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Abstract: Recently, with the development of computer vision using artificial intelligence (AI), clinical research on diagnosis and pre-
diction using medical image data has increased. In this study, we applied AI methods to analyze hepatic fibrosis in mice to determine 
whether an AI algorithm can be used to analyze lesions. Whole slide image (WSI) Sirius Red staining was used to examine hepatic 
fibrosis. The Xception network, an AI algorithm, was used to train normal and fibrotic lesion identification. We compared the results 
from two analyses, that is, pathologists’ grades and researchers’ annotations, to observe whether the automated algorithm can support 
toxicological pathologists efficiently as a new apparatus. The accuracies of the trained model computed from the training and validation 
datasets were greater than 99%, and that obtained by testing the model was 100%. In the comparison between analyses, all analyses 
showed significant differences in the results for each group. Furthermore, both normalized fibrosis grades inferred from the trained 
model annotated the fibrosis area, and the grades assigned by the pathologists showed significant correlations. Notably, the deep learn-
ing algorithm derived the highest correlation with the pathologists’ average grade. Owing to the correlation outcomes, we conclude 
that the trained model might produce results comparable to those of the pathologists’ grading of the Sirius Red-stained WSI fibrosis. 
This study illustrates that the deep learning algorithm can potentially be used for analyzing fibrotic lesions in combination with Sirius 
Red-stained WSIs as a second opinion tool in non-clinical research. (DOI: 10.1293/tox.2022-0066; J Toxicol Pathol 2023; 36: 21–30)
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Introduction

The prevalence of nonalcoholic fatty liver disease 
(NAFLD) is rapidly increasing worldwide, and it is now the 
most common liver disorder in the Western world1. NAFLD 
is characterized by excess fat deposition (steatosis) in the 
liver2. NAFLD can progress to non-alcoholic steatohepati-
tis (NASH), a disease in which the liver is additionally af-
fected by varying degrees of cell death, inflammation, and 
collagen deposition3. NASH has evolved to be a potential 
target for therapeutics owing to its distinct lesion of hepatic 

fibrosis that may affect cardiovascular comorbidity, malig-
nancy, and mortality4. Therefore, the discovery of antifibrot-
ic therapeutics has gained considerable attention for NASH 
treatment5.

Animal models of liver disease are generally required 
to study the efficacy of novel compounds in nonclinical re-
search. Frequently used models are based on rats or mice, 
where pathophysiology comparable to NAFLD/NASH is 
induced by a high-fat diet or substances, such as CCL4

6. In 
an efficacy study using animal models of NAFLD/NASH, 
frequently used evaluations were biochemical parameters, 
quantitative image analysis, and examination of histopatho-
logical sections7. Human-based histopathological examina-
tion, which is widely accepted, has several drawbacks. First, 
it relies on expert pathologists, who are in-demand8. The task 
is time-consuming and can be exhaustive, which may affect 
the performance. Second, the produced results have low 
reproducibility, that is, they exhibit inherent variability be-
tween different pathologists and the same pathologist9. This 
could limit the comparability of the results. Lastly, because 
of the complex pattern of NAFLD/NASH, a more detailed 
and subdivided grading system is needed to monitor histo-
pathological changes in NAFLD/NASH10. This can limit the 
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usefulness of pathological assessment in clinical practice.
Recent advances in deep learning, particularly in con-

volutional neural networks (CNNs), a type of deep learn-
ing used in image recognition, have revolutionized image 
analysis11. CNNs generally have three layers: convolution, 
pooling, and fully-connected12. In Xception, an extreme 
model of Inception, the cross-channel correlations and spa-
tial correlations are mapped more effectively than those in 
inception. Since the hypothesis of Xception architecture is 
that cross-channel correlations and spatial correlations are 
adequately detached, which is more advisable, Chollet as-
sumed that the entire detaching of correlations is possible, 
and it is a stronger hypothesis than that of Inception13. Some 
studies have applied deep learning methods to detect lesions 
of interest in pathology image samples derived from ani-
mal studies for drug discovery14. Studies have successfully 
classified lesions or performed pathology scoring using ro-
dent models, such as pulmonary pathology related to pul-
monary tuberculosis15, hyperplasia16, vacuole quantification 
in the liver for non-alcoholic fatty liver disease (NAFLD)17, 
and non-alcoholic steatohepatitis (NASH) scoring7. These 
studies mainly used hematoxylin and eosin (H&E)-stained 
slides18, whereas few studies have used other staining so-
lutions. Sirius Red staining is favorably used for the clear 
discrimination of fibrotic lesions. Therefore, in the current 
study, we applied an image classification method using a 
deep learning algorithm to confirm the successful analysis 
of fibrotic lesions in mice by Sirius Red staining19.

Materials and Methods

Animal
Six-week-old male C57BL/6 mice were used for this 

study. Animals were procured from Orient Bio, Inc. (Seong-
nam-si, Gyeonggi-do, Republic of Korea). All experimental 
procedures were performed in accordance with the regula-
tions of the Institutional Animal Care and Use Committee 
(Authorization No.2020-7A-02-02) of the Korea Research 
Institute of Chemical Technology (Daejeon, Republic of 
Korea). The animals had access to filtered, ultraviolet light-
irradiated municipal tap water ad libitum. Drinking water 
was analyzed every 6 months for the presence of specified 
contaminants at the Daejeon Regional Institute of Health 
and Environment (Daejeon, Republic of Korea).

Animal experiment
A total of 33 mice were used in this study, with at least 

10 animals in each group. All animals were allowed to ac-
climatize for 7 days to adjust to the laboratory environment. 
During 9 weeks post the acclimation period (16-week-old 
male C57BL/6 mice), animals were provided with a diet ad 
libitum. The selection criteria for animals in this study were 
based on the adequacy of their body weight. Mice in the 
positive control group, high-fat diet with CCL4 treatment 
(HFDC) group, and vehicle control (VC)-administered 
group (HFDC+VC group) were intraperitoneally (i.p.) ad-
ministered 3 mL/kg carbon tetrachloride (CCL4) (Cat. # 

289116-1L; Sigma-Aldrich, St. Louis, MO, USA) in corn oil 
(Cat. # C8267-500mL; Sigma-Aldrich) solution (1:49 corn 
oil) twice per week for 4 weeks. After 2 weeks of CCL4 
treatment, sodium carboxymethyl cellulose (CMC, vehicle) 
(Cat. # 37142-02; Kanto Chemical Co., Inc., Tokyo, Japan) 
was administered daily by oral gavage for two weeks. Mice 
in the test group, high-fat diet with CCL4 treatment (HFDC) 
group, and elafibranor (ELA)-treated group (HFDC+ELA 
group) were intraperitoneally administered a corn oil solu-
tion containing 3 mL/kg (1:49 corn oil) CCL4 at the same 
dose and frequency as that in the HFDC+VC group. After 
2 weeks of CCL4 treatment, ELA (Cat. # 561377; MedKoo 
Biosciences, Inc., Morrisville, NC, USA) with CMC was ad-
ministered daily by oral gavage for the last 2 weeks. Treated 
male C57BL/6 mice were fed a high-fat diet (HFD, trans-fat 
60 kcal%) (#D12492; Research Diets, Inc., New Brunswick, 
NJ, USA) ad libitum, whereas the control group was fed a 
normal diet (4.5% fat, 20.12% protein, 3.5% fiber; Purina, 
Gunpo, Republic of Korea). Animals were deprived of food 
on the day of sacrifice. After sacrifice, liver tissues were col-
lected from each animal, preserved in 10% neutral buffered 
formalin, and supplied to the Korea Institute of Toxicology 
(Daejeon, Republic of Korea) for subsequent histopathologi-
cal examination.

Tissue special staining
Sirius Red staining was performed to analyze the col-

lagen fibers in the liver. The Picro Sirius Red stain kit (con-
nective tissue stain) (ab150681) was purchased from Abcam 
PLC, Cambridge, United Kingdom. The staining procedure 
was performed according to the following protocol: the ini-
tial step involved the removal of wax and hydrating paraffin 
sections. After staining the nuclei with hematoxylin solution 
(Cat. # H3136; Sigma-Aldrich) for 8 min, the slides were 
washed under running water for 10 min. The Picro Sirius 
red solution required a complete hour for staining, as shorter 
times could lead to poor results. After washing the slides 
twice with acidified water, most of the water was manu-
ally removed, and the samples were dehydrated thrice using 
100% ethanol. Finally, the sample was rendered transparent 
using xylene and mounted on resinous medium. Following 
Sirius Red staining, collagen appeared red under light mi-
croscopy, indicating that the staining was highly specific for 
collagen.

Whole slide image sample
To obtain a whole slide image (WSI) sample, mice 

were treated with CCL4 to induce fibrosis20, while ELA21 
was used as an antifibrotic therapeutic. The liver was col-
lected after sacrificing the animals, embedded in a paraf-
fin block, and stained using Sirius Red stain. Slides were 
digitized using an Aperio Scanscope XT (Leica Biosystems, 
Wetzlar, Germany) with a 20× objective under bright-field 
illumination. The scan resolution was 0.5 μm per pixel, and 
the images were saved as TIFF stripes with JPEG2000 im-
age compression. A total of 33 Sirius Red-stained WSIs of 
mouse hepatic fibrosis were used in this study.
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Data preparation for model training and WSI analysis
There were two types of datasets; one was used during 

the training stage of the model, and the other was used for 
analyzing the model. The previous data were divided into 
three sets. First, a training dataset was used to train an al-
gorithm for the input. Second, a validation dataset was used 
to tune the final model when it was overfitted. Finally, the 
test dataset was used to evaluate how well the algorithm was 
trained. The last dataset, called the analyzing dataset, was 
used to analyze the WSI for practical use.

Mouse hepatic slides (n=33) were scanned using an 
Aperio Scanscope XT, and 33 WSIs were produced. We 
magnified the obtained WSI 20× using the Aperio ImageS-
cope ver. 12.4.0.5043 (Leica Biosystems, Buffalo Grove, IL, 
USA) and captured images in multiples of 128 × 128 using 
AlCapture (ESTsoft, Seoul, Republic of Korea). The cap-
tured images were cropped to 128 × 128 pixel-size images 
using the PhotoScape v3.7 (MOII Tech, Seoul, Republic of 
Korea) program.

Cropped images from 13 out of 33 WSIs were classified 
as normal or fibrotic by a pathologist. The classified data 
were split into the training, validation, and test sets (Table 1). 
The total number of WSIs used during the model’s training 
stage was 13, of which five were from the control group, four 
from the HFDC+VC group, and four from the HFDC+ELA 
group. For the data distribution for the test, 1,000 images 
each from fibrosis and normal tissue groups were selected 
randomly using the “random.sample” program within the 
Python package. The training and validation datasets were 
divided in an 8:2 ratio using the TensorFlow addons pack-
age.

Twenty of the 33 WSIs were used for analysis, of 
which five were from the control group, nine were from 
the HFDC+VC group, and six were from the HFDC+ELA 
group. Cropped images were used to analyze WSIs using 
deep learning.

Algorithm
To implement the deep learning algorithm for screen-

ing lesions from WSIs, we selected a classification algo-
rithm. The classification algorithm is the basic model ap-
plied in machine vision, and its performance is suitable 
for fast and precise prediction12. Among the several clas-
sification networks available in open-source deep-learning 
frameworks, we used the Xception network. The Xception 
network has advantages over the Inception-v3 module along 

the same parameter count as Inception-v313. Network per-
formance is not only precise but also involves fewer calcula-
tions compared to other algorithms22. Moreover, previous 
studies have demonstrated better performance in the Intel 
Image Classification Challenge dataset23 and clinical stud-
ies24–26 using Xception compared with that obtained using 
other deep learning algorithms. Therefore, we assumed that 
Xception would be suitable for screening lesions in WSIs.

All the procedures related to the stages of the training 
of the model to classify mouse hepatic fibrosis were per-
formed using the TensorFlow 2.1.0 package, installed with 
Python version 3.7, the requirements of which were met in 
this study. A single NVIDIA RTX 2080 super GPU was 
used for all calculations in the training and inference tests.

After training the model with 13 WSIs, we analyzed 20 
WSIs using the trained model. Twenty WSIs were cropped 
in the same flow of preparation data for the model training. 
To obtain the correlation results between the other analyzed 
methods, we classified normal and fibrosis images using 
the 20 WSIs generated from each slide with the help of the 
trained model and computed the proportion of the number of 
images classified as fibrosis out of the total cropped images 
for each WSI (Fig. 1A).

WSI evaluation by pathologists and a researcher
Three certified toxicological pathologists independent-

ly graded each WSI, with no additional information. To as-
sess model performance, the calculated mean grades of each 
WSI assigned by the three pathologists were used. All the 
pathologists assigned a grade of 0 to the control group. Gen-
erally, the standard score of fibrosis for each slide is used 
in Good Laboratory Practice institutions, and the results 
are presented in six grades according to the severity of the 
lesion: 0 (normal), 1 (minimal), 2 (slight), 3 (moderate), 4 
(marked), and 5 (severe). Representative views of the fibro-
sis score are shown in Supplementary Fig 1. In this study, 
no severe fibrotic lesions (fibrosis score of 5) were observed. 
We used a measurement tool to obtain perceptible data to 
measure the severity of fibrosis in each WSI. An annotated 
area analyzer was used to compute the area of interest. Ape-
rio ImageScope was used as the annotation program. Sub-
sequently, the annotated red-stained fibrotic area was com-
puted for each WSI. The fibrosis ratio was computed from 
the fibrosis-annotated area over the entire liver. Because 
fibrosis is shaped such that it creates a portal along a vein, a 
separate annotation was performed to exclude empty spaces 
due to blood vessels to compute the actual true area value. 
Each annotation layer was set apart in four different colors 
(Fig. 1B). The green layer represents fibrosis, and the blue 
layer represents the blood vessel area included in the fibrosis 
annotation area, which may affect the calculation of the true 
fibrosis area. Similarly, the purple layer indicates the whole 
area of the liver, and the pink layer displays the blood vessel 
area inside the liver, which can influence the computation of 
the true whole liver area. The proportion of the annotated 
fibrosis area for each liver was computed as follows:

Table 1. Number of Cropped Images for the Model Training Sets
Number of cropped images

Test set Normal 1,000
Fibrosis 1,000

Training, v  alidation set 
(8:2)

Training set  
19,248

Normal 12,548  
Fibrosis 6,700

Validation set  
4,813

Normal 3,138
Fibrosis 1,675
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Annotated fibrosis area=

Evaluation of model performance
Model performance was assessed using two different 

approaches: one by analyzing image tiles obtained from one 
complete WSI and the other by comparing the correlation 
between the fibrosis ratio using the trained model, the mean 
pathologist score, and the annotation data. Since all the 
cropped images employed for training the model were not 
used slide by slide but used without distinction, it may be 
hard to describe the accuracy of the deep learning method 
at the slide level. To overcome this issue, we performed an 
inference test targeting a slide to confirm the accuracy of 
the model when assessing it slide-by-slide. We chose the 
liver slide of one positive control animal, HFDC+VC_02, 
and categorized cropped images into normal and fibrosis 
categories. We defined the cropped images sorted by the 
researcher as true-classified answers. Subsequently, each 
label of the image classified by the researcher was compared 
with the images classified by the trained model, and normal-
ization was performed to examine the relationship between 
the three results in the common range. Scaling the range 
of data makes them lucid and comparable. As the min-max 
normalization27 is sensitive to outliers, we examined out-
liers in the data using the ROUT method28, a method for 
discerning outliers when data are nonlinear, with the help 
of Prism 8 (GraphPad Software, San Diego, CA, USA). We 
designated the Q value (the value of the basis for eliminat-
ing outliers) of the ROUT method as 1, as recommended by 
Motulsky et al.28, and no outliers were identified. We nor-
malized all analyzed data of each slide using the max nor-
malization, which is the simplest normalization technique. 
We rescaled the ratios and range of the average grade from 
0 (minimum value) to 1 (maximum value). The similarity 
verification between the average fibrosis grade assigned by 
the three pathologists, fibrosis ratio of deep learning, and 
fibrosis area ratio of annotation was performed to evaluate 
the performance of the trained model. Spearman’s correla-
tion test was used following the Shapiro–Wilk test to prove 
the similarity between deep learning and annotation, as well 
as pathologist grades.

Statistics
Prior to applying the appropriate statistical methods, 

the Shapiro–Wilk normality test was performed as the n val-
ue of each group was less than 30. Since none of the groups 
passed, the nonparametric Mann–Whitney test (two-tailed, 
confidence intervals 95%) was performed for each pair of 
groups29. For all cases, a p value less than 0.05 was consid-
ered statistically significant. For the correlation test, non-
parametric correlation (Spearman’s correlation) was used. 
All statistical analyses were performed using Prism 8 soft-
ware (GraphPad Software).

Results

Training, validation, and test
To screen for hepatic fibrosis lesions, 24,061 image tiles 

were used for training and validation. The image and batch 
sizes for both training and validation were 128 × 128 and 
50, respectively, and were trained for 15 epochs using the 
Xception network. The training accuracy exceeded 0.9950, 
and the validation accuracy exceeded 0.9900 after the first 
epoch (Fig. 2A). Both accuracies reached almost one in the 
first epoch while maintaining high accuracy until the end 
of the training, as well as high validation accuracy. This ac-
curacy was higher than that reported in a previous study 
by Heinemann et al., which aimed to classify fibrosis, bal-
looning, inflammation, and steatosis in NASH models with 
CNN, which was 88.5% and 86.3% for classifying fibrosis 
training and validation with 4,251 and 465 image tiles, re-
spectively7. The losses for training and validation decreased 
steeply after the second epoch and remained stable until the 
final epoch (Fig. 2B).

The model prediction test was performed using the 
test dataset, which was divided before training. The results 
showed that one error was observed for 2,000 image tiles 
using a confusion matrix (Fig. 2C). The one error was from 
data that deep learning predicted to be normal but was iden-
tified as fibrosis. The confusion matrix shows the precision 
value, which indicates the percentage of true fibrosis out of 
all the predicted fibrosis. It computed as 999/(999+0)=1. The 
recall value, which is designated out of the total fibrosis, 
shows the percentage of the predicted fibrosis. It computed 
as 999/(999+1)=0.999. From the above calculation, we can 
obtain the F1 score, which shows the harmonic mean of the 
precision and recall. The F1 score is 0.999. Because the pre-
cision, recall, and F1 score were close to 1 (highest), we can 
assume that the accuracy of the deep learning model was 
high. Receiver operating characteristic (ROC) analysis il-
lustrated the classification ability between normal and fibro-
sis. When the false positive rate is low, which is predicted 
as fibrosis, but the true value is normal and the true positive 
rate (synonym for recall) is high, the model’s proficiency is 
classified as high (Fig. 2D).

Model performance confirmation
As we are not contemplating the correct answer for 

each cropped image of a WSI, we compared the human 
classified dataset and deep learning classified dataset of 
the positive control slide, HFDC+VC_02. From the confu-
sion matrix, the precision value was computed to be 1,239/
(1,239+225)=0.846. The recall value was computed as 
1,239/(1,239+51)=0.96. From these outcomes, we obtained 
an F1 score, which was computed as 2 × ((0.846 × 0.960)/
(0.846+0.960))=0.899. The confusion matrix derived from 
the prediction suggested that the trained model showed a 
high performance in predicting fibrosis (Fig. 3A). The ROC 
curve obtained from the true and false positive rates illus-
trates the classification ability between normal tissue and 
fibrosis. The X-axis, which depicts the false positive rate, 

   (     ) 
  (     )

true fibrosis area green layer area blue layer area
true liver area purple layer area pink layer area

−
−
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Fig. 1.  Flow diagram illustrating the experimental design of the present study. (A) The procedure of data preparation, training, and results for 
this study. (B) Representative annotated image and results of the analysis. CNN: convolutional neural network.

Fig. 2. The result of training, validation, and testing of the model. (A) Accuracy of training (blue line) and validation (orange line) against the 
number of epochs. (B) Loss for training (blue line) and validation (orange line). (C) Confusion matrix of training and validation data set. 
(D) Receiver operating characteristic (ROC) curve of the trained model.
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indicates the prediction of an event when there is no event. 
Moreover, the Y axis, which depicts the true positive rate, 
indicates the prediction of an event when there is an event. 
The low rate of the X-axis and the high rate of the Y-axis in-
dicate high accuracy of the model. The ROC curve obtained 
from the true- and false-positive rates also proved the high 
accuracy of the model (Fig. 3B).

Evaluation of deep learning
To evaluate the deep learning model, we compared the 

grades assigned by the pathologists with the annotation re-
sults. The raw data result of deep learning presents the num-
ber of WSIs classified as fibrosis, pathologists indicating the 
average grade of three pathologists, and annotations show-
ing the true fibrosis area of each WSI (Table 2). The unit of 
true fibrosis area of annotation is square millimeters (mm2), 
and the numbers were rounded off to three decimal places. 
Fibrosis grade by deep learning was determined using the 
proportion of the number of images classified as fibrosis 
from the cropped WSI (Fig. 4A). Three certified toxicologi-
cal pathologists graded each slide prior to testing. Because 
there may be variations depending on the experience and 
standards of each pathologist, the average value was used 
for comparison (Fig. 4B). The true whole fibrosis-annotated 
area of each WSI was used for annotation (Fig. 4C). Twenty 
slides were used for the analyzed dataset.

In particular, the differences between the control, 

HFDC+VC, and HFDC+ELA groups were statistically sig-
nificant, indicating that the degree of fibrosis was the low-
est in the control group, followed by the HFDC+ELA group 
(Fig. 4D–4F). These results suggest that the deep learning 
algorithm can differentiate fibrotic areas. Furthermore, all 
the analysis methods successfully distinguished the severity 
of fibrosis in each group.

Comparison of the three analyses
The outliers in each analyzed dataset were identified 

prior to normalization. Since no outliers were found, the 
min-max normalization was computed to rescale the ranges 
of each analyzed method’s outcome from 0 (minimum val-
ue) to 1 (maximum value) (Fig. 5A). To compute and con-
firm the performance of the deep learning algorithms, the 
relationships between normalized data from each analyzed 
method were analyzed using Spearman’s correlation coef-
ficient with the Shapiro–Wilk normality test.

The hepatic fibrosis grade predicted by deep learn-
ing showed a very high correlation with the pathologist-
assigned grade (r=0.9067), and it was the highest among 
all correlations (Fig. 5B)30. The annotated fibrosis area ratio 
and pathologists’ average grades showed a high correlation 
(r=0.8579) (Fig. 5C). Finally, the annotated fibrosis area ra-
tio and predicted fibrosis ratio were computed as highly cor-
related (r=0.8346) (Fig. 5D).

Fig. 3. Model performance in one complete WSI. (A) Confusion matrix of the HFDC+VC_02. (B) Receiver operating characteristic 
(ROC) curve of the HFDC+VC_02 (positive control) inferred from the slide by the trained deep learning algorithm.

Table 2. Results of Each Analysis
Group Control HFDC+VC HFDC+ELA

Treatment None HFD + CCL4 +Vehicle HFD + CCL4 + ELA

Animal number 01 02 03 04 05 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06
Deep learning 574 446 813 371 273 1573 1464 1254 1156 1094 1638 1388 1453 1772 1634 1159 1302 1506 1964 1123
Pathologists 0 0 0 0 0 2.667 2 2 2 2 2.667 3 2.333 3 1 1.333 1.333 1.667 1.333 1
Annotation 0.564 0.238 0.315 0.216 0.120 1.662 1.302 1.393 1.281 1.007 1.241 1.963 1.632 1.602 1.699 1.142 1.245 0.632 0.924 0.885

HFDC: high-fat diet with CCL4 treatment; VD: vehicle control; ELA: elafibranor; CCL: carbon tetrachloride.
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Discussion

Considering the increasing prevalence of NAFLD and 
NASH, efforts to discover therapeutics for the treatment of 
distinct hepatic fibrosis have increased31. Before the admin-
istration of a test drug to treat lesions, pathological findings 
from tissue slides interpreted by certified toxicological pa-
thologists provide critical evidence for the drug effect. Re-
cently, deep learning has been implemented in non-clinical 
studies. The purpose of applying convolution networks in 
non-clinical studies is to achieve a quantitative and rapid 
assessment of pathological findings during drug discovery. 
Therefore, a classification network may be favored over ob-
ject detection or segmentation, which requires complicated 
calculations and a longer execution time, as well as a com-
plex annotation procedure. Some studies have applied dif-
ferent classification methods to classify lesions in mouse 
models. Asay et al. used a convoluted network of their own 
designed layers to discriminate tuberculosis pulmonary le-
sions using millions of image tiles15. Another study used 
transfer learning with an inception-v3 network to infer 
NASH scoring with much less data7. They showed the pos-
sibility of using deep learning for the automatic evaluation 
of the NASH score from the images in the model mice using 
transfer learning.

In the present study, we carried out research verifying 
the implementation of deep learning in the assessment of 
toxicological pathology in a nonclinical study. This study 

employed automatic classification of hepatic fibrosis using a 
deep learning network to evaluate the performance in com-
parison to pathologists and annotation. The classification al-
gorithm trained using the Xception network showed a high 
F1 score at the slide level (89.9%). Three certified toxicolog-
ical pathologists scored the fibrosis. Finally, the fibrosis area 
was annotated and computed to obtain a quantified fibrosis 
value. Because the ranges of all analyses are different, we 
transformed the range of the grades using the min-max nor-
malization method. Using this hepatic fibrosis grade of deep 
learning, we compared each grade of a slide with the average 
fibrosis grade assigned by the pathologists and the annotated 
fibrosis area to confirm the performance of the algorithms. 
The trained deep learning strongly follows not only the re-
sults of the annotation data, which was set as quantitative 
answer data, but also the mean average pathologist-assigned 
grade, which is regarded as the gold standard. The results 
show a strong correlation between each pair of the three. 
The fibrosis grade computed by annotation showed strong 
correlations with the pathologist-assigned grades. Patholo-
gists consider not only the context of the section, such as the 
pattern of the fibrosis bridge between central veins, but also 
the artifacts in slides when diagnosing hepatic fibrosis. The 
deep learning model trained in this study showed grades 
similar to the pathologist-assigned grades compared to 
those with the annotation, despite the presence of artifacts. 
Therefore, we consider the results of this study as useful 
evidence for the ability to use deep learning to distinguish 

Fig. 4. Fibrosis results and differences between groups of each evaluation method. (A) The rate of the number of images classified as fibrosis 
to the total number of cropped images for each WSI. (B) The average grade of three pathologists for each whole slide image (WSI). (C) 
The true whole fibrosis area [(green layer – blue layer)/(purple layer – pink layer)] for each WSI. The green dotted lines separate the 
groups. (D–F) The difference in the level of fibrosis between the groups of (D) deep learning, (E) pathologists, and (F) annotation, re-
spectively. Data are the mean ± SD, and p values were computed using the Mann–Whitney test; n=5, 9, and 6 per control, HFDC+VC, and 
HFDC+ELA groups, respectively. Every group showed a statistically significant difference (p<0.05) in the level of fibrosis in the different 
groups in each of the evaluation methods. *p<0.05, **p 0.01, ***p<0.001.
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between normal and fibrotic lesions, based not only on the 
red color but also on other features that humans would not 
recognize.

Sirius Red-stained samples can be easily distinguished 
by their color as a result of collagen staining. Hence, the deep 
learning algorithm tends to classify reddish-cropped images 
into a fibrosis folder. Because pathologists can determine 
the control value and assign a score of 0, deep learning has 
no standard for control but simply classifies reddish images. 
The annotation process is also similar to deep learning; the 
reddish-stained part of the control group was annotated as 
fibrosis, and hence fibrosis appeared in the control group as 
well. Nevertheless, Sirius Red staining was used because 
the color-coded feature of fibrosis is considered to be a big 
advantage in image classification in deep learning. There-
fore, to alleviate the classification of normal misrecognition 
as fibrosis, adding control WSIs in order to use normal im-
ages of the control group as an ideal normal value is needed. 
Through the examination of another deep learning model 
before adding two control WSIs from the training stage, the 
Spearman’s correlation coefficient (r) between deep learning 
and annotation was reduced to 0.0203 and slightly increased 

(less than 0.01) between deep learning and annotation (Sup-
plementary Fig. 2). This indicates that a wide spectrum of 
normal values might have affected the performance of the 
deep learning results.

Computer vision techniques have achieved break-
throughs since the advent of AlexNet, which competed to 
obtain the highest accuracy in a multi-class classification 
problem challenge with convolutional networks, as evalu-
ated by the 2012 ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC)32. AlexNet is a deep CNN trained 
model that is similar to LeNet but different from all the 
convoluted layers stacked together33. The inception that has 
deepened the depth and widened the width of the network, 
and advanced the utilization of computing data34, has few-
er parameters compared to AlexNet and won the ILSVRC 
2014 competition33. Subsequently, Xception, which we used 
in this study, is inspired by Inception-v3 and computes the 
cross-channel correlation and spatial correlation indepen-
dently. Xception performed better than Inception-v3 when 
using model parameters13.

Diagnosis by certified toxicological pathologists is be-
lieved to be the gold standard for determining the severity 

Fig. 5. Comparison and correlations between three analyses. (A) Normalized analyzed data of fibrosis area rate of predicted fibrosis rate by deep 
learning (orange), average grade by three pathologists (gray), and annotation (blue) for each whole slide image (WSI). No outliers were 
identified using the ROUT method (with Q* set to 1%). Therefore, we used min-max normalization to rescale the ranges from 0 (mini-
mum value) to 1 (maximum value). The green dotted lines separate the groups. (B–D) Correlation between each analysis method with 
normalized data. For all graphs, Spearman’s correlation coefficient (r) is used. (B) Correlation between normalized predicted fibrosis rate 
assigned by deep learning and normalized average grade assigned by pathologists. (C) Correlation between normalized average grade by 
pathologists and fibrosis area rate from the annotation in WSIs. (D) Correlation between normalized predicted images as fibrosis rate by 
deep learning and normalized fibrosis area rate from the annotation in WSI.

 *Q: value of the basis for eliminating outliers.



Kim, Baek, Hwang et al. 29

of a lesion; nevertheless, pathologists rely on their personal 
knowledge and experience for diagnosis. Sometimes, accu-
racy cannot be guaranteed, and misdiagnosis is inevitable. 
Notably, deep learning and pathologists showed the high-
est correlation. From this perspective, we propose that the 
fibrosis evaluation method in Sirius Red-stained WSIs us-
ing the trained model might produce similar results to the 
pathologists. The trained model can be applied to analyze 
fibrosis in Sirius Red-stained WSIs as a second-opinion tool 
for practical use.
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