO421A

LEU187A, HIS401A, 
TYR423A

Epicatechin LEU188A, ALA189A, 
MET422A,

HIS401A, TYR423A VAL398A

Kaempferol LEU188A, ALA189A VAL398A, HIS401A, 
TYR423A

Control (Crizotinib) Hepatocyte growth factor 
receptor

TYR134A, TRP121B, 
GLN145B,

VAL123A, THR138B, 
PHE147C, PHE147D

SER137A

Epicatechin gallate TYR134B, SER139A, 
GLN145D

VAL123B VAL123A, ARG142A

Control (Methotrexate) Dihydrofolate Reductase 
(P00374/1BOZ)

LEU27A, SER59A, THR56A LEU22A, VAL115A, 
THR56A, ALA9A, ILE16A

Epigallocatechin gallate GLU30A, THR56A, 
SER59A, VAL115A

ALA9A, LEU22A, PHE34A

Control (Icosapent) Prostaglandin G/H synthase 2 
(P35354/5F19)

ALA202B, HIS207B, 
VAL295B, HIS386B, 
HIS388B, LEU390B, 
LEU391B, PHE395B, 
TYR404B

Catechin THR206B ALA202B, THR206B, 
HIS207B, HIS386B, 
HIS388B

Quercetin THR206B, THR212B, 
ASN382B

HIS207B, HIS386B, 
HIS388B

Control (Perindopril) Angiotensin-converting 
enzyme (P12821/1O86)

ARG124A, TYR135A, 
TRP220A SER517A

PRO519A GLU123A

Ellagic acid ARG124A, TYR135A, 
SER219A, SER517A

ILE204A, ALA207A, 
GLU123A

Fig. 3  Statistical analysis of binding affinities (kcal  mol−1), a principal component analysis and b heat map with clustering
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Fig. 4  Molecular alignment of 
phytochemicals showing phar-
macophores (ACC  acceptor, 
DON donor, AR aromatic)
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Fig. 5  Protein–phytochemi-
cal interacting amino acids 
showing pharmacophores 
involved: catechin (CAT), epi-
gallocatechin gallate (EGCG), 
epicatechin (EC), epicatechin 
gallate (ECG), quercetin (QUE), 
kaempferol (KAE), and ellagic 
acid (EA)



Molecular Diversity 

1 3

1.64 nm, respectively. After initial fluctuation up to 30 ns, 
both the structures were stabilized at ~ 1.7 and ~ 1.5 nm of 
Rg for apo and bound states, respectively. In the MD simu-
lation, initial fluctuations at the start of the trajectory were 
commonly cited in the literature. In addition, the marginal 
difference of output parameter values between bound and 
free-state of protein was also reported elsewhere to explain 
stable dynamics [113, 114]. Further, to study the residual 
mobility of ligand-bound and ligand-unbound forms, we 
analyzed the root-mean-square fluctuations (RMSF) of 
individual amino acid residues. As shown in Fig. 7c, at the 
bound state, we did not observe any remarkable change in 
the residual flexibility when compared to the apo form. In 
both cases, the difference in residual flexibility was mini-
mal. Stable hydrogen bond formation between ligand and 
proteins is important for the structural stability of the com-
plex. For interaction with the protein 1FYR, ECG showed 
maximum 5 H bonds. We observed at least 2 H to be long-
lived throughout the simulation of 100 ns (Fig. 7d).

Free energy analysis by MM‑PBSA calculation

In a recent development, MM-PBSA method is considered 
as an advanced methodology for the estimation of free 
energy. Although this method increases the computational 

cost significantly, it can provide more accurate results than 
the conventional score-based molecular docking technique 
[115]. The results showed that epicatechin gallate (ECG) 
had a very high binding affinity (− 242.09 ± 10.97 kJ  mol−1) 
toward the receptor protein hepatocyte growth factor 
receptor (PDB id 1FYR). The dynamic stability of a pro-
tein–ligand complex was further explained by other impor-
tant energy terms, namely van der Waals, electrostatic, 
nonpolar and polar. Among these energy terms, polar or 
polar solvation energy had the opposite effect, which links 
binding energy to the unfavorable positive value [116]. In 
this study, we observed that van der Waals contributed more 
negative energy than its electrostatic counterpart (Table 6). 
In our study, the low contribution of polar solvation energy 
was important to stabilize the ECG-1FYR complex. Overall, 
a stable energy trajectory was observed, as demonstrated by 
representative 5-nm snapshots on five energy terms, namely, 
ΔG_Van der Waal, ΔG_Electrostatic, ΔG_Polar, ΔG_Non-
Polar and ΔG_binding (Fig. 8).

Fig. 6  Tripartite network of phytochemicals, proteins and associated diseases: catechin (CAT), epigallocatechin gallate (EGCG), epicatechin 
(EC), epicatechin gallate (ECG), quercetin (QUE), kaempferol (KAE), and ellagic acid (EA)
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Conclusion

In this study, we found that tea phytochemicals were capa-
ble of targeting multiple target proteins associated with 
various ailments. The results supported by multiple tools 
like statistics, pharmacophore analysis, network pharma-
cology and molecular docking showed that seven tea phy-
tochemicals (gallic acid was excluded) could altogether 
target five proteins and ten associated diseases at a mini-
mum. However, this was a minimum estimate due to strin-
gent screening applied in the present work. Further, among 

Fig. 7  Molecular dynamic (MD) simulation of epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex: a root-
mean-square deviation (RMSD), b radius of gyration, c root-mean-square fluctuation (RMSF) and ligand–protein H bonds

Table 6  MM-PBSA calculations of binding free energy for ECG-
P00374 complex

Types of binding energy(Kj  mol−1) Binding energy 
ECG-P00374 
complex

ΔG_binding − 242.09 ± 10.97
ΔG_Non Polar − 22.11 ± 0.96
ΔG_Polar 71.20 ± 6.23
ΔG_Electrostatic − 15.95 ± 4.57
ΔG_Van der Waal − 275.23 ± 10.15
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eight phytochemicals studied, epicatechin gallate was 
found to bind strongly with the target protein hepatocyte 
growth factor receptor (PDB id 1FYR) with the affinity as 

10 kcal  mol−1. Epicatechin gallate formed a highly stable 
complex with the target protein in a physiological environ-
ment as found by MD simulation.

Fig. 8  Free energy terms of epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex, a ΔG_Van der Waal, b 
ΔG_Electrostatic, c ΔG_Polar, d ΔG_Non-Polar and e ΔG_binding
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