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Abstract

Derivatives of yeast cell wall (YCW) have been studied for their potential prebiotic effects.

Recently, new purified and soluble preparations have been developed in an attempt to

increase their biological actions. Two YCW preparations, one conventional and another with

higher solubility of the mannan oligosaccharide fraction, were evaluated on dogs. One food

formulation was used, divided into the following treatments: CON–control, without yeast cell

wall addition; YCW–addition of 0.3% of a conventional yeas cell wall extract; YCWs–addi-

tion of 0.3% of a yeast cell wall extract with high mannan oligosaccharide solubility. Twenty-

four beagle dogs were used, eight per food, distributed on a block design. Blocks lasted 32

days, and TNF-a, IL-6, IL-10, ex vivo production of hydrogen peroxide and nitric oxide by

peripheral neutrophils and monocytes, phagocytic index, and fecal IgA were evaluated at

the beginning and end of each period. Additionally, nutrient digestibility, feces production

and quality, and fermentation products were quantified. The results were evaluated by anal-

ysis of variance and compared using the Tukey test (P<0.05), using the basal immunological

parameters as a covariate. The inclusion of YCWs reduced fat digestibility (P<0.05),

increased the concentration of butyrate and putrescine, and reduced lactate in feces

(P<0.05), showing that mannan oligosaccharide solubilization resulted in higher fermenta-

tion of this compound and altered the metabolism of the gut microbiota. Lower IL-6 on

serum was verified for dogs fed the YCWs diet (P<0.05), suggesting a reduction in the

inflammatory activity of dogs. Higher phagocytic index was verified for peripheral monocytes

after the intake of the YCW food, suggesting better innate immunity. In conclusion, the solu-

bilization of the mannooligosaccharide fraction alters its interaction with gut microbiota and

biological actions in animals, although both yeast cell wall preparations exhibited prebiotic

effects on dogs.
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Introduction

The health of the gut is dependent on a dynamic interrelationship between the gut microbiota

and gut nutrition [1,2], reflecting directly on the immunological status and general health of

dogs [3,4]. It is postulated that the intestinal microbiota performs at least three main functions:

protection, nutrition and metabolic control [5]. The microbiota acts as a barrier with impor-

tant protective effect against pathogens; performs the fermentation of dietary nondigestible

residues and endogenous substances, allowing the production of important nutrients for gut

mucosa such as short-chain fatty acids; controls the proliferation and differentiation of intesti-

nal epithelial cells; and contributes to immune system development and homeostasis [5].

Because intestinal microbes subsist on products resulting from the interaction between the

host and its diet, food composition is one of the most important factors for gut microbiota

maintenance, structure and function [1,6,7]. In this regard, yeast cell wall (YCW) may be an

important energy source for intestinal microorganisms [8] and has been studied as a prebiotic

candidate for dogs [9,10]. Mainly composed of carbohydrates and proteins, their main chemi-

cal constituents are mannose, glucose and N-acetylglucosamine (chitin) [11,12]. The YCW

apparently meets the three essential criteria of a prebiotic [13], it is resistant to gastric acidity

and hydrolysis by mammalian enzymes and to gastrointestinal absorption, is fermented by

intestinal microbiota, and selectively stimulates the growth and/or activity of intestinal bacteria

associated with health and wellbeing [1,14,15].

Among the possible mechanisms implicated for host health, prebiotics such as the YCW

may promote short chain fatty acid (SCFA) production, colon pH regulation, and competition

against pathogens for cell mucosa receptors [16]. Experimental data on animal studies have

shown that the gut-associated lymphoid tissue (GALT) may be the primary target of the

immunomodulatory effect of prebiotics [17,18], and the enterocytes are key intermediates that

transmit signals from the intestinal lumen to the GALT [18]. Increase in serum lymphocyte

concentration and decline in plasma neutrophils was reported in dogs fed YCW, indicative of

an improvement in immunological status [19]. However, most publications on dogs only eval-

uated digestibility and fermentation products, and few evaluated the effects of the YCW on

immunity. The SCFA generated after microbial fermentation of the YCW components may

also modulate inflammation, since butyric acid may inhibit the production of the proinflam-

matory cytokines IL-2 and IFN-γ, and acetic and propionic acids may increase the production

of the immunoregulatory cytokine IL-10 [20,21].

In recent years, specific strains of Saccharomyces cerevisiae and special techniques to sepa-

rate and purify specific components of the cell wall structure have been developed. More puri-

fied than conventional YCW derivates, which consist of simple dried cell walls after the

cellular content removal, these preparations have higher concentrations of soluble mannan oli-

gosaccharides, smaller particle size and higher solubility in water, which are characteristics

that may influence YCW exposure to gut microbiota and the host mucosa, potentially induc-

ing different biological responses [10,22]. Based on these developments, the present study eval-

uated the effects of the incorporation in extruded diets of two preparations of Saccharomyces
cerevisiae cell wall, differing in solubility in water of mannan oligosaccharides, on nutrient

digestibility, microbial fermentation products in feces, and certain immunological parameters

of adult dogs.

Experimental methods

The study was conducted in the Laboratory of Research in Nutrition and Nutritional Diseases

of Dogs and Cats, College of Agrarian and Veterinarian Sciences, Sao Paulo State University

(UNESP), Jaboticabal, SP, Brazil. All procedures with animals followed the ethical principles
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adopted by the Brazilian College of Animal Experimentation and were previously approved by

the Ethics Committee on the Use of Animals (protocol number: 011937/17).

Test products

Two yeast derivates were used, obtained by the industrial purification of Saccharomyces cerevi-
siae cell wall (Biorigin, Lençóis Paulista, Sao Paulo, Brazil). After industrial purification, the

yeasts culture was submitted to autolysis where intracellular enzymes are activated by appro-

priate processing conditions resulting in a partial degradation of the cell wall structures, fol-

lowed by centrifugation and separation of the yeast extract from the yeast cell wall [23]. By this

processing the standard purified Yeast Cell Wall (YCW) product was obtained with a water

solubility index of approximately 20% (Table 1). Further, the purified yeast cell wall was sub-

mitted to a processing of chemical hydrolysis by acids [24,25], in order to partially solubilize

the mannan-protein outer layer to obtain the soluble Yeast Cell Wall (YCWs) product, which

presented 40% of water solubility index. Mainly mannan oligosaccharides were solubilized

during the preparation of the extract, resulting in 2.1% soluble mannan oligosaccharides on

the YCW and 22.2% soluble mannan oligosaccharides on the YCWs. The water solubility

index was determined as previously described [26].

Animals

Twenty-four adult Beagle dogs, males and females, with 3.5±0.91 years of age and weighing

11.95±1.12 kg were used. All animals belong to the kennel of the Laboratório de Pesquisa em

Nutrição e Doenças Nutricionais de Cães e Gatos, FCAV/UNESP, Jaboticabal, Brazil. The

mean body condition score of the dogs was 6.0±1.2, on a scale from 1 to 9 [27]. Prior to the

study, dogs were submitted to physical, hematological, and serum biochemical evaluations by

a veterinarian, and all were considered healthy.

Experimental design

The study included three experimental diets and was conducted in a randomized block design

with two blocks of 12 dogs each and four dogs per diet in each block, totaling eight animals

(repetitions) per diet (treatment). The blocking factor was time, due to available structure for

research. Each block lasted 32 days and included testing the following: phagocytic activity of

peripheral monocyte and neutrophils were evaluated on days 0, 15 and 30; cytokines in periph-

eral blood and the in vitro production of hydrogen peroxide and nitric oxide in cell culture

Table 1. Characteristics of the yeast cell wall derivates used on the study.

Item Yeast Cell Wall preparations 2

YCW YCWs

Moisture (%) 6.9 4.5

Protein (%) 31.4 25.4

Ash (%) 7.7 5.4

pH 4.9 3.6

Total mannan oligosaccharides (%) 17.1 23.9

Soluble mannan oligosaccharides1 (%) 2.1 22.2

Glucans (%) 25.1 24.9

Water solubility index1 19.6 42.6

1 Determined on Biorigin Laboratory (Lençois Paulistas, Brazil) [23].
2 YCW = standard yeast cell wall extract; YCWs = yeast cell wall extract with 20% soluble mannan oligosaccharides.

https://doi.org/10.1371/journal.pone.0225659.t001
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were evaluated on days 0 and 30; IgA content in feces was evaluated prior to study (feces col-

lected from days -2 to 0) and after 30 days of diet intake (days 30 to 32); total feces collection

for digestibility measurement was performed from days 16 to 20; fresh feces collection to ana-

lyze fermentation products, pH and biogenic amines was conducted on days 23 to 25.

The amount of food offered was initially calculated considering the food metabolizable

energy content, estimated by its chemical composition, and the individual energy requirement

of laboratory dogs [28]. The daily amount was provided once a day (at 10 am). Offered and

refused food was weighed, and the intake was recorded. Dogs were then weighed weekly, and

the amount of food provided adjusted such that animals maintained a constant body weight

throughout the study. Water was provided ad libitum. During the study dogs were housed in

kennels measuring 1.5 m x 3.5 m with a solarium, and released daily in a collective playground

for exercise and socialization.

Experimental diets

A single formulation based on corn grain, poultry byproduct meal, poultry fat and sugarcane

fiber was used (Table 2), balanced for adult dogs according to the nutritional recommenda-

tions of the European Pet Food Industry Federation [29]. Sugarcane fiber was used due to its

Table 2. Ingredient and chemical composition of the food used on the study.

Ingredients %

Corn grain 51.6

Poultry by-product meal 32.2

Poultry fat 9.2

Liquid palatant 1 3.0

Sugarcane fiber 2 2.0

Vitamin-mineral premix 3 0.5

Salt 0.5

Potassium chloride 0.5

Choline chloride 0.3

Mold inhibitor 4 0.1

Antioxidant 5 0.04

L-lysine 0.03

Analyzed chemical composition %, as fed basis

Dry matter 93.0

Crude protein 27.4

Ash 9.0

Acid-hydrolyzed fat 17.4

Crude fiber 2.6

Calcium 1.9

Phosporus 1.3

1 D’TECH 10L, Palatabilizante Lı́quido, SPF do Brasil Indústria e Comércio Ltda., Descalvado, Brazil.
2 Vit2be Fiber, Dilumix Industrial Ltda., Leme, Brazil.
3 Rovimix, DSM Produtos Nutricionais Brasil S.A., Jaguaré, Brazil. Added per kg of food: Vitamin A, 18,750 IU;

Vitamin D3, 1,500 IU; Vitamin E, 125 IU; Vitamin K3, 1,5 mg; Vitamin B1, 5 mg; Vitamin B2, 16.25 mg; Pantothenic

Acid, 37.5 mg; Vitamin B6, 7.5 mg; Vitamin B12, 45 mcg; Vitamin C, 0,125 g; Nicotinic Acid, 0.0625; Folic Acid, 0.75

mg; Biotin, 0.315 mg; Iron, 0.1 g; Copper, 9.25 mg; Manganese, 6.25 mg; Zinc, 0.15 g; Iodine, 1.875 mg; Selenium,

0.135 mg.
4 Mold-Zap Citrus, Alltech do Brasil Agroindustrial Ltda., Araucária, Brazil.
5 Banox, Alltech do Brasil Agroindustrial Ltda., Araucária, Brazil.

https://doi.org/10.1371/journal.pone.0225659.t002

Yeast cell wall solubility and prebiotic effect in dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0225659 November 25, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0225659.t002
https://doi.org/10.1371/journal.pone.0225659


low fermentation [30], reducing interference with formation of fermentation products. The

experimental diets were obtained by the addition of the different yeast cell wall extracts, added

in replacement of corn (on an as-fed basis): CON—control diet, without inclusion of yeast cell

wall extract; YCW—inclusion of 0.30% of YCW; YCWs—inclusion of 0.30% of YCWs.

Dietary formulations were processed at the Extrusion Laboratory of the College of Agrarian

and Veterinarian Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil. A sin-

gle lot of raw materials was used for the three experimental diets. Ingredients were weighed

and mixed before being ground in a hammer mill (Tigre, Moinhos Tigre, São Paulo, SP), fitted

with a 0.8 mm sieve screen size, and extruded in a single-screw extruder (Model Mex-250,

Manzoni Industria Ltda, Campinas, SP), with an average extrusion capacity of 250 kg/h. The

temperature of the extruder preconditioner was kept higher than 85˚C by direct steam injec-

tion. After extrusion, the kibbles were dried in a forced air dryer at 105˚C for approximately

20 min and coated with poultry fat and liquid palatant.

Digestibility protocol, feces production and characteristics

This evaluation followed recommendations and procedures previously described [29]. Dogs

were individually housed for 5 days in stainless steel metabolic cages, and each contained an

apparatus to collect feces and urine separately. Food consumption was recorded daily, measur-

ing the offered and refused amounts. Feces were quantitative collected at least twice a day for

120 h, weighed, and stored frozen at -15˚C until analysis. After the end of the collection period,

feces were thawed to room temperature and homogenized, compounding a single sample per

dog, and then they were dried in a forced-air oven (320-SE, FANEM, São Paulo, Brazil) at

55˚C for 72 hours. Predried feces and diets were ground in a knife type mill (MOD 340, ART

LAB, São Paulo, Brazil) with a 1 mm sieve for laboratory analysis.

The gross energy (GE) content of diets and fecal samples was determined using a bomb cal-

orimeter (IKA C2000 Basic, IKA-Werke GmbH & Co. KG, Staufen, Germany). Dry matter

(DM) was determined by oven-drying the sample (method 934.01), ash was measured by muf-

fle furnace incineration (method 942.05), crude protein was estimated using a LECO nitrogen/

protein determination (FP-528, LECO Corporation, Saint Joseph, USA; method 990.03), total

fat was assessed using the acid-hydrolyzed fat assay (method 954.02), and organic matter

(OM) was calculated as DM minus ash. All samples were analyzed in duplicate, and the analy-

ses were repeated when the variation between replicates was greater than 5%.

Fecal score was determined using the following system [31]: 0 = watery liquid that can be

poured; 1 = soft, unformed; 2 = soft, malformed stool that assumes the shape of its container;

3 = soft, formed, and moist stool that retains its shape; 4 = well-formed and consistent stool

that does not adhere to the floor; and 5 = hard, dry pellets, which are small and hard masses.

Fecal pH and fermentation products

For this evaluation, from days 23 to 25 for each block fecal samples were collected immediately

after elimination for three consecutive days. Fecal pH was determined for 2 g of fresh feces

mixed with 6 mL of ultrapure water, using a pH meter (model DM20; Digicrom Analitica

LTDA, São Paulo, Brazil). Approximately 10 g of fresh feces was homogenized and mixed with

30 mL of a 16% (vol/vol) formic acid solution and precipitated to determine the volatile fatty

acids (VFA). Next, the mixture was centrifuged (5810R; Eppendorf, Hamburg, Germany) 3

times at 4,500 x g for 15 min at 4˚C. The supernatant was retained, and the pellet was dis-

carded. The short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA) of the

supernatant were determined by gas chromatography (model 9001; Finnigan Corporation,

San Jose, CA) as previously described [32]. Lactic acid was measured by mixing 3 g of feces
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with 9 mL of distilled water. This mixture was centrifuged 3 times at 4,500 x g at 4˚C for 15

min. The supernatant was obtained, and the pellet was discarded. The analysis of lactic acid

was performed by spectrophotometry (Spectrophotometer Quick-Lab; Drake Eletronica e

Comércio, São José do Rio Preto, São Paulo, Brazil) [33]; samples were quantified by compar-

ing them with a standard curve for lactic acid. The concentration of ammonia was assessed in

the same extracts prepared for the VFA. The extracts were thawed at room temperature, and 2

mL of each extract was diluted into 13 mL of distilled water and submitted to distillation in a

nitrogen system (Tecnal TE-036/1; Tecnal Equipamentos Cientı́ficos, Piracicaba, São Paulo,

Brazil).

To determine concentrations of biogenic amines in feces, five grams of fresh feces was

homogenized and added to 7 mL of a 5% trichloroacetic acid solution and then mixed for 3

min by vortex and centrifuged at 10,000 x g for 20 min at 4˚C (5810R; Eppendorf, Hamburg,

Germany) [34]. The supernatant was filtered with qualitative filter paper, and the residue was

extracted twice using 7 and 6 mL of a 5% trichloroacetic acid solution, separately. Then, the

supernatants were filtered and pooled. The final volume obtained was recorded and frozen.

Biogenic amine concentrations were determined in the supernatant by HPLC (HPLC model

LC-10AD; Shimadzu Corporation, Kyoto, Japan).

Fecal Ig A

Fresh feces (immediately after elimination) was collected for three consecutive days before and

30 days after the intake of the experimental diets. For each period, fecal samples were pooled

by dog, and fecal IgA was extracted using a saline solution [35]. Approximately 1 gram of feces

was weighed and diluted in 10 mL of extraction buffer composed of 0.01 M phosphate-buff-

ered saline (PBS) (pH 7.4), 0.5% Tween (Sigma-Aldrich, St Louis, MO, USA), and 0.05%

sodium azide. After homogenization, the fecal suspensions were centrifuged at 1,500 x g for 20

min at 5˚C. Then, 1 mL of the supernatant was transferred to a sterile microtube containing

20 μL of a protease-inhibitor cocktail (Sigma-Aldrich, St Louis, MO, USA). To remove the res-

idues, samples were centrifuged at 15,000 x g for 15 min at 5˚C, and the supernatants were

kept in microtubes at -20˚C until analysis.

The quantification of IgA was performed by an ELISA kit for canine IgA determination

(Bethyl Laboratories, Montgomery, TX, USA). Optical density (OD) was read at 450 nm with

a Microplate Reader (MRX TC Plus, Dynex Technology, Chantilly, Virginia, EUA). To calcu-

late the IgA concentration, the OD of the samples was compared to the OD of a standard with

a known concentration of IgA. The standard canine IgA sample was provided in the kit, and

seven dilutions of the standard were made in order to develop a regression curve between OD

and IgA amount. Samples were analyzed in duplicate, and the analysis was repeated when the

variation between replicates was greater than 10%.

TNF-α, IL-6 and IL-10 on blood serum

For analyses of tumor necrosis factor alpha (TNF-α) and interleukins 6 (IL-6) and 10 (IL-10),

on days zero and 30 blood samples (3 mL) were collected via jugular puncture and placed

in tubes without anticoagulant. Afterwards, the samples were centrifuged at 3,500 x g for 10

min (5810R; Eppendorf, Hamburg, Germany), and the serum was stored frozen at -80˚C until

analysis. The dosage was estimated using a Luminex kit specific to dogs, according to the man-

ufacturer’s recommendations (MILLIPLEX MAP ELISA Canine Cytokine / Chemokine Mag-

netic Bead Panel—Immunology Multiplex Assay—Merck Millipore, St Charles-Missouri-

USA).
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Phagocytic activity

Phagocytic activity was measured on days 0, 15 and 30 using a commercial kit (pHrodo E. coli
BioParticles, Molecular Probes Inc., Oregon, USA). Blood samples were collected by jugular

puncture and placed in heparinized tubes. Then, 100 μL of each sample was incubated with

20 μL of pHrodo E. coli BioParticles, a reagent provided by the commercial kit. For each blood

sample two tubes were prepared with the bioparticles; one was placed on ice, and the other

kept in a water bath at 37 ºC for 15 min. Next, the incubated samples were lysed, followed by

centrifugation and washing using the proper reagents as recommended by the manufacturer.

Two negative control samples were run together on each collection day, both tubes with no

bioparticles, but one placed on ice and the other kept at 37 ºC. Samples were analyzed using a

flow cytometer (FACSCanto, Becton Dickinson Immunocytometry System, Mountain View,

CA, USA), and the results were expressed as the percentage of fluorescence signal inside the

desired population of neutrophils and monocytes. The target cell population was gated accord-

ing to its volume and complexity [36].

Determination of hydrogen peroxide (H2O2) and nitric oxide (NO)

production

Blood samples (6 mL) were collected with heparin via jugular puncture and added to 4.5 mL of

Histopaque 1119 and 3 mL of Histopaque 1077 (Sigma Aldrich, St Louis, MO, EUA) in 15-mL

conical centrifuge tubes. Tubes were centrifuged at 700 x g for 30 min at room temperature.

After centrifugation, two distinct opaque layers separated, the mononuclear and granulocyte

cells. Each layer was collected separately, transferred to a 50-mL conical centrifuge tube and

washed at least twice with isotonic phosphate buffered saline by centrifugation at 360 x g for

10 min at room temperature. Erythrocyte lysis was conducted when necessary using 2 mL of

ACK (Ammonium-Chloride-Potassium) solution (0.15 M ammonium chloride; 10 mM potas-

sium bicarbonate; 0.1 mM EDTA) for a maximum of 2 min.

Cells were suspended in complete medium (RPMI 1640, Merck KGaA, Darmstadt, Ger-

man), added to 40 mg/mL gentamicin and 10% fetal bovine serum, and the concentration was

adjusted to 2 x 105 neutrophils or monocytes/mL. Then, suspensions were placed in 96-well

flat plates (100 μL/well). Mononuclear cells were kept at 37˚C in a humidified 5% CO2 incuba-

tor (Thermo Fisher Scientific, Waltham, MA, USA) for one hour for monocytes to adhere to

the well surfaces, then supernatants were carefully discarded with a pipette and complete

medium was added to each well. For monocytes, one plate was incubated for H2O2 production

analysis and one for NO production analysis. For neutrophils, the supernatant from H2O2 pro-

duction was used to conduct the NO analysis.

For H2O2 production, a total of 24 wells received 100 μL of sample; 12 of them were main-

tained as suspensions of nonstimulated cells, and the others 12 wells were stimulated with LPS

(1 μg/well—E. coli Lipopolysaccharide, Sigma Aldrich, St. Louis, USA). Plates were maintained

at 37˚C in a humidified 5% CO2 incubator for 36 hours. The H2O2 production was measured

as previously described [37,38]. Buffer solution (100 μL/well) consisting of 7.8 mL distilled

water (dH2O), 0.8 mL of solution A (800 mL dH2O, 80 g NaCl, 2 g KCl, 2 g KH2PO4, 11.5 g

Na2HPO4), 0.1 mL of solution B (100 mL dH2O, 1 g CaCl2), 0.1 mL of solution C (100 mL

dH2O, 1 g MgCl2), 0.1 mL of phenol red (100 mL dH2O, 1 g phenol red), 0.1 mL of peroxidase

(10 mg horseradish peroxidase, 2 mL PBS) and 1 mL of glucose (100 mL dH2O, 1 g glucose),

was added to each well. Phorbol myristate acetate (PMA, 10 μL/well) was added to half of the

nonstimulated wells and to half of LPS-stimulated wells and kept at 37˚C in a humidified 5%

CO2 incubator for one hour. Consequently, there were six replications for each cell condition:

six wells for nonstimulated cells, six wells for nonstimulated + PMA, six wells for LPS-
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stimulated cells, and six wells for LPS-stimulated cells + PMA. After one-hour incubation, the

reaction was stopped with 10 μL of 1 N NaOH. The absorbance was read in a microplate reader

(iMarkMicroplate Absorbance Reader 168–1135, Bio-Rad, Hercules, California, USA) at 595

nm. The results were expressed in μM amounts of H2O2/2x105 cells. A hydrogen peroxide

standard curve was constructed for each plate with a range of 0.25 to 16.00 nM of H2O2.

The NO production was assessed by the colorimetric method of the GRIESS reaction [39].

The analyses were conducted in six repetitions for nonstimulated cells and six repetitions for

LPS-stimulated cells (1 μg/well E. coli Lipopolysaccharide, Sigma Aldrich, St. Louis, USA),

totaling 12 wells per sample. One-hundred μL of GRIESS reagents diluted 1:1 (n-(1-naftil)-

etil-enediamin diluted 0.1% in dH2O, 1% sulfonamide diluted in 5% H2PO4, Sigma Aldrich, St

Louis, MO, USA) were added to the supernatant. The absorbance was read in a microplate

reader (iMarkMicroplate Absorbance Reader 168–1135, Bio-Rad, Hercules, California, USA)

at 540 nm. The results were expressed as μM amounts of NO/2x105 cells. An NO standard

curve was constructed for each plate with a range of 0.78 to 100 μM of NO.

Statistical analysis

All variables were previously tested for normality or errors using the Cramer-von Misses test

and for homoscedasticity using the Levene test. When necessary, logarithmic transformation

(log x + 1) or lambda transformation was applied. For the immunological parameters, data

were submitted to analysis of variance considering the effects of block, animal and diet. Differ-

ences among groups was detected at baseline, and for this reason the time 0 (baseline) was

used as a covariate. When results of the F-test were significant, multiple comparisons of the

means were made using Tukey’s test. Data obtained for nutrient digestibility, fecal parameters

and fermentation products were submitted to analysis of variance and, when significant, com-

pared by Tukey’s test (P<0.05). Values of P<0.05 were considered significant, and P<0.10 as a

trend. The analysis was conducted using the computer program R (version 3.3.3).

Results

Dogs showed proper food intake and maintained a constant body weight throughout the

experimental period, with no episodes of food rejection, vomiting, or diarrhea. The food intake

did not differ among diets (P>0.05). For the digestibility evaluation, DM intake was similar,

resulting in similar nutrient intake by the animals (Table 3). The total tract apparent digestibil-

ity of nutrients was similar, except that fat digestibility was lower for dogs fed the YCWs food

(P<0.05) than for CON. Feces production, DM, score and pH were also similar among treat-

ments (P>0.05), as shown in (Table 4).

For fermentation products, higher concentrations of butyrate (approximately 25% more)

and lower lactate (approximately 64% less) were verified in the feces of dogs fed the YCWs

than in the other two foods (P<0.05), and there were no other detectable differences (Table 5).

Only the biogenic amines putrescine, cadaverine, spermidine and phenylethylamine were

detected in significant amounts in the dog feces (Table 6). Among them, putrescine was

approximately 70% higher for dogs fed the YCWs than for those fed CON (P<0.05). Addition-

ally, the feces of dogs fed the YCWs diet tentend to present higher spermidine concentration

than CON (P = 0.096). The fecal concentration of IgA was similar between dogs fed the experi-

mental foods, as presented in (Table 7).

Among the evaluated cytokines (Table 8), dogs fed the YCWs diet exhibited lower IL-6

serum concentration than did animals fed the CON diet (P<0.05), but similar values in com-

parison with dogs fed the YCW food. Dogs fed the YCW diet tended to present lower IL-6 and

TNF-α values than animals fed the control food (P<0.10). No differences were detected for
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the other cytokines evaluated. No differences between diets were verified for H2O2 or NO pro-

duction for monocytes or neutrophils, as shown in (Table 9).

On day 30, the blood monocyte phagocytic index was 37% higher for dogs fed the YCW

than the control diet (P<0.05), while dogs fed the YCWs food showed intermediate results.

The neutrophil phagocytic activity of dogs did not differ among diets, having been elevated

since the beginning of the study (Table 10).

Discussion

Consistent with previous studies [40,41,42], the use of yeast cell wall was shown to be safe, as

no changes in fecal quality or clinical condition of the animals was observed during the experi-

mental period. The reduction of fat apparent digestibility after the consumption of the YCWs

treatment can be attributed to the elevated solubility in water of yeast cell wall, perhaps behav-

ing in the intestinal tract as a soluble and fermentable fiber that may interfere with fat absorp-

tion in dogs, as demonstrated by previous studies [43,44]. This effect on fat digestibility was

not observed for the conventional YCW preparation, in agreement with previous publications

on dogs [40,41]. The implications of the observed reduction in fat digestibility should be

Table 4. Feces production and characteristics of dogs fed diets with the addition of different yeast cell wall prepa-

rations (mean and standard error of the mean).

Feces Diets1 p-value
CON YCW YCWs

g/dog/day (as is) 75.6±8.6 81.5±19.3 86.0±15.3 0.697

g/dog/day (dry matter basis) 33.8±2.2 37.3±5.1 37.9±7.9 0.434

Dry matter (%) 45.1±3.8 46.1±3.1 44.5±6.2 0.782

Score 3.6±0.3 3.8±0.2 3.7±0.3 0.378

pH 6.8±0.2 6.9±0.1 6.8±0.1 0.172

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of

a yeast cell wall extract with 20% soluble mannan oligosaccharides.

https://doi.org/10.1371/journal.pone.0225659.t004

Table 3. Body weight (kg), nutrient intake (g/dog/day) and coefficients of total tract apparent digestibility (%) of

nutrients of diets for dogs with the additions of different yeast cell wall preparations (mean and standard error of

the mean).

Item Diets1 p-value
CON YCW YCWs

Body weight (kg) 11.6±0.1 11.7±0.1 11.6±0.1 0.677

Nutrient intake (g/dog/day)

Dry matter 160.4±11.3 170.6±12.9 163.2±9.8 0.317

Coefficient of total tract apparent digestibility (%)

Dry matter 80.4±1.2 79.7±1.7 78.5±3.9 0.437

Organic matter 85.5±0.9 85.0±1.3 84.0±3.0 0.398

Crude protein 85.1±2.1 84.0±2.3 83.1±3.0 0.274

Fat 94.3±0.6a 92.4±1.6ab 91.6±2.1b 0.014

Gross energy 85.3±1.0 84.8±1.7 84.8±2.8 0.847

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of

a yeast cell wall extract with 20% soluble mannan oligosaccharides.
a, b = means in a row without a common superscript letter differ (P<0.05).

https://doi.org/10.1371/journal.pone.0225659.t003
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explored in future studies, including its use in low energy foods, but the magnitude of the fat

digestibility reduction was low and its relevance to canine nutrition uncertain.

The experimental diets were formulated with sugarcane fiber, composed of approximately

45.8% cellulose, 28.1% hemicellulose and 9.3% lignina [45], an insoluble fiber source with very

low fermentability [8,30] that was selected to not interfere with SCFA production. Under this

condition, the intake of the more soluble yeast cell wall preparation, higher in soluble mannan

oligosaccharides, changed the metabolism and fermentation products generated by the gut

microbiota, as evidenced by higher fecal butyrate and putrescine and lower fecal lactate than

in the other treatments. A higher production of SCFA, and especially of butyrate, is one of the

outcomes expected from an effective prebiotic [13,46,47], suggesting an advantage for the

YCWs. It is interesting that the traditional YCW, which is more insoluble, did not interfere

Table 5. Volatile fatty acids (mMol/g of dry matter), ammonia and lactic acid concentration (mMol/kg of dry matter) on the feces of dogs fed diets with the addition

of different yeast cell wall preparations (mean and standard error of the mean).

Item Diets1 p-value
CON YCW YCWs

Acetic acid 230.3±50.0 218.4±30.3 230.0±55.2 0.851

Propionic acid� 111.4±22.6 101.9±18.9 108.1±27.7 0.739

Butyric acid 46.8b±4.9 43.7b±6.4 55.6a±7.1 0.004

Isobutyric acid 10.1±1.4 9.6±1.0 10.2±2.4 0.808

Isovaleric acid 14.3±2.1 12.7±1.8 14.6±2.7 0.301

Valeric acid 2.7±1.2 3.5±1.5 3.4±1.1 0.138

Total VFA2� 417.9±79.0 389.8±51.0 421.9±87.5 0.775

Total SCFA3� 390.8±76.3 364.0±49.0 393.7±86.7 0.801

Total BCFA4 27.1±3.8 25.8±3.9 28.2±4.6 0.595

Ammonia 194.5±24.8 174.4±20.4 196.1±32.0 0.171

Lactic acid� 2.7a±0.7 2.9a±0.8 1.7b±0.3 0.010

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of a yeast cell wall extract with 20% soluble mannan

oligosaccharides.
2: VFA = volatile fatty acids.
3: SCFA = short-chain fatty acids.
4: BCFA = branched-chain fatty acids.

� Values transformed to Log x + 1 or γ for statistical analysis.
a, b = means in a row without a common superscript letter differ (P<0.05).

https://doi.org/10.1371/journal.pone.0225659.t005

Table 6. Biogenic amines concentration (mg/100 g of dry matter) on the feces of dogs fed diets with the addition of different yeast cell wall preparations (mean and

standard error of the mean).

Item Diets1 p-value
CON YCW YCWs

Putrescine� 9.8±4.9b 12.3±6.3ab 22.3±12.9a 0.035

Cadaverine� 4.2±3.9 3.3±1.5 5.2±3.8 0.469

Spermidine 2.3±1.2 3.0±1.4 3.4±1.6 0.096

Phenylethylaminev 0.9±0.8 1.1±0.8 1.1±0.8 0.286

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of a yeast cell wall extract with 20% soluble mannan

oligosaccharides.

� Values transformed to Log x + 1 or γ for statistical analysis.
a, b = means in a row without a common superscript letter differ (P<0.05).

https://doi.org/10.1371/journal.pone.0225659.t006
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with fermentation end-products formation; these data indicate that the solubility of the carbo-

hydrate fractions of the yeast cell wall may be a key factor for product interaction with the gut

microbiota.

In addition to its role as a source of energy for colonocytes, butyrate has been explored for

its ability to directly affect cell growth and differentiation and to reduce cell inflammation

[1,48,49]. In different cellular and animal models, butyrate reduced inflammation and

improved the barrier function of the gut, reducing the production of proinflammatory cyto-

kines [50,51,52]. Therefore, increased butyrate concentration is generally associated with

improved health [53,54] and is one of the main objectives of prebiotic supplementations of

diets.

Lactate is also produced as a result of carbohydrate fermentation by colon microbiota [55];

however, it does not exhibit a cumulative effect, as it is a substrate for several bacteria that uti-

lize it, producing propionate and butyrate [56]. Thus, lactate concentrations may be inter-

preted considering the rates of production and consumption [56], which can explain the lower

lactate and higher butyrate concentrations for dogs fed the YCWs diet. This altered the buty-

rate-to-lactate ratio, also exemplifying the impact of the YCWs on gut microbiota metabolism.

Amines are mainly formed through the decarboxylation of amino acids by the microorgan-

isms of the gastrointestinal tract [57]. The fecal concentrations of amines observed in the pres-

ent study are comparable to those previously reported in dogs [19,40,58,59], although the

interpretation of amine concentrations in dog feces is difficult, due to the very limited infor-

mation available regarding normal or desired levels [41]. In the present study, as the protein

source (a possible source of amines) in diets was the same, the increased putrescine concentra-

tion (and the tendency of increased spermidine) may be explained by higher intestinal forma-

tion after the intake of the YCWs. Putrescine is produced by the decarboxylation of ornithine

and arginine and, in turn, is progressively metabolized to spermidine, justifying the concomi-

tant increase of both amines [60]. A previous study in our laboratory did not find an effect of

Table 7. Immunoglobulin A concentration (mg/g of dry matter) on the feces of dogs fed diets with the addition of

different yeast cell wall preparations (mean and standard error of the mean).

Item Diets1 p-value
CON YCW YCWs

IgA� 3.1±1.4 3.7±1.3 2.5±1.5 0.945

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of

a yeast cell wall extract with 20% soluble mannan oligosaccharides.

� Values transformed to Log x + 1 or γ for statistical analysis.

https://doi.org/10.1371/journal.pone.0225659.t007

Table 8. Serum cytokines concentrations (pg/mL) of dogs fed diets with the addition of different yeast cell wall preparations (mean and standard error of the

mean).

Item Diets1 p-value
CON YCW YCWs

IL-6� 39.9a±8.8 22.7ab±9.5 21.0b±8.5 0.025

IL-10� 26.1±6.1 32.0±6.1 22.9±6.0 0.900

TNF-α� 37.1±10.0 24.1±10.3 33.8±10.1 0.081

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of a yeast cell wall extract with 20% soluble mannan.

� Values transformed to Log x + 1 or γ for statistical analysis.
a, b = means in a row without a common superscript letter differ (P<0.05).

https://doi.org/10.1371/journal.pone.0225659.t008
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yeast cell wall on fecal amine concentrations [41], reinforcing the lack of effect of the YCW

diet in the present study, and suggesting that the soluble mannan oligosaccharides fraction of

the YCWs in fact altered the fermentation profile of the gut microbiota.

Several favorable and harmful physiological processes involve the action of amines, espe-

cially the polyamines [61]. They are present in all living cells and are necessary for the normal

development and repair of intestinal mucosa cells [62,63]. However, their activity has also

been associated with the incidence of colorectal cancers [64], and high concentrations are

related to inflammation, oxidative stress and genotoxicity [65]. Therefore, a significant reduc-

tion of polyamine concentrations in the intestinal lumen is not interesting, since the poly-

amine depletion (intracellular) directly affects the apoptosis of epithelial cells [40]; however,

high amounts may also be undesirable. In a study with dogs in different age groups, higher

Table 9. Hydrogen peroxide (H2O2; μM of H2O2/2x105 cells) and nitrogen oxide (NO; μM of NO/2x105 cells) production in cell cultures of monocytes and neutro-

phils from the peripheral blood of dogs fed diets with the addition of different yeast cell wall preparations (mean and standard error of the mean).

Item Diets1 p-value
CON YCW YCWs

H2O2 –Monocytes2

Phorbol myristate acetate 2.0±0.2 2.0±0.2 2.1±0.2 0.921

Phorbol myristate acetate + Lipopolysaccharide 2.3±0.2 2.3±0.2 2.0±0.2 0.443

H2O2 –Neutrophils

Only cells 0.5±0.1 0.5±0.1 0.8±0.1 0.118

Lipopolysaccharide 0.6±0.1 0.7±0.1 0.6±0.1 0.843

Phorbol myristate acetate 5.0±1.0 5.0±0.9 3.7±0.9 0.545

Phorbol myristate acetate + Lipopolysaccharide 3.2±0.6 4.4±0.6 3.0±0.5 0.161

NO–Monocytes

Only cells 4.4±1.2 3.5±1.3 8.0±1.6 0.185

Lipopolysaccharide 5.8±1.7 6.0±1.7 4.3±1.7 0.806

NO–Neutrophils

Only cells� 11.4±4.1 9.8±4.1 10.7±3.9 0.594

Lipopolysaccharide� 15.3±4.8 13.2±5.1 13.5±4.8 0.671

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of a yeast cell wall extract with 20% soluble mannan.
2 –For monocytes, the results of only cells and lipopolysaccharide were below the detectable limit of H2O2.

� Values transformed to Log x + 1 or γ for statistical analysis.

https://doi.org/10.1371/journal.pone.0225659.t009

Table 10. Monocyte and neutrophils phagocytic index (% of positive cells) from dogs fed diets with the addition of different yeast cell wall preparations (mean and

standard error of the mean).

Item Diets1 p-value
CON YCW YCWs

Neutrophils

Day 15� 89.1±2.4 89.9±2.4 92.1±2.4 0.807

Day 30 84.9±1.6 88.9±1.6 87.7±1.6 0.189

Monocytes

Day 15� 47.6±2.0 48.2±1.8 49.8±1.8 0.579

Day 30 54.8b±3.9 74.7a±3.8 64.4ab±3.8 0.010

1 CON = control, without yeast cell wall addition; YCW = 0.3% of a standard yeast cell wall extract; YCWs = 0.3% of a yeast cell wall extract with 20% soluble mannan.

� Values transformed to Log x + 1 for statistical analysis.
a, b = means in a row without a common superscript letter differ (P<0.05).

https://doi.org/10.1371/journal.pone.0225659.t010
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putrescine, cadaverine, and spermine were observed in feces of older dogs compared to adult

dogs, and higher spermidine was found in feces of dogs fed a diet based on soybean meal,

which was linked by the authors to a higher IgA content in feces and better intestinal health

[3].

IgA was evaluated in the present study, as it is an important marker of the mucosal immu-

nity status [42,66], representing an essential factor in the protection against infectious agents,

allergens and foreign proteins [3,67,68,69]. The main function of secretory IgA is to prevent

bacteria and viruses from attaching and invading enterocytes [70,71]. The evaluation of this

immunoglobulin is also of interest to clinicians to assess specific responses to antigens or in

the diagnosis of IgA deficiency [66]. Studies with newborn animals have shown an effect of

YCW on IgA secretion [72], differing from the present results. Perhaps the use of animals with

mature immunity and the lack of immunological challenge in the present study may have

interfered with the evaluation of the possible effect of the yeast cell wall preparations on the

secretion of IgA, as also observed when the prebiotic resistant starch was evaluated in healthy

adult dogs [73].

Cytokines was only evaluated after 30 days of diet intake, and due this was not possible to

evaluate the kinetic of these compounds. The reduced IL-6 in serum of dogs fed the YCWs

diet may also result, at least partially, from the higher butyrate formation in the intestine. Buty-

rate appears to be more potent than acetate or propionate in inducing immunomodulatory

effects, as it affects the activity of histone deacetylases, which are responsible for decreasing the

secretion of IL-12 and IL-6 cytokines by dendritic cells and allow dendritic cells to enhance

mucosal regulatory T-cells [74]. However, a tendency for lower IL-6 and TNF-α in serum was

also verified for dogs fed the YCW diet, which did not alter SCFA fecal concentration. These

data corroborate findings of other researchers [75], which evaluated the action of a yeast cell

wall fraction called "mannoprotein", added to a liquid diet for rats with Salmonella infection.

The authors also found lower expression of TNF-α and IL-6 mRNA in the jejunum, ileum and

colon tissues in the treatment groups and concluded that yeast cell wall derivates may lower

the inflammatory response, protecting the intestinal tissue. Therefore, one may speculate that

YCW may have a direct action on intestinal cells, reducing proinflammatory cytokines, in a

mechanism independent of SCFA formation.

The increase in peripheral monocyte phagocytic activity in dogs fed the YCW diet was rele-

vant, as this phenomenon is an important criterion for evaluating innate immunity [76,77].

Phagocytic cells act as the first line of defense against microorganisms [78], with monocytes

being the key mediators of the early inflammatory response to infection. Considering the lack

of changes in fermentation products in feces, it is possible to attribute this effect to a direct

interaction of the mannan oligosaccharide or the b-1.3/1.6 glucan fractions of the YCW with

the dendritic cells of the intestinal mucosa [79,80] which could demonstrate the ability of the

YCW to modulate the immune system directly [49]. The ability of b-glucans to increase mono-

cyte and neutrophil phagocytic percentages is well demonstrated for several species, including

dogs [77,81,82]. However, a direct interaction of the mannan oligosaccharide fraction and the

immune system has also been described [83,84] and cannot be excluded.

Peripheral blood mononuclear and polymorphonuclear (neutrophils) cells are traditionally

used to evaluate in vitro responses of blood-derived immune cells to various antigens [85].

Although in the present study cells were stimulated by lipopolysaccharide and phorbol myris-

tate acetate and substantially increased H2O2 and NO production, no diet effect was verified.

Several studies regarding dietary intervention also found no effect on H2O2 or NO production

[65,85]. The procedure is laborious, expensive and requires large volumes of blood to obtain

the appropriate number of cells. In addition, cell sorting can stimulate cells and lead to loss of

specific populations, leading to results that may not reflect the condition in vivo [85].
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Some limitations of the present study may need to be considered. Only healthy dogs were

used, and the period of dietary intake was not previously studied to determine if it was suffi-

cient to express the complete effects of both yeast cell wall preparations. Consequently, possible

differences between groups in the immunological system and microbiota metabolism could

not be observed, and the long-term effects of the products are not known.

Conclusion

Under the conditions of the present research, positive immunomodulatory effects were veri-

fied for both yeast cell wall preparations. The addition of YCWs to an extruded diet changed

intestinal microbiota metabolism, as verified by increased butyrate and putrescine and reduced

lactate. YCWs in the diet also reduced inflammatory markers, which was verified by a reduc-

tion of serum IL-6 in dogs. The conventional YCW also tended to reduce IL-6 and TNF-α,

and stimulated innate immunity, verified by an increase in peripheral monocyte phagocytic

activity.
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47. Santos JPF, Aquino AAA, Glória MBA, Avila-CampoS MJ, Oba PM, Santos KM, et al. Effects of dietary

yeast cell wall on faecal bacteria and fermentation products in adult cats. J Anim Physiol Anim Nutr.

2018; 102(4): 1–11. https://doi.org/10.1111/jpn.12918 PMID: 29761557

48. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria:

Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016; 7: 979. https://

doi.org/10.3389/fmicb.2016.00979 PMID: 27446020

49. Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer A, et al. Prebiotic potential of pectin and

pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS

Microbiology Ecology. 2017; 93(11): 1–9. https://doi.org/10.1093/femsec/fix127.

50. Inan MS, Rasoulpour RJ, Yin L, Hubbard K, Rosenberg DW, Giardina C. The luminal short-chain fatty

acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology,

2000; 118(4): 724–734. https://doi.org/10.1016/s0016-5085(00)70142-9 PMID: 10734024

51. Yin L, Laevsky G, Giardina C. Butyrate Suppression of Colonocyte NF-κB Activation and Cellular Pro-

teasome Activity. Journal of Biological Chemistry. 2001; 276(48): 44641–44646. https://doi.org/10.

1074/jbc.M105170200 PMID: 11572859

52. Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD. Butyrate Supplementation at High Concen-

trations Alters Enteric Bacterial Communities and Reduces Intestinal Inflammation in Mice Infected with

Citrobacter rodentium. mSphere. 2017. 2(4): 1–21. https://doi.org/10.1128/mSphere.00243-17.

53. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014. Chapter Three–the role of

short-chain fatty acids in health and disease. Adv. Immunol. 121: 91–119. https://doi.org/10.1016/

B978-0-12-800100-4.00003-9 PMID: 24388214

54. Rı́os-Covı́an D, Ruas-Madiedo P, Margolles A, Gueimonde M, Reyes-Gavilán CG, Salazar N. Intestinal

short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016; 7: 185. https://

doi.org/10.3389/fmicb.2016.00185 PMID: 26925050
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