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Abstract

The human skin microbiome could provide another example, after the gut, of the strong positive or negative impact that
human colonizing bacteria can have on health. Deciphering functional diversity and dynamics within human skin microbial
communities is critical for understanding their involvement and for developing the appropriate substances for improving or
correcting their action. We present a direct PCR-free high throughput sequencing approach to unravel the human skin
microbiota specificities through metagenomic dataset analysis and inter-environmental comparison. The approach
provided access to the functions carried out by dominant skin colonizing taxa, including Corynebacterium, Staphylococcus
and Propionibacterium, revealing their specific capabilities to interact with and exploit compounds from the human skin.
These functions, which clearly illustrate the unique life style of the skin microbial communities, stand as invaluable
investigation targets for understanding and potentially modifying bacterial interactions with the human host with the
objective of increasing health and well being.
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Introduction

The mutualistic interactions between humans and microbial

communities that result from long co-evolutionary processes

involve the skin separating and protecting the human body

against its outside environment. Selected by both environmental

and human characteristics, skin microorganisms are not

qualitatively and quantitatively evenly distributed on the body,

since they range from less than 102 to more than 107 cells.cm22

as a function of the colonized site [1]. A widely used approach

for studying microbial DNA extracted from skin is through its

in vitro enzymatic amplification by targeting the rrs gene with

‘‘universal’’ primers [2]. This technique, not constrained by the

low amounts of microbial DNA extractible from skin, led to the

description of the skin microbiota as much more diverse than

previously estimated by cultivation-based methods, with strong

spatial variations as well as consistent individual host specificities

[3,4,5,6,7]. However, a better understanding of the skin

microbiota’s role in protecting against pathogens and in

improving human health requires investigation beyond the

taxonomic inventory of bacteria. Specific activities associated

with functional genes need to be characterized. This can be

achieved by sequence-based skin microbiome explorations via

high throughput shotgun sequencing of metagenomic DNA or

by associating species to function with previously sequenced

genomes. Due to differences in function even within the same

microbial species [8], we decided to build shotgun metagenomic

libraries for the skin microbiome despite the requirement for

high DNA concentrations.

Materials and Methods

The experimental design performed here was to neglect

taxonomic variations over time and between body locations and

to consider the skin microbiota as a complete ecosystem sharing

the ability to develop on skin whoever the host and whatever the

environmental conditions. Thus, the bottleneck of DNA recovery

and PCR bias was overcame by sequentially sampling individuals

on different parts of their body over time until the pooled extracted

DNA satisfied sequencing requirements.

Two 25–26 year old Caucasian males without any symptoms of

skin disease were subjected to sampling of different parts of their

bodies, including palms, face, axilla, feet and retro auricular

crease, every two days for a week. Because of the non-invasive

approach to sample, the ethic statement was accepted by the

commission CPP of SUD EST IV Centre Léon Bérard (Personnal

protection commission from the Centre Léon Bérard). Human

subjects remain anonymous and the informed consent was written.

For each individual, environmental (skin surface) DNA samples

were extracted and purified according to the protocol described by

Griffiths [9] and subsequently pooled. The same sampling effort

was repeated for a second week in order to constitute a second

replicate of the global human skin microbiota for each of the two

individuals tested (detailed protocol accessible in Protocol S1).

These four DNA samples (.3 micrograms each) were tagged

separately and sequenced (Titanium pyrosequencing technology,

reads size average of 1846138 bp). Artificial duplicates were

deleted using cd-hit-454 with default parameters [10] and human

genome related reads were deleted prior to data analysis. Human

DNA contamination was low in both datasets: individual 1 (0.53%

60.3%) and individual 2 (2.89% 60.7%).
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Figure 1. Functional distribution of skin metagenomes. Relative distribution of skin metagenome reads assigned to the 26 general SEED
functional subsystems (e-value cut-off: 1025) expressed as a percentage of all annotated reads from the four skin datasets used in this study: 2 from
the individual 1 (light grey); 2 from the individual 2 (dark grey). Each functional distribution was compared and no significant difference is observed
between the two individuals using Welch’s test (p-value ,0.05).
doi:10.1371/journal.pone.0065288.g001

Figure 2. Inter-environmental comparison with a principal component analysis. Comparison of the four skin datasets generated with 65
other publicly available environmental metagenomic datasets by PCA using the relative distribution of annotated reads in each dataset. In this case,
data were obtained using the same cut-off (e-value cut-off ,1025) and SEED functional level 3 subsystem (deeper characterization, < 800 functions
are compared in each dataset).
doi:10.1371/journal.pone.0065288.g002
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Generating and Annotating Metagenomic Datasets
Sequence reads were compared to reference databases in order

to annotate and classify them in functional subsystems: the

generated metagenomic datasets (read average num-

ber = 3365764835) were uploaded on the MG RAST v3 public

server [11] for both taxonomic (Lowest common ancestor

approach [12]) and functional annotations (e-value cut-off of

1025). The relative distribution of these sequences was normalized

as a function of the total number of annotated reads in each

dataset [13]. Skin metagenome datasets were compared to 65

publicly available metagenomic datasets (MG-RAST, accession

numbers in table S3) from different environments, such as soil,

oceans, hot springs, acid mine drainage, sludge wastewater

treatment plant, air, deep ocean, human gut, cow, mouse and

chicken gut.

Using the SEED database (.2000 reference genomes [14]),

49% (614%) of the generated sequences from human skin

microbiota were associated to a unique genus. Genomes related to

Corynebacterium, Staphylococcus and Propionibacterium dominated these

metagenomic datasets (table S1) and provided information to

connect taxa and functions.

Results and Discussion

Specificity of the Human Skin Microbiota
Using the SEED annotation, 72.2% (62,2%) of the 22 456

(62765) predicted proteins from human skin microbiota were

functionally annotated. Most of the sequences were related to a

Figure 3. Representative functions of the skin microbiome lifestyle among the 69 metagenomic datasets. Relative distribution of reads
assigned to 6 functions of the SEED level 3 functional subsystems among 69 metagenomes (based on MG-RAST v3 annotation, e-value cut-off,1025)
and having a different distribution in the skin datasets compared to the 65 other datasets. Data are normalized by the total annotated sequences and
are expressed in percentage. Each histogram represents the relative distribution of a unique metagenome, horizontal lines represent the mean of the
relative distribution in each 12 environments (oceans, deep oceans, soils, wastewater treatment sludges, acid mine drainage biofilm, hot springs, air,
human skin, human feces, chicken gut, cow gut and mouse gut). P-value is the probabilty that the difference observed between skin and other
environments is insignificant (Whelch’s test, other environments are grouped as one for the statistical test and each function is compared in each
dataset).
doi:10.1371/journal.pone.0065288.g003

Metagenomic of the Skin Microbiome

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e65288



limited number of general subsystems (fig.1) like carbohydrates,

amino acids and derivatives, as well as protein metabolism. In

contrast, other general subsystems are less represented (e.g.,

motility and chemotaxis). Homogeneity of the functional distribu-

tions among the different datasets can be explained by the

functions observed at the general subsystem level (e.g. photosyn-

thesis, respiration…). Specifically, hundreds of subsystems can be

simultaneously compared when studying datasets at more detailed

functional levels. However it was not possible to explain the

functional specificity of the skin microbiome without comparing it

to other environments. Thus, principal component analysis (PCA)

based on the relative functional distribution of the reads from 69

datasets (annotated by SEED functional level 3 subsystem, 800

functions compared), including human skin and feces, revealed an

apparent specificity of skin microbial communities since their

related datasets clustered separate from those generated on the 12

other investigated environments (fig. 2). While methodological

differences could induce biases among the different metagenomic

datasets, these do not compromise their comparison as has been

demonstrated previously [13]. Among the 626 functional subsys-

tems detected in human skin related datasets, 52 possessed a

distribution significantly different from the 65 other datasets (table

S2). These 52 functional subsystems were reviewed to decipher the

specific nature of the skin core-(meta)genome and its potential

contribution to human health. In order to best represent the skin

microbiome’s lifestyle, six of these were analyzed in more detail.

Other functions are accessible in the table S2.

Specific Functional Distributions
One of the major advantages of metagenomic approaches is the

possibility of describing a complex community without any a priori

views concerning taxa and/or functions prior to exploiting

sequence data. The human skin surface microbial communities

potentially possess strong capacities for interacting with their

environment based on inter-ecosystem comparisons (fig. 3). The

functional potential of skin bacteria indicates that these bacteria

are strongly adapted to the exploitation of compounds produced

by the human skin, including sugars, lipids (and iron), and

petrobactin-mediated iron uptake systems were detected in the

metagenome datasets. The presence of lactic acid generated by

sweat (.99 mg/ml) [15] and of a sugar, such as sialic acid,

common to humans and animals justifies the predominance of

respective catabolic genes in our skin metagenome datasets.

Similarly, the detection of a high proportion of sequences related

to triacylglycerol catabolism, a skin lipid critically involved in

epidermal permeability, suggests its utilization as a carbon source

and triacylglycerol catabolism could also provide a significant

contribution to the lipases produced by the skin for preventing

lipid accumulation as in the ichthyosis pathology [16].

The role of the microbiota in regulating another critical healthy

state parameter (skin acidity), which controls the permeability

barrier homeostasis, is also highlighted by numerous functional

subsystems associated with acid resistance detected in the

databases. For instance, acidification ecosystem preservation could

explain the bacterial adaptive strategy of using the butanediolic

fermentation as deduced from detection of alpha acetolactate and

acetoin butanediol metabolism genes for transforming pyruvate

into the final product (2,3-butanediol) rather than a mixed acid

fermentation. The predominance of genes involved in the arginine

deiminase metabolism [17] in the metagenome datasets confirms

the tolerance of bacteria to skin acidity [15]. The skin

metagenome analysis also brings new clues about the extensive

spread of antibiotic resistance genes among bacteria. Within the

human skin Staphylococcus populations of the two individuals,

various Staphylococci seem to be intrinsically resistant to methicillin

(fig. 3), although neither of the two individuals had recent contact

with a methicillin-rich environment (hospitalization and/or

methicillin treatment). Moreover, the level of teicoplanin and

bacitracin resistance genes was particularly high in the sequence

datasets.

Finally, metagenomic analysis also contributes to the raising

new and unexpected questions regarding bacteria adaptation and

interactions with the human host. For example, mannitol catabolic

pathway sequences were detected at an unexpected high level

(fig. 3) even though this common sugar, usually transformed into

fructose derivates before entering the glycolysis, was not referenced

as a human skin component.
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Table S1 Most abundant genera in the skin metage-
nomic datasets. Relative distribution of the 16 most detected

genera in the skin metagenomes using the lowest common

ancestor approach. Data were normalized by the total annotated
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absence; and then the reference.
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Table S2 52 functions statistically up-represented on
the skin metagenomic datasets. Functions of the SEED level

3 subsystem differentially detected in skin datasets in comparison

to other datasets (Whelch’s test, other environments are grouped

as one for the statistical test and each function is compared in each

dataset).
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Table S3 Accession number of metagenomic datasets
(MG-RAST v3). Accession number of metagenomes: These

accession numbers correspond to metagenomes available on MG-

RASTv3 server (http://metagenomics. anl.gov/).
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