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Abstract

Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the
most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were
detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese
family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation
screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by
targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype
were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members.
Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two
large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural
hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated
potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the
combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal
dominant hereditary deafness.
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Introduction

Hereditary hearing loss can be inherited in many patterns, such

as autosomal dominant audosomal recessive, X-linked dominant,

X-linked recessive, Y-linked pattern, among which ADNSHL has

strikingly genetic heterogeneity. To date, more than 60 loci for

ADNSHL have been mapped and only 30 corresponding genes

have been identified (http://hereditaryhearingloss.org). During

the past twenty years, linkage analysis and candidate gene

sequencing has been proved to be a powerful tool to identify

responsible genes for ADNSHL. However, limited number of

samples in the clinical part, the large number of genes in the

mapped region, and the large size of many genes restrained the

application of this method. Recently, high-throughput sequencing,

also known as next-generation sequencing (NGS) has been proved

to be an ideal tool to decipher the genetic heterogeneity of

deafness. More than ten deafness genes have been identified using

NGS including TPRN, GPSM2, HSD17B4, MASP1, CACAM1,

HARS2, SMPX, DNMT1, ABHD12, TSPEAR, TNC and

P2RX2 [1,2,3].

Among ADNSHL genes, KCNQ4 (MIM*600101), one of the

most frequent genes [4], was firstly identified as the causal gene for

ADNSHL at DFNA2 by Kubisch and colleagues [5]. As a

member of voltage-gated potassium channel family, KCNQ4 plays

a crucial role in potassium recycling in the inner ear. KCNQ4 has

six predicted transmembrane domains encoded by six exons (exon

2 to 7) and a P-loop between transmembrane domains S5 and S6.

The P-loop domain forms a channel pore, containing a potassium

ion-selective filter, whose function is eliminated by mutations in

the pore region [5]. To date, 20 mutations in KCNQ4 have been

reported (Table 1) and it is identified as a common gene with a

frequency up to 6.62% in ADNSHL in Japan, predicted to be the
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most prevalent gene responsible for Japanese ADNSHL patients

[6]. However, these mutations have not been found in Chinese

mainland populations before this study. Almost all reported cases

showed a similar phenotype characterized by post-lingual,

progressive, high-frequency hearing impairment (one mid-fre-

quency predominant hearing loss caused by the p.V230E mutation

was reported) [6].

Recently, we performed targeted capture and NGS to analyze a

cohort of 30 hearing loss probands from Chinese families with

ADNSHL (data not shown). Among these families, we identified a

novel KCNQ4 mutation p.W275R in exon 5 in family 025 and a

known KCNQ4 mutation p.G285S in exon 6 in family 727.

Materials and Methods

Ethics Statement
The study was approved by the Committee of Medical Ethics of

Chinese People’s Liberation Army (PLA) General Hospital. We

obtained written informed consents from all the participants in this

study. Written informed consents were obtained from the next of

kin on the behalf of the minors/children participants involved in

this study.

Family Recruitment and Clinical Evaluations
A six-generation family (025) with 66 members segregating

ADNSHL and a five-generation family (727) with 84 members

segregating ADNSHL were ascertained from the Department of

Otolaryngology, Head and Neck Surgery, at the Institute of

Otolaryngology of PLA, Chinese PLA General Hospital (Fig-

ure 1A, 1B). Either personal or family medical evidence of hearing

loss, tinnitus, vestibular symptoms, use of aminoglycosides, and

other clinical abnormalities of the participants were identified by a

team of experienced doctors and audiologists. Audiometric

evaluations included pure tone audiometry, auditory brainstem

responses (ABR) and distortion product otoacoustic emissions

(DPOAE). High resolution computed tomography (HRCT) was

also performed on some subjects to verify whether the family

members had other complications other than hearing disorders.

Targeted capture and NGS
Genomic DNA (gDNA) was extracted from the whole blood

samples using the Blood DNA kit (TIANGEN BIOTECH,

Beijing, China), and 1 ug of purified gDNA fragmented to 200–

300 base pairs using an ultrasonoscope (Covaris S2, Massachu-

setts, USA). End-repair, adenylation and adapter ligation were

performed for library preparation following the Illumina’s

protocol. The same amount of library were pooled then hybridized

to the customized capture array (NimbleGen, Roche) including

exons, splicing sites and immediate flanking intron sequences of 29

genes for non-syndromic autosomal dominant hearing loss and

TNC, a novel causative gene for ADNSHL identified in our

previous research (Table S1). Sequencing was carried out on

Illumina HiSeq2000 to generate paired end reads (90 bps at each

end) [7].

Raw image files were processed by Illumina Pipeline (version

1.3.4) for base-calling with default parameters. Reads were aligned

Table 1. Overview of all KCNQ4 mutations identified to date.

Mutation DNA Protein Exon Origin reference

c.211_223del13 p.Q71fs 1 Belguim Coucke et al. (1999)

c.211delC p.Q71fs 1 Japan Kamada et al. (2006)

c.229_230insGC P.H77fs 1 Japan Naito, et al. (2013)

c.546C.G p.F182L 4 Taiwan, Su, et al. (2007);

Japan Naito, et al. (2013)

c.664_681del18 p.G215_220del6 4 Korea Beak, et al. (2010)

c.689T.A p.V230E 4 Japan Naito, et al. (2013)

c.725G.A p.W241X 5 USA Hildebrand, et al. (2008)

c.778G.A p.E260K 5 USA Hildebrand, et al. (2008)

c.785A.T p.D262V 5 USA Hildebrand, et al. (2008)

c.821T.A p.L274H 5 Neth Van Hauwe, et al. (2000); De Heer, et al. (2011)

c.823T.C p.W275S 5 China Present study

c.827G.C p.W276S 5 Neth, Japan Coucke et al. (1999), Akita et al. (2001), Camp,
et al. (2002), Topsakal, et al. (2005)

c.842T.C p.L281S 6 USA Talebizadeh, ea al. (1999)

c.853G.T p.G285C 6 USA Coucke et al. (1999)

c.853G.A p.G285S 6 France, Kubisch, et al. (1999)

China Present study

c.859G.C p.G287R 6 USA Arnett, et al. (2011)

c.871C.T p.P291S 6 Japan Naito, et al. (2013)

c.872C.T p.P291L 6 Japan Naito, et al. (2013)

c.886G.A p.G296S 6 Spain Mencia, et al. (2008)

c.891G.T p.R297S 6 Japan Naito, et al. (2013)

c.961G.A p.G321S 7 Neth Coucke et al. (1999)

doi:10.1371/journal.pone.0103133.t001
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Figure 1. Pedigrees and mutation analysis of the two large Chinese families. (A) & (B) Pedigrees of family 025 and 727. Filled symbols for
males (squares) and female (circles) represent affected individuals, and empty, unaffected individuals. (C) Structure of KCNQ4 gene. KCNQ4 gene has
14 exons. Mutations of c.823T.C (p.W275R) and c.853G.A (p.G285S) identified in KCNQ4 are located in exon5 and exon6 respectively. (D) DNA
sequence chromatograms showing the two heterozygous missense mutations c.823T.C and c.853G.A in affected individuals (upper panel)
compared with the wild type controls (lower panel). (F) Conservation analysis shows that the Trp residue at 275 and the Gly residue at 285 in KCNQ4 is
conserved across human, Ptroglodytes, Mmulatta, Fcatus, Trubripes, Dmelanogaster, Celegans, Xtropicalis.
doi:10.1371/journal.pone.0103133.g001

Figure 2. Overlapping audiograms from the better ear for each genotype. In the two cases of p.W275R and p.G285S, black colored
audiograms were from the patients aged less than 20 years old, red colored audiograms were from individuals aged 20–49 years old and the blue
audiograms were from the patients in their 50 s and over.
doi:10.1371/journal.pone.0103133.g002
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to NCBI37/hg19 assembly using the BWA (Burrows Wheeler

Aligner). SNPs and indels (inserts and deletions) were detected

using the GATK software [8].

Sanger sequencing
After filtering against multiple databases, sanger sequencing was

used in all available members from family 025 and 727 to

determine whether the potential mutations in causative genes co-

segregated with the disease phenotype in these families or not.

Direct PCR products were sequenced using Bigdye terminator

v3.1 cycle sequencing kits (Applied Biosystems. Foster City, CA)

and analyzed using a ABI 3700XL Genetic Analyzer.

Results

Clinical description
For family 727, a total of 41 family members, composed of 15

clinical affected and 26 unaffected individuals were ascertained in

this study. While in family 025, 11 patients and 26 control

individuals were ascertained. Age of onset in family 727 ranged

from 5 to 30 years old, with average onset age 13.08 years old,

while in 025 the onset age ranged from 2 to 30 years old, with

average onset age 16.45 years old. For both two autosomal

families, affected members showed a post-lingual, symmetrical,

and bilateral non-syndromic sensorineural hearing loss. The

hearing loss was initially presented as high frequencies with

subsequent gradual progression to severe level involving all

frequencies at later ages. Some patients had associated tinnitus,

but no vestibular symptoms or signs were reported (Table 2,

Table 3, Figure 1A, 1B, Figure 2). High resolution computed

tomography (HRCT) of the temporal bone in the probands

showed normal middle ears structure, including normal vestibular

aqueduct and internal auditory canal. None of the affected

members had a history of exposure to aminoglycosides, noise, or

other causes that may account for the hearing impairment.

Targeted high-throughput sequencing
Approximately 133K bp of exons and adjacent intronic regions

of the 30 genes known to be responsible for ADNSHL were

captured and sequenced. The average sequencing depth for target

region is about 4156, and 99.44% of the average coverage for

targeted region is more than 206, which is satisfied with the

requirements for calling SNPs and InDels (Table 4). For the

proband of family 025, a total of 484 variants were identified, 47 of

which were nonsynonymous variants, splice acceptor and donor

site mutations and coding indels that were more likely to be

pathogenic mutations; only 3 of the 47 variants were with the allele

frequency which were less than 0.01 in dbSNP137, HapMap,

1000 human genome and local dataset; and a missense variant,

c.823T.C (p.W275R) in exon5 of KCNQ4 (NM_004700),

predicted to be ‘‘Damaging’’, ‘‘Probably Damaging’’, ‘‘Deleteri-

ous’’, ‘‘Disease_causing’’, ‘‘Conserved’’ and ‘‘Conserved’’ by

SIFT, Polyphen2, LRT, Mutation Taster, GERP++, and PhyloP

respectively (Tables 5 and 6). For this site, 45% (114/254) reads

supported for C vs. 55% (140/254) reads supported for T, which

means it is a heterozygote (Het) (Figure S1). This indicated that

this novel mutation may be the cause of the hearing loss in this

Chinese family. In the proband of family 727, another missense

mutation, c.853G.A (p.G285S) in KCNQ4, a previously reported

mutation (rs28937588) was identified (Figure S2).

Mutation detection and analysis
Sanger sequencing confirmed the co-segregation of p.W275R

and p.G285S with the disease phenotype in Family 025 and 727

respectively (Figure 1C and D and E). The two mutations were not

detected in other 28 probands from Chinese families with

ADNSHL. Both of the mutations occurred at highly conserved

amino acids (Figure 1F), and are predicted to be deleterious by the

SIFT, Polyphen2, LRT, Mutation Taster, GERP++, and PhyloP

programs (IS IT NOT IDENTICAL TO WHAT HAVE

MENTIONNED JUST ABOVE (Table 6). Based on these results

and the phenotypes of these two families, we concluded that these

Table 4. Target region capture sequencing results.

Proband
Length of target
region (bp)

Target Region Map Bases
(Mbp) Coverage (%) Coverage at least 206 (%) Mean Depth

025 132,789 54.21 99.71 99.49 408.23

727 132,789 56.11 99.71 99.38 422.59

Average 132,789 55.16 99.71 99.44 415.41

doi:10.1371/journal.pone.0103133.t004

Table 5. Candidate genetic variants identified for the proband of family 025.

Filter process NO. of Variants

All SNPs/InDels 484

Functional_variations 47

Genotype frequency in dbSNP137, HapMap, 1000 human genome dataset #0.01 8

Genotype frequency in local dataset#0.01 3

Predicted to be deleterious by SIFT, Polyphen2, LRT and MutationTaster 1

doi:10.1371/journal.pone.0103133.t005

Pathogenic Mutations in KCNQ4 in Two Large Chinese Families

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e103133



two mutations in the KCNQ4 are responsible for the hearing loss

in the family 025 and 727.

Discussion

As is known, mutations in gene KCNQ4 have been associated

with ADNSHL, recognized as one of the most frequent causes of

ADNSHL, is characterized by post-lingual autosomal dominant

non-syndromic progressive sensorineural hearing loss, first affected

the high frequencies according to GeneReviews. In this present

study, we identified a known mutation and a novel mutation in the

P-loop region of the KCNQ4 potassium channel which yielded

dominant non-syndromic hearing loss by high-throughput se-

quencing as well as conventional genetic testing. It is noteworthy

that this is the first report of heterozygous mutations in the

KCNQ4 genes as a cause of ADNSHL in Chinese mainland

families. In family 727, the G285S mutation in exon6 affects the

first glycine in the GYG signature sequence of K+ channel pores,

which has been identified in three affected members of a small

French family with DFNA2. This mutation exert a strong

dominant-negative effect on the wild type and render heteromeric

channels nonfunctional [5]. By using adenoviral delivery of

KCNQ4 channels carrying G285S, Holt JR and colleagues

demonstrated that KCNQ4 channels contributed to the M-like

conductances: GK,n of the cochlear outer hair cells and GK,L of the

vestibular type I hair cells [9]. As far as we know, this is the second

report about this mutation. Recurrent mutations in KCNQ4 also

include c.211delC (p.Q71fs), c.821T.A (p.L274H), c.827G.C

(p.W276S), having been reported in more than one family. Among

these recurrent mutations, mutation W276S is a hot spot mutation

in Belgian, Dutch and Japanese families [10]. Together with

specific audiogram configuration, recurrent mutations may

promote genetic testing for ADNSHL with a particular phenotype

[6]. In family 025, we found a novel missense mutation W275R in

exon 5 of KCNQ4. The mutation c.823T.C (W275R) is

immediately adjacent to the previously reported mutation

c.827G.C (W276S). These two adjacent tryptophan residues,

located with the pore helix, are highly conserved across different

potassium channel families and play a important role in K+

channel function, presumably holding the pore open at a correct

diameter [11]. Mutations in these conserved tryptophan residues

result in a complete loss of function of K+ channel [12]. Previous

studies have demonstrated that the W276S mutation lead to a

dramatic decrease in KCNQ4 surface expression with strong

dominant-negative effects on the wild type (WT) KCNQ4 subunit.

We presume that the W275R mutation may have the similar

functional mechanism [13,14].

It is noteworthy that this is the first report of KCNQ4 mutation

in Chinese mainland families. Before this report, there was a

report of KCNQ4 missense mutation P182L in a Taiwan family.

The mutation locates in the S3 domain of KCNQ4. However, it is

not conserved in all KCNQ family and unlikely to be pathogenic

according to some prediction program, such as SIFT, Polyphen

Phylop, LRT, etc. In this study, we found a P182L mutation in

one of the 30 probands from ADNSHL families which did not co-

segregate with the disease phenotype in the family members. It was

also found in a Japanese control sample with normal hearing

[4,15].

To date, 16 missense mutations and 4 indels in KCNQ4 have

been reported (Table 1). Phenotype-genotype correlation of

KCNQ4 has been summarized, most of the patients with missense

mutation are younger-onset and pure all-frequency hearing loss,

while patients with deletion mutations are later-onset and pure

high-frequency hearing loss, so the two families in this study are
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[16,17]. KCNQ4 is also predicted to be a candidate gene for age-

related hearing loss (ARHI) since KCNQ4 mutation families have

similar pattern of hearing loss with ARHI, especially a unique

pattern of hearing loss with striking resemblance to ARHI, in

which only the high frequencies were progressively affected while

the lower frequencies remained intact until an older age [18]. To

investigate the association of KCNQ4 with ARHI, Van Eyken et

al. examined KCNQ4 and detected a significant association

between KCNQ4 and ARHI in two independent Caucasian

populations. All SNPs are located in the same 13-kb region in the

middle of the KCNQ4 gene, indicating that the pathogenic

variants for ARHI may locate in this region [19].

KCNQ4 is likely to be a common gene in Chinese ADNSHL: i)

KCNQ4 is one of the more frequent genes in ADNSHL in

comparison to the other reported genes [4]; ii) In a large Japanese

cohort, KCNQ4 is found to be the most prevalent gene responsible

for Japanese ADNSHL. In their study, 19 families with 7 different

mutations were identified in 287 probands from ADNSHL

families [6]. Mutations of KCNQ4 were also found in other east

Asian region, such as Korea and other Japanese population

(Table 1). iii) Our group found a copy variation of 47 base pairs

insertion or deletion in the exon2 and exon3 intron sequence,

supposing to be a specific marker for the hearing loss of the

pedigree [20]. Then we performed mutation screening of KCNQ4
in 71 patients with high frequency hearing loss and 40 unaffected

individuals of matched geographical ancestry, and found the

deletion of the second intron 47 bp in 5 patients as well as 2 males

with normal hearing, the insertion of 47 bp in 11 patients [21].

Despite an increasing number of pathogenic KCNQ4 mutations

have been identified, the molecular aetiology of DFNA2 still

unknown. The missense mutations are believed to exert a

dominant-negative effect by interfering with the normal channel

subunit. The two deletions, c.211delC and c.211_223del13, are

proposed to exert a pathogenic effect through haploinsufficiency

[3]. In the mouse models, loss of KCNQ4 function leads to

progressive sensorineural hearing loss, paralleled by selective

degeneration of outer hair cells and spiral ganglion neurons [22].

Among the missense mutations, L274H, W276S, L281S, G285S,

G296S and G321S are loss of function mutations and eletrophy-

siological studies have shown that these mutations lead to loss of

KCNQ4 currents [5,13,22,23,24]. However, the molecular mech-

anisms about how these mutations lead the loss of KCNQ4
currents remain unknown. Recently Gao YH et al. reported two

mechanisms underlying DFNA2, the decreased cell surface

expression detected by immunofluorescent microscopy and

Western blot and the impaired conductance of KCNQ4 demon-

strated by electrophysiological studies [14]. Because of the

restriction of the lack of the understanding of the molecular

aetiology, no therapeutic methods to prevent progressive hearing

loss are available for now. Further functional studies regarding

mutations in these residues in KCNQ4 may help clarify the

molecular mechanism, which in turn, will facilitate informative

genetic counseling, early diagnosis and even treatment of hearing

impairment [25]. It is anticipated that future management of these

genetic hearing disorders will be more targeted to the cellular

processes involved and improve the likelihood of hearing recovery.

In conclusion, we have shown two mutations in Chinese

ADNSHL families using targeted high-throughput sequencing.

This is the first report of KCNQ4 mutation in Chinese mainland

families, providing more information for discovering the molecular

mechanism of KCNQ4 mutation-induced hearing loss. The results

also support that the combination of targeted capture and NGS is

a valuable molecular diagnostic tool for autosomal dominant

hereditary deafness.
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