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Abstract

Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show
promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on
preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T
lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation,
activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we
used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866
efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-
mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-c and TNF-a production, and finally
autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-
polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-c
and TNF-a production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the
neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors)
could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.

Citation: Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, et al. (2009) Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt
Inhibition Reduces Demyelination and Disability in EAE. PLoS ONE 4(11): e7897. doi:10.1371/journal.pone.0007897

Editor: Colin Combs, University of North Dakota, United States of America

Received June 20, 2009; Accepted October 22, 2009; Published November 19, 2009

Copyright: � 2009 Bruzzone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC, A.N.), the Associazione Italiana contro le Leucemie, Linfomi e
Mieloma (AIL; A.B. and F.P.), and by the University of Genoa. R.M. is a V Scholar, a Sidney Kimmel Foundation Scholar, and is supported by a grant from the
American Federation of Aging Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: A.Nencioni@gmx.net

. These authors contributed equally to this work

Introduction

FK866 (formerly WK175) is a potent inhibitor of nicotinamide

phosphoribosyltrabsferase (Nampt), the key enzyme in the NAD+

synthesis pathway from Nam [1,2,3]. Initial studies carried out in

cancer cell lines indicated that exposure to FK866 results in a slowly

progressing form of cell death due to intracellular NAD+ depletion

[1,4]. Following preclinical evaluation in animal models, FK866

underwent clinical experimentations in patients with advanced solid

tumors showing some activity and acceptable toxicity [5]. Subse-

quent studies demonstrated that the activity of FK866 is improved

when the drug is used in combination with ionizing radiations and

with DNA damaging agents as these treatments result in activation of

the NAD+-degrading enzyme poly-(ADP-ribose) polymerase (PARP)

which in turn cooperates to lower NAD+ levels in the cell [6,7,8].

The preclinical studies and the clinical experimentation

revealed that lymphocytes are probably the normal cell type that

is most sensitive to FK866 since lymphopenia was consistently

observed in response to this drug [5]. In line with these findings,

using a mouse strain lacking Nampt expression in the T and B cell

lineage, Rongavaux and colleagues have recently shown that

Nampt is critically required for the development of both T and B

lymphocytes [9]. Finally, T lymphocytes upregulate Nampt in

response to mitogenic stimuli [10,11,12,13], suggesting that

Nampt activity may be especially required during the process of

T lymphocyte activation.

Here, we evaluated FK866 for its capacity to interfere with T

lymphocyte function and survival and assessed the mechanisms

underlying FK866 efficacy in these cells. We show that Nampt

inhibition with FK866 has catastrophic consequences in activated
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T cells where it virtually obliterates intracellular NAD+ stores

leading to functional impairment and ultimately to autophagic cell

demise. In line with these premises, we show that FK866 strikingly

ameliorates the manifestations of experimental autoimmune

encephalomyelitis (EAE), a prototypical model of T-cell mediated

autoimmune disorder. Our data provide the rational for the

evaluation of Nampt inhibitors in immune mediated disorders.

Results

FK866 Prevents T Lymphocyte Proliferation and
Selectively Affects Viability of Activated T Lymphocytes

The capacity of FK866 to interfere with T lymphocyte

responses was initially tested in proliferation assays which

showed how this compound virtually abrogates T cell prolifer-

ation in response to mitogenic stimulation (Figure 1A and data

not shown). Proliferation inhibition was typically accompanied

by morphological changes suggestive of cell demise (data not

shown). Therefore we assessed whether FK866 would affect T

cell viability and whether resting and activated T lymphocytes

would behave differently in terms of susceptibility to this drug.

We found that FK866 was toxic to PBLs when these were

concomitantly activated with mitogens [phytohematoagglutinin-

P (PHA), or concanavalin A (Con A)], while unstimulated cells

were mostly unaffected (Figure 1B). Similarly, activation with

allogeneic DCs also sensitized PBLs to FK866-induced cell

demise while unstimulated PBLs were less affected (Figure 1C,

D). As detected after a five-day treatment, FK866-induced cell

death in activated PBLs was concentration dependent, with

EC50s comprised between 1 and 10 nM, and typically reached a

plateau starting from 30 nM (Figure 1B, C). In resting PBLs,

FK866 EC50 was never reached in the concentration range we

used. In experiments where FK866 treatment (33 nM) was

extended for up to 12 days, unstimulated PBLs were still .80%

viable indicating that resting T cells are mostly resistant to

FK866-induced cell death (data not shown). Similarly, FK866

Figure 1. Nampt inhibition with FK866 prevents T lymphocyte proliferation and selectively kills activated T cells. A, PBLs were seeded
in 96-well plates in the presence or absence (unstim.) of PHA and 33 nM FK866. Proliferation was assessed 96 h later by standard [3H]thymidine
incorporation assay. B, PBLs were incubated in 96-well plates in the presence or absence of 5 mg/ml PHA, 1 mg/ml Con A, with or without the
indicated concentrations of FK866. Five days later viability was detected by PI staining and flow cytometry. Spontanous cell death was 12.2% and
28.1% for PHA- and Con A-stimulated PBLs, respectively. C, D, PBLs were stimulated for 7 days with or without allogeneic mature DCs before FK866 at
the indicated concentrations was added. After 5 days viability was assessed by PI staining and flow cytometric analysis using the lymphocyte gate (C).
Spontaneous PBL death was 18.4%. D: phenotype of unstimulated or DC-stimulated PBLs. E, Immature or LPS stimulated DCs were cultured for 7 days
with 33 nM FK866 before staining with FITC-conjugated Annexin-V and PI and flow cytometry. F, Resting or PHA-stimulated PBLs were treated with
33 nM FK866 for the indicated times and subsequently stained with FITC-conjugated Annexin-V and PI for flow cytometric analysis. Mean values 6
SD of five (B) and three (A, C) different donors are presented. D–F One representative experiment out of three is shown.
doi:10.1371/journal.pone.0007897.g001
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did not affect viability of dendritic cells (DCs) or NK cells even

after protracted exposure (Figure 1E and data not shown).

Activated T lymphocyte death in response to FK866 was

typically a slowly progressing form of cell demise as an increase

in the rate of dead T lymphocytes was normally observed starting

from 72 h treatment (Figure 1F).

CD3-neg PB mononuclear cells (PBMCs) were less than 20% of

the PBL preparations and this percentage further decreased on

exposure to T cell mitogens or to allogeneic DCs (,10%)

(Figure 1D and data not shown). In order to exclude that T

lymphocyte death induced by FK866 was mediated by the

contaminating PBMCs, we performed similar experiments using

highly pure CD3+ cells isolated by magnetic cell sorting (.95%).

These tests reproduced the results shown in Figure 1B–C,

confirming that FK866 primarily targets activated T lymphocytes

(data not shown).

Activated PBLs Undergo Massive NAD(H) Depletion
following Nampt Inhibition

We next sought to determine whether the increased toxicity of

Nampt inhibition in activated as compared to resting PBLs would

reflect a different response to the drug in terms of intracellular

levels of pyridine nucleotides. Intracellular NAD(H) and

NADP(H) were measured by cycling enzymatic assays, whereas

ATP levels were determined by HPLC. In resting PBLs, the mean

NAD+, NADH, NADP+, and NADPH intracellular amounts were

88615 pmoles/106 cells, 12.360.5 pmole/106 cells, 4.260.7

pmoles/106 cells, and 21.760.7 pmoles/106 cells, respectively. In

mitogen-stimulated PBLs, the mean NAD+, NADH, NADP+, and

NADPH levels were 295.665.9 pmoles/106 cells, 60.962.1

pmoles/106 cells, 7.160.7 pmoles/106 cells, and 94.665.6

pmoles/106 cells, respectively. The absolute values of pyridine

nucleotides concentrations and their increased content in

mitogen-stimulated PBLs are in line with those detected in

previous studies [14]. Treatment with FK866 significantly

reduced intracellular NAD+ levels in both resting and activated

T lymphocytes (Figure 2A). However, while unstimulated PBLs

retained on average about 20% of their intracellular NAD+

content when exposed to 33 nM FK866 (range 11.8%–32%), in

mitogen-stimulated T lymphocytes FK866 typically reduced

intracellular NAD+ to less than 5% of the levels in FK866-

untreated cells (range 0.6–7.4%). In activated PBLs treated with

FK866, both the absolute NAD+ amount and the percentage of

NAD+ content relative to FK866-untreated controls were

significantly lower than those detected in resting PBLs

(Figure 2B). NADH levels closely paralleled NAD+ levels in

response to FK866 (Figure 2C). Vice versa, NADP+ and particularly

NADPH levels were depleted by FK866 to a much lesser extent.

Thus, Nampt inhibition appears to primarily affect the NAD(H)

pool in T lymphocytes. Figure 2D shows a time course experiment

where intracellular NAD+ and ATP level, and cell viability were

monitored simultaneously in activated PBLs treated with FK866.

A significant NAD+ decrease was detected as early as 3 h after

addition of FK866 (Figure 2D). This was followed by a decrease in

intracellular ATP, which became apparent between 12 and 24 h

after drug addition. Finally, a decrease in cell viability was

detected 72 h after onset of FK866 treatment. These data indicate

that T lymphocyte death due to Nampt inhibition is preceded by a

period of several hours when cells are viable despite very low

NAD+ levels and decreasing ATP content. Exogenously added

NAD+ completely rescued FK866-induced PBL death confirming

that the effect of FK866 on PBLs viability is indeed a consequence

of NAD+-shortage (Figure 2E).

PARP and Sirtuin Activity Predispose Activated T
Lymphocytes to Intracellular NAD+ Depletion

DNA-damaging agents leading to PARP activation were

previously shown to increase FK866 activity [6,7]. In activated

T lymphocytes, a marked increase in PARP activity occurs to

ensure efficient DNA repair and possibly to implement signal

transduction [10,15,16]. Therefore, we assessed whether PARP is

involved in conferring susceptibility to FK866 to activated T cells.

We first verified by quantitative PCR (Q-PCR) (Figure 3A) and by

Western blotting (not shown) that PARP1 and Nampt become

upregulated in PBLs in response to mitogenic stimulation. Three

structurally unrelated PARP inhibitors, NU1025, 3-AB, and PJ34

indeed provided a partial rescue of intracellular NAD+ levels upon

treatment of activated PBLs with FK866 (Figure 3B). This effect

was paralleled by an increase in cell viability (Figure 3C). NU1025,

3-AB, and PJ34 had no effect on T lymphocyte proliferation in

response to mitogens (data not shown). Thus, the protection

conferred by these compounds against FK866-induced cell demise

is not attributable to inhibition of T lymphocyte activation. In line

with a recent report [4], we found that several T cell leukemia cell

lines are highly susceptible to FK866 (not shown). In Jurkat cells,

NU1025, 3-AB, and PJ34 alleviated FK866-induced NAD+

depletion (Fig. 3D) and virtually completely prevented cell death

induced by low FK866 concentrations (,500 pM) in a concen-

tration dependent fashion (Figure 3E). However, similarly to what

observed in primary PBLs, at higher FK866 concentrations the

protection conferred by PARP inhibitors to Jurkat cells and to

other T cell leukemia cell lines was only partial (not shown).

The fact that PARP inhibitors only partially block FK866-

induced NAD+ shortage and cell death in activated T cells suggests

that other enzymatic activities/metabolic processes could come into

play to enhance susceptibility to FK866. The ADP-ribosyl cyclase

CD38 is also upregulated in T cells by activation stimuli [17]. The

possible contribution of CD38 to the enhanced sensitivity of

activated T lymphocytes to FK866 was first assessed by transfecting

Jurkat cells with CD38-specific small interfering RNAs, in the

presence or absence of FK866. CD38 silencing did not induce any

significant effects on NAD+ levels and on viability (data not shown).

Moreover, we did not observe a difference in the sensitivity to

FK866 between HeLa cells transfected with sense-(CD38+) or with

anti-sense-(CD382) human CD38 (data not shown) [18].

Finally, sirtuins also use NAD+ as a substrate [19], and some of these

enzymes may undergo upregulation in activated T lymphocytes (see

below). We found that the sirtuin inhibitor sirtinol induced a slight,

although significant increase in the levels of intracellular NAD+ in

activated T cells exposed to FK866 (data not shown). Consistently,

sirtinol mitigated FK866-induced cell death in activated PBLs

(Figure 3F). Thus, sirtuin activity appears to also be among the factors

involved in conferring susceptibility to FK866 to activated T cells.

NAD+ Depletion Induces T Lymphocyte Death via
Mitochondria Dysfunction and Autophagy

Mitochondrial oxidative phosphorylation is the cellular major

ATP source under aerobic conditions. NADH is required for

mitochondrial transmembrane potential (DYm) maintenance

which in turn is a prerequisite for ATP generation [20]. We

found that in primary activated PBLs as well as in T cell leukemia

cell lines DYm is dissipated following FK866-induced NAD+

depletion (Figure 4A and data not shown). DYm loss due to Nampt

inhibition was more pronounced in activated than in resting PBLs

(Figure 4B). To demonstrate that DYm loss is causally involved in

FK866-mediated cell death we made use of Jurkat cells engineered

to overexpress Bcl2 as this antiapoptotic protein maintains DYm in

NAD+ in T Lymphocyte Function
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the presence of DYm loss-inducing stimuli by enhancing H+ efflux

(Figure 4C) [21,22]. Indeed, Bcl2-overexpression protected Jurkat

cells from FK866-mediated mitochondrial depolarization

(Figure 4C). This effect was not due to interference by Bcl2 on

intracellular NAD+ depletion as FK866 efficiently depleted

intracellular NAD+ also in Bcl2-overexpressing Jurkat (data not

shown). Consistent with the fact that DYm is maintained by Bcl2

overexpression irrespective of NAD+ shortage, Bcl2 Jurkat cells did

Figure 2. Activated T cells undergo massive NAD+ depletion upon Nampt inhibition. A, 36106 PBLs/well were stimulated (or not, unstim.)
with 5 mg/ml PHA, 1 mg/ml con A, or 50 ng/ml PMA and 0.5 mM ionomycin in the presence or absence of the indicated FK866 concentrations. 48 h
later, cells were lysed in 0.6 M PCA and NAD+ content was measured in neutralized extracts. NAD+ levels were normalized to those detected in the
absence of FK866. B, Unstimulated or PHA-stimulated PBLs were treated with 33 nM FK866 for 48 h before NAD+ content was determined. Absolute
NAD+ levels are presented. *: p,0.05. C, PBLs were cultured for 48 h with PHA with or without FK866 (33 nM) addition. Subsequently, pyridine
dinucleotides levels were measured in acid (NAD+ and NAPD+) or alkaline (NADH and NADPH) cell extracts. Dinucleotide levels were normalized to
those detected without FK866. D, PBLs were incubated with PHA and 33 nM FK866 for the indicated times. Thereafter cells were harvested and NAD+

and ATP levels were determined in cell extracts whereas cell viability was assessed by PI-staining and flow cytometry. Results were normalized to the
values of FK866-untreated cells. E, Resting or PHA-stimulated PBLs were treated (or not) with 33 nM FK866 in the presence or absence of 1 mM NAD+.
After five-days viability was assessed determining PI2 cells by flow cytometry. Results are means 6 SD of five (A) or three (B–E) experiments.
doi:10.1371/journal.pone.0007897.g002

NAD+ in T Lymphocyte Function

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7897



not show ATP depletion upon treatment with FK866 (Figure 4D).

Thus, ATP reduction in response to NAD+ depletion is due to

DYm loss. Finally, Bcl2-overexpressing Jurkat cells were virtually

completely resistant to FK866-induced cell death (Figure 4E).

ATP depletion triggers autophagy [23]. To determine the role

of autophagy in cell death caused by FK866 we made use of 3-MA

and LY294002 two class III phosphoinisitide-3 phosphate kinase

(PI3K) inhibitors known to block autophagy [24]. Both inhibitors

reduced FK866-induced cell demise in PBLs (Figure 4F, G) as well

as in Jurkat cells and in the T cell leukemia cell line H9 (data not

shown). No protection from FK866 was conferred by the mitogen-

activated protein kinase inhibitor PD098059 or by the NF-kB

inhibitor BAY 11–7082 (data not shown). PI3K inhibition in

activated PBLs had no effect on PARP upregulation in response to

PHA (not shown), ruling out that the PI3K inhibitors may interfere

with FK866-induced cell death by affecting PARP. Therefore, in

line with previous studies [4,25], FK866 induces autophagic cell

death in activated T lymphocytes.

Since mitochondria dysfunction is also a trigger of the intrinsic

apoptotic pathway [26], we assessed whether this mechanism would

also contribute to FK866 cytotoxicity. Indeed, we detected released

cytochrome c in the cytosolic fraction of FK866 treated T lymphocytes

(not shown). However, the pan-caspase inhibitor zVAD-fmk, the

caspase-9 inhibitor Z-LE(OMe)HD(OMe)-FMK, as well as the

caspase-8 inhibitor Z-IE(OMe)TD(OMe)-FMK failed to protect from

FK866-induced cell death (data not shown). Thus, although

associated with cytochrome c cytosolic relocalization, cell demise via

NAD+ depletion appears to occur in a caspase-independent fashion.

Figure 3. PARP inhibitors and sirtinol attenuate FK866-induced T cell demise. A, PBLs were cultured for 24 h with or without PHA.
Thereafter, Nampt and PARP1 levels were detected by Q-PCR. mRNA levels in PHA-stimulated cells were compared to those in unstimulated PBLs. B,
Resting or PHA-stimulated PBLs were incubated with or without 33 nM FK866 in the presence or absence of 300 mM NU1025, 10 mM PJ34, or 300 mM
3-AB. 48 h later NAD+ levels were assessed (presented as % of values in FK866-untreated PBLs). *, p,0.05. C, PHA-stimulated PBLs were incubated for
five days with or without 33 nM FK866 in the presence or absence of 300 mM NU1025, 10 mM PJ34, or 300 mM 3-AB. Thereafter, viability was assessed.
D, 56105 Jurkat cells were treated for two days with 500 pM FK866 in the presence or absence of 300 mM NU1025, 5 mM PJ34, or 300 mM 3-AB.
Subsequently, NAD+ content was determined and expressed as % of values in FK866-untreated Jurkat. E, 36104 Jurkat cells/well were incubated in
96-well plates with or without 300 pM FK866 in the presence or absence of the indicated concentrations of NU1025, PJ34, or 3-AB. Viability was
determined 96 h later by PI cell staining and flow cytometry. F, PBLs were incubated for five days with PHA, with or without 33 nM FK866, in the
presence or absence of 30 mM sirtinol. Viability was subsequently assessed by PI staining and flow cytometry. C, E, F, each treatment was tested in
triplicate wells. Results are presented as means 6 SD of three experiments.
doi:10.1371/journal.pone.0007897.g003
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Nam and Na Prevent NAD+ Shortage and Lymphocyte
Death Induced by Nampt Inhibition

We performed experiments to evaluate whether FK866-induced

NAD+ depletion and cell death in PBLs would be prevented by

Nam and by Na. Nam is known to act as an antidote for FK866

and recent studies showed that this effect may be due to direct

competition for the binding site on the enzyme [1,2]. Conversely,

Na supplementation rescues NAD+ synthesis in cells that express

Na phosphoribosyltransferase (Naprt1) and can thereby synthesize

NAD+ via the Preiss-Handler pathway [1,27]. Nam raised

intracellular NAD+ levels to over 150% of the untreated control

in both FK866-treated and untreated cells (Figure 5A). We verified

Naprt1 expression in human PBLs by Q-PCR. Moreover, we

found that Naprt1 mRNA is upregulated in activated T cells, with

the extent of the upregulation varying depending on the stimulus

used (Figure 5B). Na per se did not affect intracellular NAD+ levels.

However, it partially prevented NAD+ depletion upon treatment

with FK866, to about 50% of the pyridine dinucleotide content in

untreated T lymphocytes (Figure 5A). Both Nam and Na

efficiently countered PBL death in the presence of cytotoxic

FK866 concentrations (Figure 5C) and over a wide range of

FK866 concentrations (Figure 5D). However, the potency of Nam

and Na as FK866 antagonists was different: Na protected PBLs

from 33 nM FK866-induced cell death with an EC50 of 1026 M

(Figure 5E, and data not shown) compared to an EC50 value for

Nam of 361025 M. No protection from FK866-induced cell death

was conferred to PBLs by tryptophan supplementation indicating

that the de novo NAD+ synthesis pathway is not a relevant source

Figure 4. Nampt inhibition with FK866 induces mitochondria depolarization and ATP depletion in activated T lymphocytes. A, PHA-
stimulated PBLs were incubated with 33 nM FK866 and DYm was determined at the indicated days of exposure. B, Resting of PHA-stimulated PBLs
were cultured with 33 nM FK866 for five days. Thereafter PBLs with conserved DYm-high were quantified by flow-cytometry. C, Bcl2-overexpressing
Jurkat and the respective vector control cells were incubated with 10 nM FK866 for the indicated number of days. Thereafter, DYm was determined.
Inset, Western blot for Bcl2 and c-tubulin expression. D, 56105 Bcl2-overexpressing Jurkat and the vector control cells were incubated with or
without 10 nM FK866 for the indicated times before ATP was detected. ATP levels are presented as % of ATP in FK866-untreated cells. E, 36104 Bcl2-
overexpressing and control Jurkat cells/well were incubated in 96-well plates with or without the indicated FK866 concentrations. Viability was
determined by PI staining and flow cytometry 96 h later. F, PHA-stimulated PBLs were incubated in the presence or absence of 33 nM FK866 with or
without the indicated concentrations of 3-MA. Viability was detected after five days. *, p,0.05. G, PBLs incubated in 96-well plates in the presence of
5 mg/ml PHA were treated for five days with the indicated FK866 concentrations in the presence or absence of 20 mM LY294002. Viability was
subsequently determined by PI staining and flow cytometry. B, Results are presented as means 6 SD of three experiments (B, D–G). Panels A and C
are representative of three separate experiments.
doi:10.1371/journal.pone.0007897.g004
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of NAD+ in human T cells [27]. Finally, Nam and Na did not

exert their protective effects by interfering with the process of T

lymphocyte activation, since proliferation (Figure 5F) and

activation markers (CD25, HLA-DR, not shown) were normally

induced in PBLs by PHA regardless of the presence of these

metabolites.

These findings are consistent with the occurrence of the Preiss-

Handler pathway of NAD+ biosynthesis in PBLs, although its

contribution to replenish the NAD+ pool upon FK866 treatment

seems to be limited (see Discussion).

NAD+ Shortage Prevents IFN-c Production by Activated T
Lymphocytes

Nampt inhibition and the consequent NAD+ shortage were

previously shown to negatively affect secretion of IL-1b, IL-6 and

TNF-a in macrophages and dendritic cells [28,29]. Thus, we

performed experiments to determine whether NAD+ depletion via

FK866 would also affect cytokine secretion in T lymphocytes. These

experiments were performed within 48 h from FK866 addition

when T cell viability was still unaffected to be able to detect

functional changes and avoid the interference of autophagic cell

destruction. In this time frame, FK866 had no effect on the

upregulation of activation markers such as CD25 and HLA-DR in

mitogen-stimulated PBLs (Figure 6A). However, intracellular

cytokine staining revealed that FK866 strongly reduced the number

of TNF-a-producing CD3+ T cells and virtually abrogated IFN-c
synthesis (Figure 6A). These results were confirmed by direct

measurement of TNF-a and IFN-c in the PBL supernatants

(Figure 6B). Addition of Na, which replenishes intracellular NAD+

stores but does not inhibit sirtuin activity (see below) [30], fully

restored IFN-c synthesis by PBLs (Figure 6C) demonstrating that

IFN-c downregulation was due to NAD+ depletion.

Figure 5. Nam and Na prevent NAD+ shortage and cell death induced by FK866 in human T lymphocytes. A, PHA-stimulated PBLs were
treated (or not) with 33 nM FK866 in the presence or absence of 10 mM Nam or of 10 mM Na. After 48 h, NAD+ content was determined (expressed as
percentage of NAD+ content in FK866-untreated cells). B, PBLs were cultured for 24 h with or without PHA, 1 mg/ml Con A, or 50 ng/ml PMA and
0.5 mM ionomycin. Thereafter, Naprt1 mRNA levels were detected by Q-PCR. mRNA levels in mitogen-stimulated PBLs were compared to those in
unstimulated PBLs. C, D, PHA-stimulated PBLs were incubated for five days with or without 10 mM Nam or 10 mM Na in the presence or absence of
the indicated FK866 concentrations. Thereafter, cells were imaged by light microscopy (C), and cell viability was determined (D). E, PHA-stimulated
PBLs were incubated for five days with or without 33 nM Fk866 in the presence of the indicated concentrations of Nam, Na, or tryptophan (Trp).
Viability was subsequently determined. F, PBLs were stimulated with or without PHA in the presence or absence of 1 mM Nam or Na. Thymidine
incorporation was measured after 48 h by a 16-h pulse with 0.5 mCi/well [3H]thymidine. D-F each treatment was tested in triplicate wells. Results are
means 6 SD of three (A, B, F) or four (D, E) experiments. In panel C, one representative experiment out of three is shown.
doi:10.1371/journal.pone.0007897.g005
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Defective TNF-a synthesis as a consequence of NAD+ shortage

was attributed to reduced function of the NAD+-dependent

sirtuin Sirt6 [29]. Interestingly, Sirt6-deficient animals develop

profound lymphopenia as a result of a cell non-autonomous

mechanism, suggesting a possible defect of relevant cytokines or

growth factors involved in T cell function [31]. Thus, we

evaluated whether IFN-c secretion inhibition may depend on

reduced Sirt6 activity. Indeed, two structurally unrelated sirtuin

inhibitors, sirtinol and Nam, prevented IFN-c expression in T

cells as shown by intracellular cytokine staining and IFN-c
detection in the supernatants (Figure 6D, E) confirming a

putative role for a sirtuin member in IFN-c synthesis. Conversely,

the PARP inhibitor PJ34 did not affect IFN-c production

(Figure 6E).

When evaluating Sirt6 levels in T lymphocytes, we found that

Sirt6 transcription is induced by mitogenic stimulation (Figure 7A).

To assess the role of Sirt6 in IFN-c and TNF-a production by T

cells we expressed a validated Sirt6 shRNA (S6 sh2) in Jurkat and

H9 cells by retroviral transgenesis [32]. Indeed, S6 sh2 effectively

downregulated Sirt6 mRNA and protein as shown in Jurkat cells

(Figure 7B, C). No detrimental effect of Sirt6 silencing on cell

viability was observed (data not shown). Jurkat cells with reduced

Sirt6 levels showed reduced IFN-c and TNF-a production on

stimulation with mitogens (Figure 7D, E). Conversely, IL-4

secretion was not affected by Sirt6 deficiency (Figure 7F). Sirt6

silencing led to reduced intracellular IFN-c levels in H9 cells

stimulated with a mitogen cocktail (Figure 7G). Finally, spleno-

cytes from Sirt6 knockout mice were found to secrete less IFN-c

Figure 6. Intracellular NAD+ depletion prevents TNF-a and IFN-c production by activated T lymphocytes. A, B, 56106 PBLs were
stimulated with 5 mg/ml PHA with or without 33 nM FK866 for 36 h and subsequently incubated with 50 ng/ml PMA and 0.5 mM ionomycin for
further 5 h. Thereafter, HLA-DR and CD25 expression were detected by flow cytometry. TNF-a and IFN-c content was determined by intracellular
cytokine staining and flow cytometry (A). Released TNF-a and IFN-c were measured by ELISA (B). DMSO and FK866-treated cells were 84% and 83%
viable, respectively. C, 56106 PBLs were stimulated with PHA and PMA/ionomycin as above, or left unstimulated. Where indicated, 33 nM FK866 with
or without 10 mM Na was added. Released IFN-c was measured by ELISA. Unstimulated PBLs treated with DMSO or FK866 were 96.3% and 96.5%
viable, respectively. PBLs stimulated with PHA/PMA/ionomycin and treated with DMSO or FK866 were 89% and 89.5% viable, respectively. PBLs
stimulated with PHA/PMA/ionomycin/Na and treated with DMSO or FK866 were 88% and 87% viable, respectively. D, PBLs were stimulated with PHA
and PMA/ionomycin as describe for panel A. Where indicated 10 mM Nam or 50 mM sirtinol were added. Thereafter, cells were harvested and
intracellular IFN-c content was determined by flow cytometry. E, PBLs were stimulated with PHA and PMA/ionomycin as above in the presence or
absence of 10 mM Nam, 50 mM sirtinol, or 10 mM PJ34. 42 h later, the supernatants were collected and IFN-c levels were detected by ELISA. Results
are means 6 SD of four experiments (B, C, E). Panels A and D are representative of four separate experiments.
doi:10.1371/journal.pone.0007897.g006
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than splenocytes from wild type animals (Figure 7H). Thus,

altogether these data are consistent with an involvement of Sirt6 in

IFN-c synthesis.

FK866 Reduces Demyelination and Disease Severity in
EAE

Given the capacity of FK866 to interfere with survival of

activated T cell and with the release of immunogenic cytokines, we

sought to determine whether FK866 treatment might be

advantageous in a prototypical autoimmune disease such as

EAE, particularly after disease onset. FK866 was administered at

10 mg/Kg body weight twice daily starting 12 days post MOG-

immunization of the mice, for a total of 10 days. Mononuclear

cells from FK866-treated animals exhibited a significant decrease

in the levels of intracellular pyridine dinucleotides (Figure 8A). As

observed with human PBLs, NAD+ and NADH were more

severely reduced as compared to NADP+ and NADPH. FK866

strikingly reduced the clinical disease score as described in

Materials and Methods when compared with vehicle-alone treated

controls, reaching statistical significance from day 19 onward

(Figure 8B, and Table 1). The benefit of FK866 was fully retained

until day 80 from immunization (not shown). The clinical effect of

FK866 was associated with a marked reduction of demyelination

in the spinal cord of treated mice (Figure 8C, and Table 1). FK866

showed no evident toxicity on renal and liver function, nor did

FK866-treated mice show weight loss or increased frequency of

Figure 7. Evidence for an involvement of Sirt6 in IFN-c synthesis. A, PBLs were cultured for 24 h with or without PHA. Thereafter, Sirt6 levels
were detected by Q-PCR. mRNA levels in PHA-stimulated cells were compared to those in unstimulated PBLs. B, C, Jurkat cells were transduced with
PRS, (PRS) GFP-sh, or (PRS) S6 sh2, subsequently, Sirt6 mRNA levels or Sirt6 protein levels were determined by Q-PCR (B) and immunoblotting (C). D–F,
Jurkat cells transduced with PRS or S6 sh2 were stimulated for 12 h with 5 mg/ml PHA, 50 ng/ml PMA, and 0.5 mM ionomycin. Thereafter,
supernatants were harvested and TNF-a (D), IFN-c (E), and IL-4 (F) levels were determined by ELISA. G, H9 cells transduced with GFP-sh or S6 sh2 were
stimulated for 12 h with 5 mg/ml PHA, 50 ng/ml PMA, and 0.5 mM ionomycin. Thereafter, intracellular IFN-c was detected by intracellular staining.
Mean fluorescence intensity for IFN-c expression is indicated for each histogram. H, 36106 splenocytes from wild type or Sirt6 KO mice/well were
seeded in 24 well plates and stimulated for 24 h with 1 mg/ml Con A. Thereafter, supernatants were harvested and IFN-c levels were determined by
ELISA. *: p,0.05. Results are means 6 SD of three experiments (A, B, D–F). Panel C and G are representative of three separate experiments.
doi:10.1371/journal.pone.0007897.g007
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concomitant infectious or neoplastic disease over a period of 80

days. Hence, FK866 is effective in treating EAE after disease onset

in the absence of obvious toxicity.

Discussion

In this study, we show that activated T lymphocytes are

crucially dependent on Nampt activity for their function and

survival as they face massive NAD+ depletion and cell demise

when this enzyme is obstructed with FK866. Thus, increased

susceptibility to NAD+ lowering drugs emerges as a property of

activated T lymphocytes that is susceptible of being targeted

pharmacologically. The consequences of Nampt inhibition in

unstimulated T lymphocytes appear to be less deleterious as these

retain NAD(H) levels that are sufficient to ensure survival in the

majority of the cells.

The high susceptibility of activated T cells to FK866 is due, at

least in part, to PARP upregulation which per se leads to

intracellular NAD+ reduction, an occurrence normally prevented

by Nampt [8,10,12,16]. The involvement of other enzymatic

activities/metabolic processes in enhancing T cell susceptibility to

FK866 is suggested by the fact that PARP inhibitors only partially

protect activated T lymphocytes from FK866. Experiments aimed

to assess the role of the ADP-ribosyl cyclase CD38 in conferring

susceptibility to FK866 failed to detect major such effects of this

enzyme. Conversely, a partial protection from FK866 was

conferred to activated T cells by the sirtuin inhibitor sirtinol.

Which one(s) of the sirtuin is (are) most active in T cells, and which

role they play has to be defined yet. Nonetheless, our findings

suggest that sirtuins may be responsible for consuming significant

amounts of NAD+ in T lymphocytes. In addition, sirtuin levels/

activity may increase in response to activation stimuli, as is the case

of Sirt6, which we found to be upregulated in response to

mitogens. Finally, since a 5–13-fold increase in NAD+ kinase

activity was detected in mitogen-stimulated T lymphocytes [10],

another mechanism contributing to the exhaustion of the NAD(H)

Figure 8. FK866 ameliorates EAE. 10 mg/kg body weight FK866 were administered to mice from day 12 after rMOG immunization for 10 days. A,
NAD(H) and NADP(H) levels were measured in mononuclear cells isolated from spleen and lymph nodes of treated or untreated animals at day 16.
Dinucleotide levels in FK866-treated mice were expressed as % of those detected in control animals. B, FK866 halts EAE severity compared with
controls (p,0.05 from day 19 onward). Arrows indicate the days of FK866 administration. C, Luxol fast Blue staining of the spinal cord shows areas of
demyelination in control mice compared with FK866-treated animals.
doi:10.1371/journal.pone.0007897.g008
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stores in activated T lymphocytes could be the shift of NAD+ into

the NADP(H) pool by the sequential action of NAD+ kinase and

glucose-6-phosphate dehydrogenase [33]. In line with this

hypothesis is the finding that NADPH levels are virtually

unaffected by FK866 in activated T cells while NAD+ and NADH

virtually disappear. Why other immune cell types are not affected

by FK866 as much as activated T lymphocytes are remains a

speculative matter. Its is conceivable that the enzymatic activities

that actively consume NAD+ and that we found upregulated in

activated T cells may not be as much represented in other immune

cells. Alternatively, other cells of the immune system may obtain

their NAD+ supplies (also) through metabolic pathways that are

not affected by FK866. For instance, it is well documented that

activated DCs upregulate indoleamine 2, 3-dioxygenase (IDO), a

key enzyme in the NAD+ synthesis pathway from tryptophan

[27,34].

T lymphocyte death due to NAD+ exhaustion involves DYm

dissipation, ATP shortage, and autophagy. Previous studies

suggested that FK866 induces apoptosis via cytochrome c release

and caspase-9 activation [3]. In FK866-treated T lymphocytes, we

did detect released cytochrome c in the cytosol (not shown).

However, different caspase inhibitors failed to protect activated T

lymphocytes from FK866 cytotoxicity. Thus, T cell death via

FK866, although accompanied by cytochrome c release, is

caspase-independent and is therefore not a classical apoptotic

process.

In addition to the Nam salvage pathway, NAD+ synthesis from

Na is apparently also an option for T lymphocytes. Previous

studies found that Naprt1 activity is present in human PBLs [14].

We confirmed Naprt1 expression in human PBLs by Q-PCR and

showed that this enzyme undergoes upregulation upon cell

stimulation with mitogens. Consistently, we found that Na

supplementation rescues NAD+ levels when Nampt is inhibited

allowing for T lymphocyte survival. The fact that FK866 induces

lymphopenia in patients indicates that, under normal conditions,

sufficient Na levels are not available to rescue T lymphocytes in vivo

[5]. On the other hand, the consequences of Nampt inhibition

could theoretically be rescued by increasing dietary Na intake or

by pharmacological Na administration [27]. The expression in T

lymphocytes of other enzymatic activities involved in NAD+

synthesis from NR and NaR remains unexplored and could

provide insights into possible ways to modulate FK866 immuno-

suppressive activity and/or into mechanisms of resistance to this

drug by cancer cells.

Not only NAD+ shortage has deleterious repercussions on T cell

viability. Before dying, T lymphocytes experience a phase of

functional impairment where cytokine secretion is prohibited. In

addition to reducing TNF-a production as described previously

[28,29], we found that FK866 also abolishes IFN-c expression.

Importantly, in analogy to TNF-a [29], our data are consistent

with an involvement of Sirt6 also in IFN-c synthesis, since RNAi-

mediated Sirt6 removal reduces the expression of this cytokine.

Moreover, splenocytes from Sirt6 KO mice were found to secrete

less IFN-c than cells from wild type mice do. How Sirt6 is involved

in TNF-a and IFN-c production remains to be determined.

Nonetheless, taken together, these observations depict the Nampt-

Sirt6 axis as an important regulatory pathway for cytokines

involved in inflammation and cell-mediated immunity, that could

be blocked with FK866 or, possibly, with Sirt6 inhibitors (Figure 9).

Based on these findings, we administered FK866 with the aim of

curing EAE, a prototypical T cell-mediated autoimmune disease.

Indeed, administration of FK866 after EAE onset successfully

ameliorated the severity of disease. The clinical efficacy was

demonstrated by a decreased cumulative disease score and by a

consistent reduction in demyelination. Our data with FK866 in

EAE are in line with recent reports of an anti-inflammatory

activity of this drug in carrageenan-induced arthritis [28]. In fact,

we cannot exclude that the benefit of FK866 on the clinical and

histological manifestations of EAE may derive, at least in part,

from effects that are unrelated to its activity on T cells. For

instance, FK866 could (also) alleviate EAE by inhibiting TNF-a
secretion by macrophages and microglia, thereby reducing

inflammation and thus preventing neurological damage [28,29].

In conclusion, Nampt upregulation during T cell activation

appears as an essential adaptation ensuring that sufficient NAD+

levels are available for metabolic reactions as well as for NAD+-

utilizing enzymes involved in DNA repair, signal transduction, and

cytokine production. Targeting this metabolic pathway could

represent a novel strategy to selectively eliminate activated T cells

and block detrimental immune/inflammatory reactions such as

those underlying autoimmune diseases, graft-versus-host disease,

and transplant rejection.

Table1. Clinical-pathologic features of EAE-affected mice treated with FK866.

Disease incidence no./no.
total (%)

Disease onset, day after
immunization

Mean maximum
neurologic score Cumulative disease score Demyelination score

Control 16/16 (100%) 10.560.9 2.460.9 53.9623.6 10.664.6

FK866 16/16 (100%) 10.360.9 1.960.8 37.7622.4* 8.163.6*

*p,0.05 (Mann-Whitney test).
doi:10.1371/journal.pone.0007897.t001

Figure 9. A putative model of Nampt’s role in activated T
lymphocytes. Nampt activity is responsible for providing sufficient
NAD+ supplies during T cell activation. NAD+, in turn, is required for ATP
synthesis, metabolic reactions, and to replenish NADPH levels. In
addition, NAD+ represents the substrate of NAD+-degrading enzymes
such as PARP, CD38, and the sirtuins. Among these, Sirt6 appears to
have a central role in IFN-c and TNF-a production. Nampt inhibitors
such as FK866 (and possibly Sirt6 inhibitors) could be used to modulate
T cell-mediated immune responses and thereby be beneficial in
immune disorders.
doi:10.1371/journal.pone.0007897.g009
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Materials and Methods

Cell Lines and Reagents
The T cell leukemia cell lines Jurkat, H9, PEER, and Phoenix

were obtained from ATCC (LGC Standards s.r.l. Milan, Italy).

Cells were grown in RPMI 1640-based medium supplemented

with 10% FBS and antibiotics. The Bcl-2 overexpressing Jurkat

cells and the respective vector control cells were a gift of Dr. Claus

Belka (Department of Radiation Oncology, University of Tuebin-

gen, Tuebingen, Germany) [22]. HeLa cells transfected with the

sense (CD38+) and antisense (CD382) cDNA for human full-

length CD38 were obtained and cultured as described [18].

Phytohematoagglutinin-P (PHA), concanavalin A (Con A),

ionomycin, PMA, Nam, Na, Trp, 3-methyladenine (3-MA),

sirtinol, LY294002, NU1025, 3-AB, PJ34, lipopolysaccharide

(LPS), BAY 11–7082, PD098059, and tetramethyl rhodamine

ethyl ester (TMRE) were all obtained from Sigma-Aldrich (Sigma

Aldrich Italia, Milano, Italy). FK866 was generously provided by

the NIMH Chemical Synthesis and Drug Supply Program.

Peripheral Blood Lymphocyte (PBL), NK Cell, and
Dendritic Cell (DC) Isolation

Peripheral blood mononuclear cells (PBMCs) were isolated from

blood samples obtained from healthy donors by Ficoll Hypaque

density gradient centrifugation. 107 mononuclear cells/well were

plated in 6-well plates for 2 h in X-VIVO 20 medium (Bio-

Whittaker, Lonza, Milan, Italy) to allow monocytes to adhere.

Non-adhering mononuclear cells (.80% CD3+ lymphocytes,

PBLs) were harvested by washing with phosphate-buffered saline

(PBS, Invitrogen Italia, Milan, Italy). For DC generation, adhering

monocytes were cultured in RPMI 1640 medium supplemented

with 10% FBS and antibiotics in the presence of 100 ng/ml GM-

CSF and 20 ng/ml IL-4 (R&D Systems, Wiesbaden, Germany)

[35]. Where indicated, 100 ng/ml LPS were added to induce DC

maturation. DC phenotype was confirmed by monitoring CD1a,

CD83, HLA-DR, CD80, CD86 and CD14 levels by flow

cytometry. NK cells were isolated as described elsewhere [36].

Immunostaining
Cells were stained using FITC- or PE-conjugated mouse mAbs

against CD3, CD25, HLA-DR (BD) and mouse IgG isotype

control and analysed using a FACSCalibur (Becton Dickinson

Italia, Milan, Italy). For intracellular TNF-a and IFN-c staining,

cells were initially stained with a mouse monoclonal anti-CD3

(FITC- or PE-conjugated). Thereafter, cells were washed and

incubated with 0.25% saponin and a FITC-conjugated anti-

human IFN-c or a PE-conjugated anti-human TNF-a (both from

Becton Dickinson). Finally, cells were washed and analysed by flow

cytometry.

Viability Assays
2.56105 PBLs/well were plated in 96 well plates in the presence

or absence of the indicated stimuli. Viability was determined

120 h later by propidium iodide (PI) staining and flow cytometry

(FACS Calibur, Becton Dickinson, BD Italia, Milan, Italy) within

the lymphocyte gate. Viability was calculated with the following

formula: 100-[(experimental death-spontaneous death)/(100-

spontaneous death)x100]. When DCs were used as a stimulator,

2.56105 PBLs/well were plated in 96 well plates with 2.56104

irradiated (3000 rad) allogeneic DCs. FK866 was added at the

indicated concentrations 7 days later. For Annexin-V/PI staining,

36106 PBLs/well were plated in 1 ml medium in 24-well plates in

the presence or absence of 5 mg/ml PHA and treated with 33 nM

FK866 for the indicated amounts of time. Afterwards, cells were

washed, stained with Annexin-V-FITC (Becton Dickinson) and PI

and analyzed by flow cytometry.

Light Microscopy
Cells were imaged at room temperature using the 406

magnification of a Zeiss AXIOVERT200 microscope, camera

Qlympus C-4040ZOOM. The image files were acquired with the

software Olympus CAMEDIA Master 2.5, and subsequently

processed using Microsoft Photo Editor.

Proliferation Assay
PBLs were seeded at 26105 per well in 96-well plates.

Proliferation was induced by adding PHA (5 mg/ml) and measured

after 72 h by a 16-h pulse with [3H]thymidine (0.5 mCi/well;

Amersham Life Science; Buckingham, U.K.).

Mitochondrial Transmembrane Potential (DYm)
Determination

DYm was determined as previously described [37].

ELISA for Detection of IFN-c and TNF-a
Supernatants harvested on day 2 from PBLs cultured in the

presence of the indicated stimuli were analysed for the content of

either IFN-c or TNF-a by ELISA kits from Peprotech Inc.

(Princeton Business Park, Rocky Hill, NJ) according to manufac-

turer’s instructions. IFN-c secretion by splenocytes isolated from

wild type and Sirt6 KO mice (16-days old) [31] was detected using a

sandwich ELISA kit purchased from R&D Systems Inc.

(Minneapolis, MN USA). Data are referred to a standard curve

obtained with recombinant IFN-c or TNF-a, respectively.

Determination of the Intracellular NAD(H), NADP(H) and
ATP Levels

PBLs, resting or activated, were cultured in the presence or

absence of FK866: cells were harvested and lysed with 0.6 M

perchloric acid (PCA) or 0.1 M NaOH, to determine the content

of NAD+ or NADH, and NADP+ or NADPH, respectively. The

alkaline extracts were incubated at 70uC for 10 min. Both acid

and alkaline extracts were neutralized and the intracellular content

of the various coenzymes was assessed with a sensitive enzyme

cyclic assay, which exploits the use of alcohol dehydrogenase or of

G6PD, to determine NAD(H) [38], or NADP(H) [39], respective-

ly. To evaluate the content of ATP, cells were lysed in PCA and

the neutralized extracts were analyzed by HPLC [40]. NAD(H)

and NADP(H) levels in murine mononuclear cells (MNCs) isolated

from mice treated (or not) with FK866, were determined as in

human PBLs. NAD(H), NADP(H), and ATP values were

normalized to protein concentrations (micro-BCA kit, Pierce).

siRNA Transfection
Jurkat cells were transfected using the Nucleofector System

(Amaxa GmbH, Cologne, Germany), without (control), or with

StealthTM duplex short interference RNA (siRNA) targeting

CD38. Cells were transfected in parallel with StealthTM Negative

Control. After transfection, cells were incubated in the presence or

absence of FK866 and intracellular NAD+ content was evaluated

as described above. To confirm CD38 silencing, CD38 mRNA

was detected by quantitative real-time PCR.

Retroviral Transgenesis
Empty pRETROSuper (PRS) and PRS GFP-sh were from Dr.

Thijn Brummelkamp (Whitehead Institute for Biomedical Re-

search, Cambridge, Ma, USA); PRS S6 sh2 was from Dr. Katrin
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F. Chua (Department of Medicine, Stanford University School of

Medicine, Stanford, CA 94305, USA) [32]. Phoenix cells were

plated in 4 ml medium in 6 cm-dishes and allowed to adhere for

24 h. Thereafter, cells were transfected with 4 mg plasmid DNA

using Transit 293 (Mirus Bio, Madison, WI, USA) according to

the manufacturer’s instructions. The viral supernatant was

harvested 36 and 48 h later and used to infect Jurkat and H9

cells in 24-well plates in the presence of 5 mg/ml protamine sulfate.

Successfully infected cells were selected using 1 mg/ml puromycin.

Q-PCR
Total RNA was extracted from 56105 cells using RNeasy kit

reagents (Qiagen, Qiagen Italia, Milan, Italy). Total RNA (1 mg)

was reverse transcribed using random hexamers in a final volume

of 50 ml. 5 ml of the resulting cDNA was used for Q-PCR using a

TaqMan 7900 HT Fast Real TimeAB [41]. Pre-designed primers

and probes for Nampt, PARP1, CD38, Naprt1, and 18S were

obtained from Applied Biosystems. Gene expression was normal-

ized to housekeeping gene expression (18S). Comparisons in gene

expression were done using the 22DDCt method [42].

EAE Induction and Treatment Protocol with FK866
This study was performed in compliance with the US

Department of Health and Human Services Guide for the Care

and Use of Laboratory Animals and approved by the Internal

Review Board of the Advanced Biotechnology Center (ABC) in

Genoa, Italy. Female C57BL/6J mice, 6 to 8 weeks old, were

purchased from Harlan Italy (S. Pietro al Natisone, Italy). EAE

was induced by MOG35–55 immunization according to a

previously published protocol [43]. Mice received two intraperi-

toneal injections daily of 10 mg FK866/kg body weight or DMSO

dissolved in 0.5 ml PBS from day 12 through 16, and from day 19

through 23. Groups of 16 mice for each treatment (FK866 vs.

DMSO) were used. Weight and clinical score were recorded daily.

Clinical scores were assigned according to a standard and

validated 0 to 5 scale [43]. Unless moribund, mice were followed

for at least 40 days following immunization. Disease incidence,

onset, and maximum score were recorded for each mouse and

expressed as mean +/2SD. The cumulative disease score was

calculated by summing the neurologic scores recorded daily for

each mouse along the whole period of observation.

Histology
Euthanized mice were transcardially perfused with 4%

paraformaldehyde before spinal cords were collected and

embedded in paraffin. 5-mm sections were stained with hematox-

ylin and eosin for detection of inflammatory infiltrates while Luxol

fast Blue was used to observe myelin. All sections were analyzed

with an Olimpus Provis AX70 (Olimpus Italia, Segrate, Milan,

Italy) optical microscope. The areas of spinal cord demyelination

were identified on individual images and traced manually on the

composite images. Their surface was determined with Image Pro-

PLUS 4 software (Media Cyberbetics, Silver Spring, MD) and

expressed as a percentage of the total surface area. All histological

evaluations were performed in a blind fashion.
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