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Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public
health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules
including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different
targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida
compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from
TCM might be a potential library for antifungal drug development.

1. Introduction

One severe health threat is infections caused by fungal
pathogens, among which Candida species are the second
most common fungal pathogen next to Cryptococcus neofor-
mans, responsible for about 400,000 life-threatening infec-
tions per annum in the worldwide with a mortality as high
as 40% [1, 2]. Candida spp. accounted for 98% of central
venous catheter-related fungemias in patients with cancer [3].
Among the many Candida species, Candida albicans is the
most common fungal pathogen of human diseases, followed
by Candida glabrata, Candida parapsilosis, Candida tropicalis,
and Candida krusei [2].

As the major opportunistic fungal pathogen, C. albicans
dwells on the skin, in the oral cavity, mucosa of gut,
and urogenital tract as a symbiotic fungus under normal
conditions [4]. The host could discern the commensal and
pathogenic state of C. albicans, rendering this fungus under
the surveillance of immune system, and the bacterial microbe
of locales where C. albicans colonize also contributes to
keeping this fungus in check [5, 6]. The host defense against
C. albicans relies on a complicated network consisting of

innate and adaptive immune components (e.g., epithelial
cells, macrophages, neutrophils, dendritic cells, defensins,
and complement). When the hosts encounter lower functions
of immune system (resulting from HIV infection, organ
transplant, and cancer treatment [7]) or disequilibrium of
microflora due to the use of antibiotics [8], mucocuta-
neous and superficial infections, such as oral thrush and
vaginitis, come up. This fungal pathogen could also cause
life-threatening systematic infections such as candidemia.
Other predisposing factors of Candida infections include
diabetes and old age [9]. Among the nosocomial bloodstream
infections, infections caused by C. albicans are the fourth
prevalent [10].

In present, the therapeutic drugs for Candida infections
are limited to five classes of compounds: polyenes, allylamines,
azoles, fluoropyrimidines, and echinocandins [11], and
amphotericin B, terbinafine, fluconazole, 5-fluorocytosine,
and caspofungin are examples for them [12]. Drug resistance
emerges due to pervasive application of antifungal drugs,
such as fluconazole and voriconazole, for both prophylac-
tic and therapeutic purposes [13]. Cellular and molecular
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mechanisms underlying drug resistance may include reduced
accumulation of intracellular drugs because of increased drug
efflux (such as elevated mRNA levels of members of ABC
transporter superfamily), mutations in genes of target protein
(resulting in elevated levels of target protein or reduced
affinity to targets), and modification of metabolism pathways
(such as altered synthetic pathway of sterol which plays an
important role in both structure and function of fungal
cell wall) [14]. Researches indicate extensive regulation of
intracellular processes in response to antifungal drugs. The
fungistatic property of some drugs such as azoles and 5-
flucytosine also contributes to the emergence of resistance
[10], while the formation of biofilm may contribute to and
elevate the resistance [15]. The paucity of antifungal drugs
and the emergence of resistance make it a pressing mission
to discover and identify new hits and leads from synthesized
chemicals or natural products. Compared to synthesized
chemicals, natural products have many advantages such as
structural diversity and relatively low toxicity.

Natural products provide a potential source for antifungal
drugs, either in their nascent form or as original templates for
structure-optimizing for more effective and safe derivatives
[16, 17]. Among the marketed antibiotics used clinically,
about 80% are derived from natural products [17]. Traditional
Chinese medicine is composed of mainly herbs that have
been used for thousands of years. Recently, single compounds
isolated from many traditional Chinese herbs have been
demonstrated to have various kinds of pharmacological activ-
ities, such as antibacterial, antitumor, antiviral, and antifungal
activities. Considering the present lack of antifungal drugs
and the usefulness of traditional Chinese medicine, it may
be a promising strategy to develop antifungal agents from
traditional Chinese medicines. Here, recent antifungal com-
pounds from traditional Chinese medicines will be briefly
reviewed.

2. Compounds Targeting Cell Membrane

The plasma membrane keeps the cytoplasm from circum-
ambient environment. The integrity and fluidity of cell
membrane means being important to the survival and growth
of fungal cells; one important reason is that many enzymes,
channels, and transporters of drugs lie on the cell mem-
brane. Cell membrane is the location where many metabolic
processes occur and meanwhile it provides a barrier to
environmental stresses.

Derived from Sambucus williamsii, a traditional herb
broadly used for hundreds of years to treat fractures, edema,
and scratches in East Asian countries, (—)—olivi1—9'—O—ﬁ—
D-glucopyranoside exerts its antifungal activity against C.
albicans by depolarizing the cell membrane evidenced by
influx of propidium iodide (PI) and elevated fluorescence
of 3,3 -dipropylthiacarbocyanine iodide (DiSC;(5), a cyanine
dye for measuring membrane potential) [18]. More important
and encouraging is that this compound shows little hemolytic
activity on human erythrocytes [18]. Two other components
(both are lignans) from the same plant, lariciresinol [19]
and (+)-pinoresinol, show similar anti-Candida effects by
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damaging the plasma membrane leading to permeabilization
[19, 20]. The differential effects upon human and fungi
cells imply that it may act on unique components of fungi
cells, which needs further identification. Another compound
isolated from Sambucus williamsii, glochidioboside, shows
antifungal activity similar to that of (-)-olivil-9'-O-B-D-
glucopyranoside against C. albicans by forming pores on
cytoplasmic membrane with a radius range from 1.4 to 2.3 nm
[21]. One of the products from the secondary metabolism
of Trachelospermum asiaticum, dihydrodehydrodiconiferyl
alcohol 9'-O-B-D-glucoside, could also depolarize the trans-
membrane potential via forming pores with radii ranging
from 0.74nm to 1.4nm [22]. Changes in granularity and
size revealed by the flow cytometry assays also involves
alterations of the membrane properties such as osmolarity
[22]. However, there are no evident causative link between
disruption of membrane potential and changes of osmolarity
and no conclusions about which comes first, which remain to
be further investigated.

As a component of fungal cell membrane different from
the mammalian parallel and a critical modulator for differ-
entiation and pathogenicity of fungi, the glycosphingolipid
glycosylceramide in the cell envelope maybe presents a better
target for antifungal therapeutic treatments [23].

Ergosterol plays important roles in regulating the fluidity
of the cell membrane and cell division of fungal cells, while
the structural and conformational differences between ergos-
terol and sterol (the counterpart of ergosterol in mammalian
cells) underlie the antifungal mechanism of the polyenes such
as amphotericin B [12, 24]. Despite the low bioavailability and
high toxicity of ergosterol-targeting drugs in humans [25, 26],
ergosterol still presents a good target for antifungal drugs due
to the importance of cell membrane.

Magnolol, one of the major pharmacologically active
compounds from Magnolia officinalis which could be used
to ameliorate the symptoms such as anxiety, asthma, ner-
vous disturbance, and digestive problems [27], could reduce
the content of ergosterol in the widely used C. albicans
SC5314 [28]. Compounds from essential oil of mint, such
as menthol, menthone, and carvone, suppress the growth
of C. albicans through decreasing the contents of ergosterol
in cell membrane and the hemolysis caused by them is less
than that induced by fluconazole [29]. The ergosterol levels
could also be decreased by carvacrol (isolated from Origanum
dictamnus L.) and thymol, which could exert their influence
on the antioxidant defense system, increase the membrane
permeability, block the efflux pumps, and thus restore the
antifungal susceptibility [30, 31]. Aside from Candida species,
antifungal activities of this compound against other fungi
such as Monilinia laxa have been identified [31-33].

Transporters such as ABC transporters on cell membrane
could induce the efflux of antifungals, thus compromising the
effects of drugs. Treatment with magnolol could significantly
decrease the efflux of fluconazole, thus enhancing the anti-
fungal effects of fluconazole [28].

PM-H" ATPase on cell membrane plays a vital role in
keeping the transmembrane electrochemical proton gradient
which is important for the obtaining of nutrients. The
intercellular pH hemostasis modulated by PM-H" ATPase is
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of great physiological importance. And the enzymatic activity
of PM-H" ATPase is positively correlated with cell viability
[29]. Carvone, menthol, and menthone could suppress the
PM-H" ATPase activity, presumably the primary cause of the
antifungal effects [29]. The results also indicated the existence
of targets that could be easily touched by external drugs,
despite the fact that more efforts need to be made.

3. Compounds Targeting Cell
Wall Components

The structural integrity of cell wall is vital to the survival and
growth of fungal cells, as it provides a shelter from osmotic
pressure and other stresses in milieu. Recent studies showed
that it likely plays an important role in the colonization
and biofilm formation of C. albicans, as proteins associated
with adhesion, such as Alsl, Als3, and Hwpl, are cell wall
proteins [34, 35]. Damaged cell wall leads to osmotic fragility
of the fungal cell, disrupted membrane, efflux of cytoplasmic
contents, and suppressed growth of fungi [13]. Cell wall is
lacking in mammal cells, which makes it a preferential target
for potential antifungal drugs for safety considerations. The
cell wall of Candida species holds glycoproteins and abundant
carbohydrates, among which are largely glucan, mannose,
and chitin [10]. In the following part of this review we will
discuss the plant-derived antifungal components acting on
cell wall elements or on the synthesis of those elements.

3.1. Chitin. As one of the major components comprising
fungal cell wall, chitin is a long linear homopolymer of -
1,4-linked N-acetylglucosamine (GlcNAc) and is synthesized
by the incorporation of GIcNAc units from the precursor
uridine 5'-diphospho-N-acetylglucosamine (UDP-GIcNAc)
in a reaction catalyzed by chitin synthetase (CHS) [36, 37].

Despite the small percentage in the cell wall, chitin plays
important roles in maintaining the mechanical strength of
the fungal cell wall, thus keeping the integrity of the fungal
cell wall [38]. Damage to the cell wall may be ameliorated by
the elevated quantity of chitin in cell wall due to increased
synthesis and/or decreased degradation of chitin, which may
increase the tolerance to antifungal drugs [38]. Since this
material does not exist in human cells, this presents an
attractive target for antifungal therapies [36]. The chemical
structures of the classic inhibitors of CHS, namely, polyoxins
and nikkomycins, make themselves be degraded easily in vivo
and difficult to go through the cell membrane, leading to a low
antifungal activity [36, 39]. This prompts us to find new CHS
inhibitors.

Plagiochin E derived from liverwort Marchantia poly-
morpha L. exerts its antifungal effect through inhibiting the
expression of chitin synthetase gene 1 (CHSI) and therefore
suppressing the activity of CHS and subsequent synthesis
of chitin both in vivo and in situ [13]. Interestingly, the
expression of CHS2 and CHS3 gene was upregulated by
this macrocyclic compound [13]. However, the same group
found that plagiochin E exposure of C. albicans could induce
accumulation of reactive oxygen species (ROS) through
malfunction of mitochondria, while pretreatment with L-
cysteine could contribute to the survival of C. albicans [40].

These studies indicate that plagiochin E may exert its antifun-
gal activity through diverse currently unknown mechanisms.

3.2. Glucan. This carbohydrate polymer, together with chitin,
is the structural component which holds the integrity and
physical strength of the cell wall. The production and
assembly of glucan in C. albicans need a series of enzymes
and regulatory networks, which are fungal-specific and thus
render some fascinating targets for antifungal therapies [41].
The most famous drugs of this kind are echinocandins such
as caspofungin and micafungin which inhibit the synthesis
of fB-1,3-glucan [10]. Although they are fast-acting, less
toxic, and fungicidal [10], mutations in -1,3-glucan synthase
that confer resistance to caspofungin have already emerged.
Recently, a novel terpene antifungal SCY-078 demonstrated
fungicidal activity against C. albicans through inhibiting
glucan synthase [42]. Sodium houttuyfonate, a derivative
from Houttuynia cordata Thunb., might exert its synergistic
effect with fluconazole through interfering with 3-1,3-glucan
synthesis and transportation [43].

4. Compounds Targeting Mitochondria

The classical respiratory chains of mitochondria are cen-
ters of energy production through oxidative phosphoryla-
tion, and meanwhile mitochondria are the organelles that
produce metabolic intermediates used for amino acid and
lipid biosynthesis. Both energy supply and metabolites are
indispensable for the survival and growth of C. albicans, as
well as major cellular event such as yeast-to-hyphal transition.
Mitochondria are also involved in efflux-mediated resistance
of C. albicans to fluconazole [44] while in vitro resistance
of C. glabrata to azoles is associated with mitochondrial
DNA deficiency [45]. Resistance to azole is also likely to
be related with decreased generation of endogenous ROS
that are harmful to DNA, proteins, and lipids while ROS
are mainly generated by enzyme complexes (Complex I and
Complex III) in classical respiratory chain as by-products of
selective degradation of mitochondria [44]. Elevated levels
of intracellular ROS are involved in the antifungal effects of
fluconazole and miconazole and ROS also play an important
role in intrinsic mitochondrial pathway of apoptosis in C.
albicans [46, 47]. Besides the common enzymes in classi-
cal respiratory chain in C. albicans cells, there also exist
rotenone-insensitive NAD(P)H dehydrogenase and alterna-
tive terminal oxidases constituting the cyanide-insensitive
respiratory chain [48-50]. In addition, C. albicans and C.
parapsilosis have additional respiratory pathway called par-
allel respiratory chain [51]. The differences between fungal
and mammal mitochondrial enzymes also make developing
drugs targeting these enzymes possible [52]. This is the case of
some agrichemicals such as boscalid and carboxin that inhibit
the succinate dehydrogenase in fungal cells [53]. Although
there are only few studies on drugs targeting specifically
mitochondria of Candida spp., MEI11 [2-(3,5-dimethyl-1H-
pyrazol-1-yl)-5-methylphenol] did exert its antifungal effects
upon human pathogens Trichophyton mentagrophytes and
Trichophyton rubrum through inhibiting succinate dehydro-
genase in mitochondria with high selectivity (the IC;, values



for human cells are more than thirty times higher than that
for fungal cells) [53]. In a word, mitochondria might be a
promising target for antifungal therapies.

As an important constituent of many herbs of Berberi-
daceae family such as Berberis vulgaris, berberine exerts its
antifungal action by induction of mitochondrial dysfunction
and increased ROS generation, and its effects are in syn-
ergy with fluconazole, even in fluconazole-resistant clinical
isolates [54-56]. Moreover, berberine treatment could also
culminate in disruption of cell wall integrity in C. albicans
[57] and inhibit the overexpression of drug resistance gene
CDRI induced by fluphenazine [58]. Although berberine
could induce apoptosis in many human cells such as HL-
60 leukemia cells and thyroid carcinoma cells [59, 60],
berberine could recover the mitochondrial function induced
by high-fat feeding in a rat model and could decrease the
triglyceride accumulation in the liver in mice [61, 62]. It
also markedly decreased the ROS generation in mitochondria
[62]. This makes berberine a good candidate for antifungal
development although there are much more to be done.

(+)-Medioresinol from the anti-inflammatory, analgesic,
and diuretic herbal plant Sambucus williamsii, imposed on
C. albicans, could induce generation of ROS and cell cycle
arrest and finally apoptosis [47]. Although (+)-medioresinol
could inhibit in vitro the proliferation of mammalian cells
such as A549, SK-MEL-2, SK-OV-3, and HCT-15 cells at high
concentrations, the IC;, values for these cell lines were much
higher than the MIC value against C. albicans cells [47, 63].
In a cohort study in Sweden, (+)-medioresinol in food did
not clearly reduce the risk of esophageal and gastric cancers,
but at least this compound in diet did not show bad effects
[64, 65]. The safe profile of this lignin makes it more inspiring
although there is no report on its effects on mammalian
mitochondria.

Allyl alcohol from garlic (Allium sativum), which has
been used as a traditional antimicrobial agent for thousands
of years, exerts its antifungal effect through introducing
oxidative stress such as increasing ROS production and
depleting glutathione. The known targets of allyl alcohol are
cytosolic alcohol dehydrogenases Adhl and Adh2 and the
mitochondrial Adh3 [66]. Although allyl alcohol could be
released after ingestion of garlic, its toxicity, mediated by
acrolein the production of which is catalyzed by alcohol dehy-
drogenase in rodents, prevents its development as antifungal
agent [66, 67].

Baicalin could inhibit the activities of enzymes in mito-
chondria (such as Ca®"-Mg**-ATPase, succinate dehydro-
genase, and cytochrome oxidase) and induce cell cycle
blockage and apoptosis in C. albicans cells [68]. However, in
mammalian cells (e.g., CHO cell), baicalin could reduce ROS
production [69]. There are also reports showing that baicalin
induces apoptosis in human non-small lung cancer cells and
osteosarcoma cells through ROS production [70, 71]. Baicalin
could protect mitochondria from damage caused by strep-
tozotocin and hepatic ischemia/reperfusion and increase
the activity of citrate synthase in rats [72, 73]. Despite the
discrepancy between the roles of baicalin in different cells in
ROS production, the in vivo tests might support the use of
baicalin as an antifungal candidate [69, 71, 73].
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Shikonin, the major active compound isolated from
Lithospermum erythrorhizon, could induce the endoge-
nous ROS production, reduce the mitochondrial membrane
potential, and alter mitochondrial aerobic aspiration [74].
In human gastric cancer cells and TT medullary thyroid
carcinoma cells, shikonin could also induce ROS production
and mitochondria-mediated apoptosis [75, 76]. The almost
same cytotoxicity for fungal cells and mammalian cells
makes shikonin a less attractive candidate for antifungal
development.

Curcumin, the yellow pigment isolated from the turmeric
(the rhizome of the plant Curcuma longa Linn) could also
be used as an adjunct drug to treat pathogenic microor-
ganisms such as Helicobacter pylori, methicillin-resistant
Staphylococcus aureus (MRSA), and Trypanosoma cruzi.
Antifungal activities against various kinds of fungi such as
Candida species, Cryptococcus neoformans, Aspergillus spp.,
and Sporothrix schenckii have also been demonstrated by
this compound [77, 78]. Curcumin could increase ROS
production and apoptosis in C. albicans cells, either alone
or in synergy with antifungal drugs such as azoles and
polyenes [78, 79]. In mammalian cells, curcumin could
protect mitochondria from damage and increase the bio-
genesis of mitochondria, although apoptosis-inducing effects
of curcumin have also been reported in cancer cells [80,
81]. Most importantly, this compound could be safe with a
maximum tolerance dose of 12,000 mg/day in Phase I clinical
trials [82], which present an advantage over other antifungal
compounds. However, the poor oral bioavailability and poor
solubility in aqueous solutions impede its use and promote
the development of methods for delivering curcumin to fight
Candida infections [83].

Silibinin, the most famous and active compound isolated
from Silybum marianum (milk thistle) traditionally used
to protect from liver injury, could induce apoptosis related
to mitochondrial Ca?* influx in C. albicans cells [84, 85].
Silibinin could alleviate mitochondrial dysfunction in mice
model of cisplatin-induced acute kidney injury through Sirt3
activation, although in vitro proapoptotic effects through
inducing ROS production have been also reported [86, 87].
The safe profile with silibinin, evidenced by marketed health
food and clinical trials, makes silibinin a very promising
candidate for antifungal therapies against Candida infections
although there is still a long way to go [88].

5. Virulence Factors

Virulence factors contributing to the Candida infections hold
adhesins, virulence enzymes (secreted aspartyl proteinase
and phospholipases functioning in host tissue invasion) [89],
and morphological transition [90].

5.1. Yeast-to-Hypha Transition. Although both budding yeast
type and hyphal type of C. albicans have been found at
the loci of infections, the transition of yeast-to-hypha in
C. albicans is considered to be a major factor involved in
the colonization, invasion/penetration, virulence, immune
evasion, and survival in the host tissues [91-93]. For instance,
most of the hyphal growth of C. albicans could not be
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suppressed by the macrophages after engulfment in vitro
and lysis of macrophage caused by penetration of hypha was
also observed [94]. What is worth mentioning is that, soon
after phagocytosis by macrophages, the hyphal formation
of C. albicans is required (but not sufficient) for inducing
the proinflammatory pyroptosis, a kind of programmed cell
death of macrophages mediated by inflammasome, before
other macrophages are killed by the robust hyphal formation
of C. albicans [95-97]. Although recently identified Candi-
dalysin secreted by C. albicans hyphae plays a vital role in the
mucosal pathogenesis through its cytolytic effects, no reports
about the relationship between it and macrophages’ damage
have been published [98]. Nonetheless, Candidalysin renders
a promising antifungal target for C. albicans. Moreover,
hyphae could also support the complicated characteristic
structures of mature biofilms which will be discussed later
[99]. Induced by exogenous stressors (such as presence of
serum and alterations in temperature, pH, levels of oxygen
and glucose [91], the presence of N-acetyl-D-glucosamine
(GIcNAc) [100], adherence, and starvation/nutrient limita-
tion [92]), filamentation of C. albicans involves underlying
alterations in protein synthesis and metabolic changes which
are mainly the RASI-Cyrlp-cAMP-PKA-EFGI pathway and
mitogen-activated protein kinase (MAPK) signaling [91, 92].
Both signaling pathways are governed by the membrane-
integrated small GTPase Rasl [101].

Magnolol and honokiol, two kinds of neolignan isolated
from the root, stem, and branch bark of Magnolia officinalis,
could inhibit the yeast-to-hypha transition of C. albicans
under many culture conditions. Treatment of magnolol or
honokiol could induce downregulation of components of
the Rasl-cAMP-Efgl pathway (such as RASI, EFGI, TEC],
and CDC35 (the orthologue of Cyrl)), as well as reduced
expression levels of the hypha-specific genes ECEl, HWP],
and ALS3, while exogenous cAMP could restore the fila-
mentous growth in the presence of the drugs. These suggest
that the transition-inhibiting effects of these two compounds
may be associated with the suppression of Rasl-cAMP-
EFGI pathway [102]. Curcumin could also inhibit the yeast-
to-hypha transition through targeting the transcriptional
suppressor TUPI (thymidine uptake 1) [79]. Licochalcone-A,
a bioactive polyphenol from roots of licorice that has been
used as a herbal remedy for hundreds of years, could inhibit
the morphological transition [103]. The compound glabridin
from licorice and the anthraquinone purpurin from madder
root (Rubia tinctorum L.) could also inhibit the transition
(104, 105].

Apart from the regulating role in antifungal resistance
in planktonic C. albicans, the chaperone Hsp90 can also
modulate the transition by inhibiting the filamentation via
cAMP-PKA signaling [106]. Hsp90 deletion in C. albicans
leads to virulent attenuation in a systemic candidiasis model
[107]. So comes the hypothesis that inhibitors of Hsp90 may
exhibit anti-Candida effects.

5.2. Biofilm Formation. Most infections caused by Candida
spp. involve biofilms formed on the surfaces of biomate-
rials (such as intravascular catheters and prosthetic heart
valves) and biotic mucosa (such as oral cavity and wound

surface) [108]. Biofilm, buried in the extracellular matrix
(ECM), holds a complicated three-dimensional architecture
consisting mainly of yeast form cells and hyphal cells with
broad heterogeneity in space [15, 109]. The spatial, structural,
and metabolic heterogeneity of biofilms is considered to
promote influx of nutrients, efflux of waste products, and
establishment of microniches, thus facilitating the adaption
of biofilms to the hypoxic environment [99, 110]. Beginning
with the adherence of fungal cells to the substrate surface, the
development of biofilm undergoes proliferation, maturation,
and finally dissemination to finish a cycle and the cycle
could repeat itself to expand the fungal population [15].
Cells in the biofilm exhibit great advantages over their free-
living parallels in surviving such as increased resistance to
many antimycotic drugs (e.g., C. albicans cells of biofilm are
almost 1000 times resistant to fluconazole than free-living
cells [111]) and protection offered by ECM [15]. The elevated
resistance to antimycotic drugs and the ability to withstand
host immune defenses, as well as the role as a reservoir for
continuing infections, of Candida biofilms cause important
clinical consequence and the presence of biofilms increases
the morbidity and mortality of C. albicans relative to strains
that could not form biofilms [99, 112]. Therefore, biofilm
formation is considered as a potent virulence factor [34]. Now
the Candida biofilms attract more and more attention, which
could be reflected by the increasing number of publications
on Candida biofilms.

Heat shock proteins play key roles in protecting cells from
damage and repairing damage caused by insults, as well as
in the protein synthesis, folding, transport and membrane
translocation, and so on [9]. Compromising the function of
Hsp90 in C. albicans by genetic manipulation or pharmaco-
logical means could reduce the dispersal and maturation of
biofilms as well as increase the sensitivity to drugs used to
abolish biofilms [106]. So inhibitors of Hsp90 may present a
useful paradigm for therapy of infections caused by biofilm.

In Candida cells of biofilms, increased expression of
many genes has been found such as genes involved in
protein synthesis, drug transporting, adherence to matrix,
and primary metabolism [109]. Genes encoding envelope
proteins such as Hwpl, Alsl, Als3, and Sun41 play critical roles
in biofilm formation [92].

Although the structures of C. albicans biofilm can be
disrupted by physical means such as mechanical removal
by brushing on the surface of teeth and ultrasound (or
sonication) treatment of implants [113], the clearance of C.
albicans is primarily dependent on drugs which could prevent
the formation of biofilm or abolish the matured biofilm.

Biofilm formation of Candida spp. and other fungi could
be replicated in 96-well microtiter plates [36] as well as in
animal paradigms [15], which provide us with useful tools to
screen potential antifungal hits. Derived from Cinnamomum
zeylanicum, cinnamon oil exhibits antifungal activity against
C. orthopsilosis and C. parapsilosis through inhibiting the
formation of biofilm as well as the growth of planktonic coun-
terparts [114], although the exact mechanism is unknown.
One of the major components cinnamaldehyde (of the oil)
could also inhibit the biofilm formation of clinical isolates
of C. albicans [115], and moreover it could suppress the



growth of Aspergillus flavus and Aspergillus oryzae which
are culprits of food spoilage [116]. Berberine, an alkaloid
from the medicinal plants such as Coptis chinensis and
Hydrastis canadensis, also has antifungal activities against C.
albicans biofilms, both alone and in synergy with miconazole
[117]. Licochalcone-A also demonstrated in vitro and in vivo
antifungal activity against C. albicans biofilms [103]. Purpurin
also demonstrated antifungal activity against the formation
and preformed biofilms of C. albicans, in addition to its
capability of inhibiting morphological transition [104].
Aside from inhibiting the yeast-to-hypha transition, mag-
nolol and honokiol also inhibit biofilm formation via sup-
pressing adhesion and growth of C. albicans as is evidenced
by XTT assay and confocal laser scanning microscopy. These
two compounds could reduce the fungal burden and prolong
the lifespan of Caenorhabditis elegans in a nematodes infec-
tion model [102]. What is more important, compounds at the
concentrations used exhibit no adverse effect on the mam-
malian HSC-T6 cells and nematodes [102]. Curcumin could
also inhibit the biofilm formation of C. albicans [118]. Thymol
(5-methyl-2-(1-methylethyl) phenol), a major essential oil
in the herb thyme (Thymus vulgaris L., Lamiaceae) which
could be applied for treating multiple symptoms including
bronchitis, whooping cough, and catarrh of the upper res-
piratory tract [119, 120], exhibits antifungal activity against
fluconazole-sensitive and fluconazole-resistant isolates of C.
albicans [121]. Recent study identified that thymol could
inhibit the biofilm formation and development, and more-
over this compound could enhance the host antimicrobial
responses against C. albicans and increase the lifespan of C.
elegans during the fungal infection [115, 122]. In addition,
thymol has shown synergy with fluconazole against biofilms
[115,123]. Baicalein and aucubin from Plantago major (greater
Plantain), a perennial herb used for wound healing, analgesic,
anti-inflammatory, antioxidant, and infections, could inhibit
the biofilm formation and decrease the cell surface hydropho-
bicity of C. albicans [124]. Eugenol, the major components
of essential oils from Syzygium aromaticum (clove), possesses
the capacity to inhibit the biofilm formation and preformed
biofilms, more effective than marketed antifungal drug flu-
conazole. This compound could also produce synergistic
effects with fluconazole [115, 123] and what is more, the
structure-activity relationship of this compound is analyzed
[125]. Another phenylpropanoid from clove, methyleugenol,
also exhibits antifungal effect against fluconazole-resistant
Candida isolates and synergistic effect with fluconazole [126].
Antibiofilm activity of menthol from mint, either alone or
in combination with fluconazole, was also identified [123,
127]. So is the case with geraniol (3,7-dimethylocta-trans-
2,6-dien-1-ol) [115], an acyclic monoterpene alcohol which
could be isolated from many herbs such as Pelargonium
graveolens (Geraniaceae), nutmeg, and ginger [128, 129].
Another compound from Pelargonium graveolens, linalool,
also exhibits antifungal effect on the planktonic and biofilm
cells of C. tropicalis [129]. Carvacrol could also sensitize
the Candida biofilms, as well as the planktonic cells, to
fluconazole [130]. Usnic acid (2,6-diacetyl-7,9-dihydroxy-
8,9b-dimethyl-1,3(2H, 9bH)-dibenzo-furandione), the major
active component isolated from medicinal lichens such
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as Cladonia and Usnea [131], could inhibit the formation
of Candida biofilms and other virulent traits [132, 133].
Berberine, from Berberis aquifolium, Hydrastis canadensis,
Phellodendron amurense, has the antifungal activities against
fluconazole-resistant Candida spp. in planktonic and biofilm
form [134]. Emodin from rhizomes of Rheum palmatum
could inhibit the formation of biofilms and hyphal develop-
ment of C. albicans [135].

5.3. Other Factors. Virulence in mice caused by C. albi-
cans mutants deficient in isocitrate lyase 1 (ICLIL, a major
component of the glyoxylate cycle) is evidently less than
the wide type equivalents, which indicates the involvement
of the glyoxylate cycle in the pathogenesis of candidiasis
[136]. ICLL, as well as malate synthase, is the distinctive
enzyme that has not been observed in mammalian cells; thus
it may render a unique target for inhibiting the virulence
of C. albicans to combat this fungal pathogen. Recently,
inhibitors of malate synthase demonstrated antifungal effect
against Paracoccidioides species [137], while apigenin, the
active flavone compound in Chinese herbs such as thyme,
could inhibit the enzymatic activity of ICLI in C. albicans
[138, 139]. Rosmarinic acid, the bioactive polyphenol in
herbs such as basil (Ocimum basilicum), oregano (Origanum
vulgare), sage (Salvia officinalis), and Melissa officinalis, has
also been identified as an inhibitor of ICLI in C. albicans
[138, 140]. Recent study by Ansari et al. demonstrated that
both the enzymatic activity and mRNA expression of ICLI
and malate synthase of C. albicans could be inhibited by the
monoterpenoid perillyl alcohol, the active compound from
edible and medicinal plant Perilla frutescens L. ex B. D. Jacks.
(Lamiaceae) which has been used for treating colds, food
allergy, and depression [141, 142]. Considering the absence
of ICLI in human, the well-tolerated profile in human, and
the fact that Phase II trials have been conducted in patients
with cancers, perillyl alcohol might serve as an interesting
candidate for antifungal therapies against C. albicans [143,
144].

Similar to Pseudomonas aeruginosa, communication
among fungal cells is often associated with virulence [145].
Quorum sensing means that molecules secreted by the C.
albicans cells in response to cell density could affect the
behaviors of the cells. The formation of biofilms, hyphal
growth, and virulence factors of C. albicans could also be
regulated by quorum sensing [146]. The most famous quorum
sensing molecule of C. albicans is farnesol, one autoregulatory
sesquiterpene alcohol that could prevent the filamentation
(through repressing the Rasl-cAMP-PKA signaling pathway
[147]), shrink the biofilm (if added before attachment or after
formation but not during the initial stages of biofilm growth
[148]), and block other virulence factors [149]. So comes the
strategy that targeting quorum sensing molecules may con-
tribute to the antifungal therapies [146]. Indeed, the dietary
flavonoid quercetin isolated from edible and medicinal lichen
Usnea longissimi could sensitize fluconazole-resistant isolate
NBC099 to fluconazole and this kind of sensitization could
be the quercetin-induced production of farnesol [146].

Another quorum sensing molecule produced by C. albi-
cans, tyrosol, could also affect the development of Candida
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biofilms [150]. This aromatic alcohol could induce the mor-
phological transition from yeast to hyphae. At high con-
centrations (above 200 mM), tyrosol could cause reduction
in biofilms formed by Candida species as well as those by
Streptococcus mutans [151].

Extracellular hydrolytic enzymes produced by C. albicans
are considered as virulence factors liable for the penetration
into and damage to host cells caused by this pathogenic
fungus [152]. These enzymes include secreted aspartic pro-
teinases, lipases, and hemolysins [34]. Quercetin could
inhibit the activities of proteinase, esterase, phospholipase,
and hemolysins of fluconazole-resistant C. albicans strain
NBC099 [146]. In addition, this compound could also syner-
gize with fluconazole against biofilm both in vivo and in vitro
[153].

6. Compounds without Identified Mechanism

Anofinic acid and fomannoxin acid isolated from Gentiana
Algida showed weak antifungal activities against C. albicans,
while the esterification by introducing methyl group into
those compounds could enhance the anti-Candida activities
but decrease the activities against the Cladosporium cucumer-
inum, which is a kind of plant pathogenic fungus [154]. How-
ever, no further research about the antifungal mechanism
has been performed since that finding. Anofinic acid could
also be isolated from another traditional Chinese medicine,
Gentiana macrophylla, which has been used for long as ther-
apies for constipation, pains, jaundice, and rheumatism [155].
Another dihydroflavone isolated from Gentiana macrophylla,
kurarinone, could also inhibit the growth of C. albicans
[155]. Nyasol ((Z)-1,3-bis(4-hydroxyphenyl)-1,4-pentadiene),
isolated from the herbal plant Anemarrhena asphodeloides
Bunge (Liliaceae) which has been used in Chinese traditional
medicine as antipyretic, anti-inflammatory, antidiabetic, and
antidepressant agent [156], exhibits antifungal activity against
C. albicans alone or in synergy with azoles [157, 158]. This
compound also has activity against other fungal pathogens
such as A. flavus, Fusarium oxysporum, Pythium ultimum,
and Rhizoctonia solani, to name a few [158, 159]. Another
compound from clove, isoeugenol, also exhibited antifungal
activities against C. albicans, as well as Aspergillus niger
[125]. a-Terpineol (2-(4-methyl-1-cyclohex-3-enyl) propan-
2-ol), from Artemisia annua, could inhibit a series of Candida
species isolated from denture stomatitis patients [160]. The
sesquiterpene lactone isolated from Inula racemosa showed
good antifungal activity against Candida species, as well
as other human fungal pathogens such as A. flavus and
Geotrichum candidum [161].

7. Conclusion

In summary, many natural compounds from TCM could
exert their anti-Candida activities through different mech-
anism, providing a big reservoir for developing antifungal
therapies.

Combination therapies are capable of increasing the
efficacy and preventing the emergence of drug resistance
and many approaches have been adopted to identify effective

combinations, especially the synergistic effects with marketed
drugs [162-164]. An important part of the adjuvants to
antibiotics might come from the previously undervalued part
of chemical entities, which have been recently termed as dark
chemical matter (DCM) [165]. Because these DCM showed
little or no bioactivity in previous researches towards human
targets, it may represent a novel and valuable repertoire for
identifying hits and optimizing leads [165]. The machine
learning-based synergism prediction may be a promising
method to identify synergistic effects of marketed antifungal
drugs and natural products isolated from traditional Chinses
medicine [162]. Considering new proteins or biological
processes that might be used as emerging targets such as
histone deacetylase and ion homeostasis, compounds from
TCM might play increasing important and diverse roles in
developing antifungal therapies against C. albicans.
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