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Abstract: Classification is one of the main problems of machine learning, and assessing the quality of
classification is one of the most topical tasks, all the more difficult as it depends on many factors. Many
different measures have been proposed to assess the quality of the classification, often depending
on the application of a specific classifier. However, in most cases, these measures are focused on
binary classification, and for the problem of many decision classes, they are significantly simplified.
Due to the increasing scope of classification applications, there is a growing need to select a classifier
appropriate to the situation, including more complex data sets with multiple decision classes. This
paper aims to propose a new measure of classifier quality assessment (called the preference-driven
measure, abbreviated p-d), regardless of the number of classes, with the possibility of establishing
the relative importance of each class. Furthermore, we propose a solution in which the classifier’s
assessment can be adapted to the analyzed problem using a vector of preferences. To visualize the
operation of the proposed measure, we present it first on an example involving two decision classes
and then test its operation on real, multi-class data sets. Additionally, in this case, we demonstrate
how to adjust the assessment to the user’s preferences. The results obtained allow us to confirm that
the use of a preference-driven measure indicates that other classifiers are better to use according to
preferences, particularly as opposed to the classical measures of classification quality assessment.

Keywords: classification measure; quality of classification; quality measure; preference-driven
classification; machine learning

1. Introduction

Classification continues to be one of the most important subjects in machine learning.
Despite this, we still lack a general measure of quality independent of the specific charac-
teristics of the data set. Moreover, in the situations where there is a necessity to involve
the human decision maker in the classification process, we are forced to switch between
different measures. Among the general ones, there are accuracy, precision or recall, and
others that are data-dependent. Choosing the right (optimal) one is especially important
because choosing a particular classification method depends heavily on the calculated
quality measures.

Moreover, there is no single best classification measure that effectively identifies the
method suitable for every task. Classification algorithms/methods have many character-
istics. Consequently, there are many measures of classification because there is no single
measure covering all the characteristics simultaneously [1]. Thus, finding an appropriate
classification measure for a specific task is difficult and requires answering the question of
what conditions, in specific circumstances, must be met by the measure.

One of the ways to bypass the problem of unambiguous assessment of the classifier’s
quality and selecting one best-suited classifier is ensemble and hybrid methods, which
simultaneously use many different algorithms to perform a specific task. Within this ap-
proach, we can point out the homogeneous and heterogeneous solutions [2]. In the first
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group, we can find methods allowing us to create large groups of classifiers belonging to
the same category (or even classifiers generated with the same method, but with different
starting parameters), which allow the classification process simultaneously. The heteroge-
neous approach involves using a large variety of classifiers, for which the main advantage
is the diversity of obtained results. Thus, the basic idea of these methods is the idea of
collective decision making [3].

One should note that the above approach based on the ensemble methods allows
for more robust classifier selection. However, it still leaves the decision maker with the
problem of estimating the classification quality. In medicine, military or finance, the
well-known accuracy measure seems to derive unsatisfactory results and present limited
usability [4,5]. On the other hand, measures such as recall or precision are directed towards
the binary classification problem. Most of the proposed measures are directly connected to
the confusion matrix and related absolutely to the numerical outcome of the classification [6].
In most cases, it is strongly needed, but it makes the whole process independent of the
user’s preferences. In the decision-making context, taking them into account may be
vital to make the process effective and at the same time maintain the sovereignty of the
decision maker.

Incorporating users in the process of preparing a machine learning solution is an
essential element of the entire procedure, the subject of many studies, and can take various
forms [7,8]. One of the goals of the actions taken is to help the user to choose a suitable
classifier. Most often, this task comes down to comparing simple measures of classification
quality, which is usually carried out by trial and error, and yet can be unreliable [9]. This
task becomes even more complicated if individual users’ preferences are to be taken into
account. This applies especially to issues of a managerial nature, but more generally
wherever a human being to some extent participates in the decision-making process. In
practice, this applies to all issues except physical or technical ones, where only objective
laws are in force [10]. The main intention of introducing the new measure is to make this
stage of a research procedure more methodical. To the best of our knowledge, there are
no clear guidelines for taking into account the parameters in the learning process and the
selection of a classifier in conjunction with individual preferences. The next issue is the
systematic classification into the following application areas, thus expanding the group
using machine learning methods. Finally, some users need a tool to control the process
of selecting a classifier for their own needs, which are more complex and related to many
classes. For such users, a measure that allows them to simply, directly, and methodically
include their preferences in selecting and training the classifier would be very beneficial.

To cope with the above drawbacks, and at the same time maintain the role of the
decision maker in the process, we propose the idea of a new measure in which their
preferences are vital to the importance of individual classes. We aim to propose a measure
that balances a thorough analysis of the classifier’s performance and the selection of the
classifier that performs best under the conditions (preferences) specified by the user.

The main intention of introducing the new measure is to make this stage of the research
procedure more methodical. Users need a tool with which they will be able to select a
classifier for their own needs, which are more complex and related to many classes. A
measure that allows them to directly and methodically include their preferences in selecting
and training the classifier would be very beneficial for such users.

We undertook to propose such a measure because, to the best of our knowledge, there
is no reasonable alternative where, for any number of decision classes, it is possible to
aggregate the quality of classification depending on the weight for a particular decision
class. First, our solution was discussed in detail on prepared examples for two decision
classes. It was then tested on real-world data sets and re-examined for a more significant
number of decision classes that occurred in these data sets.

This article is organized as follows. Section 1 introduces the subject of this article.
Section 2 provides an overview of the work related to the classification, particularly the
measures for assessing the quality of the classification. In Section 3, we describe the
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classification problem and the classification quality assessment measures based on the error
matrix for binary and multi-class classification. In Section 4, we present a new measure for
classification, in which it will be possible to control preferences. In Section 5, we present the
analysis of our research on real data sets. Finally, in Sections 6 and 7, we discuss the results
of the experiments and end with general remarks on this work and available directions for
future research.

2. Related Works

Evaluating the classification performance is a difficult task, and the discussion on this
topic arose from the beginning of work on automatic classification. The initial set of five mea-
sures (sensitivity, specificity, efficiency, positive and negative predictive value) was rapidly
expanded [11]. The most often used measure of classification performance is accuracy. However,
it is not the only measure of the quality of predictive models. Despite optimizing the classifi-
cation error rate, high-accuracy models may fail to capture crucial information transfer in the
classification task [12,13]. Despite the simplicity and intuitive interpretation, there are many
reasons and situations in which accuracy should not be used [14]. Instead, the authors advocate
for using Cohen’s kappa as a better meter for measuring classifiers’ own merits than accuracy.
Moreover, [15] indicates that the most frequently used measures, which focus on correctly
classified cases (precision, recall, or F-score), do not meet the needs of various decision-making
situations, especially when more than one class is essential. The authors advocate for using three
other measures—Youden’s index, likelihood, and discriminant power—because they combine
sensitivity and specificity and their complements.

While most studies concern binary classification, in [16], the authors focused on
multi-class classification problems. The authors showed that the extension of measures
to the classification of many classes is associated with averaging the results achieved for
individual classes in most cases. Finally, in [17], the authors point out some shortcomings
of the accuracy measure and list five conditions that the newly constructed discriminator
metric should meet.

To solve the dilemma related to the choice of a measure for a given problem, a list
of desired features of an ideal measure and analysis of the most known measures was
proposed in [1]. More importantly, they proved that it is impossible to satisfy them simulta-
neously. They also proposed a new family of measures (Generalized Means) that meet all
desirable properties except one, and a new measure called Symmetric Balanced Accuracy.

A comparative analysis and taxonomy of the quality of classification measures have
been the subject of many studies. For instance [18], in their experimental comparison con-
ducted on 30 data sets, proposed dividing the performance measures into three categories:

• Measures based on a threshold, such as accuracy, modified accuracy measure, F-
measure, or Kappa statistic, which are used to minimize the number of errors in the
model. They are based directly on a confusion matrix, and they are widely used in
many classification tasks. One should note that the overall efficiency of these measures
is strictly related to the quality of the data. However, some measures, such as accuracy,
can be less effective in the case of unbalanced data sets.

• Measures based on a probabilistic approach to understanding error, i.e., measuring
the deviation or entropy information between the actual and predicted probability,
such as mean absolute error, mean square error (Brier score), LogLoss (cross-entropy).
These measures are useful in measuring the probability of selecting the wrong class,
which is essential in ensemble methods or for a committee of classifiers.

• Measures based on the model’s ability to correctly rank cases include ROC, AUC,
the Youden index, precision–recall curve, Kolmogorov–Smirnov, or lift chart. They
are helpful when indicating the best n occurrences in a data set or when good class
separation is needed. They are widely used in recommendation systems, design
marketing campaigns, fraud detection, spam filtering, and more.

In a survey [19], the authors grouped the measures depending on the type of outcome
on which a given measure is focused (correct or incorrect outcome). In turn, [20] presents an
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in-depth analysis of over twenty performance measures used in different classification tasks
in the context of changes made to a confusion matrix and their relations with particular
measures (measure invariance). In contrast, a comparative study of two or more classifiers
based on statistical tests was presented in [21]. A comprehensive analysis of the methods
and measures of classification assessment is also included in [22], where the relationships
between all measures calculated based on the confusion matrix are shown. Finally, a
different approach to the analysis of performance measures was presented in [23]. First, the
authors grouped classification measures according to classification difficulty, which they
defined in relation to a distance between the boundary lines and each correctly classified
case. The authors later developed their idea and proposed an instance-based measure
for calculating the performance of classification from the perspective of instances, called
degree of credibility [24].

The set of measures is constantly growing. For instance, in [25] was proposed a
measure that compares classifiers, which combines three measures from different groups:
Matthews correlation coefficient as a measure, which is calculated from both true and false
positives and negatives, and AUC (area under the curve), derived from ROC and accuracy.
To overcome the shortcomings of the accuracy measure in evaluating multi-class classifiers
and to improve the quality of classifiers, in [26], the authors proposed a metric based on
the combined accuracy and dispersion values. They also showed experimentally that this
two-dimensional metric is particularly suitable in complex, unbalanced data sets and with
many classes.

The new measures are also proposed to supplement the already used measures that
work better for specific tasks. For example, [27], as an alternative to measures used in medi-
cal diagnostics, which use only part of the values from the error matrix, define the measure
AQM, which takes into account all values from the confusion matrix. Similarly, in [28], for
image analysis, a new measure of classification performance called robust-and-balanced
accuracy was introduced. It aims to connect balanced accuracy with measures of variations.
In another proposition, to improve face recognition processes, a new classification measure,
called the volume measure, based on the volume of the matrix, was proposed [29]. In turn,
a measure dedicated to the analysis of imbalanced data sets based on the harmonic mean
of recall and selectivity was proposed in [30].

Existing measures are also modified. For example, in [31], the F∗ measure was pro-
posed as a modification of the F-score, towards the more straightforward interpretation of
this measure. The above short review shows that the issue of classification measures is con-
stantly under the attention of researchers. Moreover, for specific applications, new measures
are created that are better suited to the requirements of the domain or user preferences.

3. Classification and Quality Evaluation

Formally, the classification problem Q can be solved using empirical experience W,
while the quality of the solution is estimated by the quality measure Y. The value of Y
should be increasing, while the experience W rises as well [32].

In machine learning, classification refers to the prediction problem of determining
the class to which samples from a data set will be assigned. A classifier algorithm (often
shortened to “a classifier”) must be provided with training data with labeled classes. Then,
the classifier can predict classes for new test data based on the training data. This approach
is called supervised machine learning, and classification is one example of such a method.
The training set is selected as a subset of the whole data set. A typical approach is to divide
the known examples into a train and test set, following some general principles about the
ratio of the two. Eventually, the test set includes a far smaller number of samples than the
training set (preferably, the test set and training set should be disjoint). Test set is used to
evaluate classification quality. Every object (also called a sample or observation) from the
training data is assigned some predefined label (decision class). The idea is to build such
a classifier, which assigns the proper labels for the objects. In contrast, the evaluation is
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performed on the training set, where the difference between the assigned and the actual
label is estimated.

Classification algorithms for a prediction problem are evaluated based on performance.
Multiple measures for assessing classification quality can be used depending on the situa-
tion. One of the most commonly used measures is accuracy, which determines how many
samples from the entire data set were correctly classified into the appropriate classes. Often,
other measures are used in addition to accuracy that more accurately assess the classifier’s
performance. Such measures primarily include precision and recall. Unfortunately, there
are many problems in which classical measures are insufficient, and it is necessary to look
for new solutions.

Let us consider a set of all available samples (called the universe of objects) X, which
will include n number of objects:

X = {x1, x2, . . . , xi, . . . , xn}, (1)

A single observation xi will be described by a finite set of attributes and the decision
attribute:

a1, a2, . . . , am, (2)

where aj ∈ Aj, j = 1, . . . , m. In this context, Aj denotes the domain of the j-th attribute,
while features a1, a2, . . . , am create a feature space A1 × A2× . . .×Am.

There are no general restrictions related to the values of attributes, which can be quan-
titative or categorical. However, one should note that preprocessing allows for discretizing
selected quantitative attributes. The same procedure can be applied to the decision classes,
where many labels can be merged into fewer during the discretization process (trade-off
between the quality of classification and classification speed). Thus, the single sample can
be described as follows:

xi = (~Vi, ck), vj
i ∈ Aj, ck ∈ {1, . . . , C}, (3)

where ~Vi = [v1
i , . . . , vm

i ] is a vector in an m-dimensional feature space, vj
i is the value of

attribute aj for observation (sample) xi, and ci is the class label (also called the decision
class) of this object. Thus, the universe X can be formally described as:

X : {(~Vi, ci)}n
i=1. (4)

Hence, the classification problem can generally be understood as the assignment
problem, where every element xi from the universe X should have the decision class ci
assigned. Eventually, we end with the classifier capable of assigning the newly arrived
objects from the test set into proper decision classes. However, even in the case of the binary
classification problem, the above is not trivial. It can be challenging to achieve when, for
example, we observe unbalanced data (i.e., the situation in which most of the objects from
universe X are assigned to a single class). Therefore, many different estimation methods
were proposed (both to binary and multiple-class classification problems) to cope with this.
Next, this section discusses various classification measures capable of dealing with both
mentioned classification problems.

3.1. Quality Assessment and Binary Confusion Matrix

A confusion matrix is among the most popular tools used in the process of the valida-
tion of the quality of performed classification. The confusion matrix for a binary decision
class is defined as a table with different combinations of predicted and actual values related
to the decision classes [33,34]. The rows contain existing classes, while the columns contain
predicted classes. The diagonal of the confusion matrix includes the correctly classified
samples for both classes, while the off-diagonal cells represent the errors (misclassified
samples for both decision classes). The confusion matrix represents the errors that the
classifier makes and shows the type of these errors. It represents a detailed breakdown of
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the answers considering the number of correct and incorrect classifications for both classes.
It is imperative when the cost of misclassification is different for these classes and when the
size of the classes is different [35].

For the binary classification (e.g., classification of emails and spam or sick and healthy
patients), see Table 1, where the prediction of a positive class (labeled 1) and a negative class
(labeled 2) can be uniquely determined. Such a situation indicates whether the classifier is
more likely to incur an error by assigning a positive class as a negative class or vice versa.
In Table 1, the confusion matrix for the binary classifier is shown, where:

• TP (true positive)–samples classified as predicted class 1, which are samples of actual
class 1;

• FN (false negative)–samples classified as predicted class 2, which are samples of actual
class 1;

• FP (false positive)–samples classified as predicted class 1, which are samples of actual
class 2;

• TN (true negative)–samples classified as predicted class 2, which are samples of actual
class 2.

Table 1. Confusion matrix for binary classification.

Predicted Class 1 Predicted Class 2

Actual class 1 TP FN
Actual class 2 FP TN

The quality of classifiers is measured based on a confusion matrix (as shown in Table 1).
Measures based on the confusion matrix include, but are not limited to, accuracy, precision,
recall, and F-score (also called F1, which is the measure Fβ for which β = 1). In addition,
the Matthews correlation coefficient (MCC) measure and BalancedAccuracy are also often
used for binary classification.

The accuracy measure indicates how often a classifier makes a correct prediction. It is
the ratio of the number of accurate predictions to the total number of predictions and is
calculated based on Formula (5).

accuracy_binary =
TP + TN

TP + FP + FN + TN
(5)

Precision determines how many samples, out of all those classified as positive, are
samples of the positive class. Precision is expressed by Formula (6).

precision_binary =
TP

TP + FP
(6)

Recall is used to determine how many samples belonging to a positive class were
classified as positive by the classifier. Recall is determined by Formula (7).

recall_binary =
TP

TP + FN
(7)

For binary classification, the measure Fβ is defined as the harmonic mean of precision
and recall, where additional precision or recall weights are used to obtain more accurate
results. By setting the value of β, it is possible to control the effect of recall weight with
respect to precision. Fβ is specified by Formula (8), where β is the number of times the
recall is as important as the precision [36]. The Fβ value ranges from 0 to 1 (with 0 being
the worst value and 1 being the optimal value). The most common value for β is 1, which
simply means measure F1 (Equation (9)). Other frequently used values are 2 and 0.5. In
the case of 2, recall weight is greater than precision; however, in the case of 0.5, recall
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weight is less than precision. The Fβ measure is based on the Van Rijsbergen measure of
effectiveness [37].

Fβ = (1 + β2)× precision_binary× recall_binary
β2 × precision_binary + recall_binary

(8)

The F1 measure is the instance of the measure Fβ (Equation (8)), for which β = 1. The
F1 measure is defined as the harmonic mean of precision and recall [38]. Therefore, F1 will
only take on a high value if both of its components reach a high value. The F1 measure
often replaces precision when class counts are unbalanced [39]. For example, if 97% of the
data belong to class 1 and only 3% belong to class 2, then classifying all observations as
class 1 would yield a misleading accuracy of 97%. The F1 measure is based on precision and
recall, and is thus robust to such distortions. The measure is calculated from Formula (9).

F1_binary = 2× precision_binary× recall_binary
precision_binary + recall_binary

=
TP

TP + 1
2 (FN + FP)

(9)

The Matthews correlation coefficient (MCC) measure is often used for unbalanced
data [40]. For the precision, recall, and F1 measures, the TN value is not used, which is
very important if we are interested in both classes. Therefore, the Matthews correlation
coefficient, calculated based on all terms from the confusion matrix, can be used. The MCC
measure is calculated from Formula (10).

MCC_binary =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

The MCC value ranges within [−1 . . . 1] (with −1 equal to the misclassification of
all samples, while a value of 1 means that all samples are correctly classified). Therefore,
the higher the correlation between actual and predicted values, the better the prediction.
Furthermore, for the MCC measure, the two classes have the same importance weight, so
when positive classes are swapped with negative classes, the MCC value will be the same,
which means that the MCC measure is symmetric [40].

Another measure in binary classification is the BalancedAccuracy measure, which
calculates balanced accuracy for anomaly or disease detection, where significant differences
in the class size are observed [41]. Overestimated accuracy results can be avoided using the
BalancedAccuracy measure for unbalanced classes. For binary classification, the balanced
accuracy equals the arithmetic mean of the recall and specificity. The BalancedAccuracy
measure is calculated by Formulas (11) or (12).

BalancedAccuracy_binary =
recall_binary + speci f icity_binary

2
(11)

BalancedAccuracy_binary =
1
2

(
TP

TP + FN
+

TN
FP + TN

)
(12)

Specificity is used to determine the number of samples belonging to a negative class
that have been classified as negative by the classifier [42]. Specificity is measured by
Formula (13).

speci f icity_binary =
TN

FP + TN
(13)

3.2. Quality Assessment and Confusion Matrix for Multi-Class Classification

In addition to binary classification, it is common to classify samples into more than
two classes. We are dealing with multi-class classification in such a situation—not to be
confused with multi-label classification. The difference between multi-class and multi-label
classification is that a sample can only be assigned to one class selected from multiple
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classes for multi-class classification. In contrast, a sample can be assigned to multiple
classes for multi-label classification [43].

There is a need to construct an extended confusion matrix for a number of decision
classes greater than 2. Thus, the number of rows and the number of columns in such
an approach will equal the number of classes. For this purpose, we present the idea of
a confusion matrix for C classes, which is shown in Table 2. Similarly, for the binary
classification problem (see Table 1), we have listed four terms:

• TP (true positive) means that samples from the actual class have been classified into
the same predicted class—denoted as TP1, TP2, . . . , TPi, . . . , TPC−1, TPC;

• FN (false negative) indicates that samples in the actual class have been classified into
other predicted classes. This is the sum of the values of the corresponding row of the
real class except for the TP values for that real class—denoted as FN1, FN2, . . . , FNi,
. . . , FNC−1, FNC;

• FP (false positive) indicates that samples from other real classes have been classified
into the selected predicted class. This is the sum of the values of the corresponding
column of the predicted class except for the TP values for the actual class—denoted
as FP1, FP2, . . . , FPi, . . . , FPC−1, FPC;

• TN (true negative) indicates that, for the selected real class, samples from other
actual classes were classified into predicted classes other than the predicted class
corresponding to the chosen real class. For a given real class, it is the sum of the values
of all columns and rows except for the row and column values of that real class for
which we compute the values—denoted as TN\{i} or TN\{i,C}.
To evaluate the quality of multi-class classification, as in binary classification, measures

based on the confusion matrix shown in Table 2 were used. Therefore, referring to the
measures described in Section 3.1, we wish to present them for the multi-class classification
problem.

Accuracy is one of the most commonly used measures in a multi-class classification
problem [16] and is calculated according to Formula (14) or (15); when we define the sum
of all samples as s, this equation boils down to the form (16). To calculate accuracy, sum
all correctly classified samples and then divide by the number of all classified samples.
Correctly classified samples are shown in the confusion matrix (see Table 2) on the main
diagonal (from upper left corner to lower right corner).

accuracy =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FPi
(14)

accuracy =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FNi
(15)

accuracy =
∑c

i=1 TPi

s
(16)

Precision and recall are used for the multi-class approach as well. Two modifications
can be distinguished in this case: macro− and micro− precision or recall [16]. For the
macro−modification, to calculate the value of the measures for multiple classes, one must
count precision and recall for each class separately and then calculate the arithmetic mean of
these values. In this way, all classes during multi-class classification have the same validity,
regardless of the class count. In multi-class classification, macro_precision is calculated by
Formula (17) and macro_recall is calculated by Formula (18).

macro_precision =
1
c

c

∑
i=1

TPi
TPi + FPi

(17)

macro_recall =
1
c

c

∑
i=1

TPi
TPi + FNi

(18)



Entropy 2022, 24, 531 9 of 24

Table 2. Confusion matrix for multiple classes.

Predicted
Class 1

Predicted
Class 2

Predicted
Class 3 · · · Predicted

Class i · · · Predicted
Class C-1

Predicted
Class C

FP2 FP3 FPi FPC−1 FPC

Actual
class 1

TP1
TN\{1}

TN\{1,2} TN\{1,3} · · · TN\{1,i} · · · TN\{1,C−1} TN\{1,C}

FN1 FN1 FN1 FN1 FN1

FP1 FP3 FPi FPC−1 FPC

Actual
class 2 TN\{1,2}

TP2
TN\{2}

TN\{2,3} · · · TN\{2,i} · · · TN\{2,C−1} TN\{2,C}

FN2 FN2 FN2 FN2 FN2

FP1 FP2 FPi FPC−1 FPC

Actual
class 3 TN\{1,3} TN\{2,3}

TP3
TN\{3}

· · · TN\{3,i} · · · TN\{3,C−1} TN\{3,C}

FN3 FN3 FN3 FN3 FN3

· · · · · · · · · · · · · · · · · · · · · · · ·

FP1 FP2 FP3 FPC−1 FPC

Actual
class i TN\{1,i} TN\{2,i} TN\{3,i} · · · TPi

TN\{i}
· · · TN\{i,C−1} TN\{i,C}

FNi FNi FNi FNi FNi

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

FP1 FP2 FP3 FPi FPC

Actual
class C-1 TN\{1,C−1} TN\{2,C−1} TN\{3,C−1} · · · TN\{i,C−1} · · · TPC−1

TN\{C−1}
TN\{C,C−1}

FNC−1 FNC−1 FNC−1 FNC−1 FNC−1

FP1 FP2 FP3 FPi FPC−1

Actual
class C TN\{1,C} TN\{2,C} TN\{3,C} · · · TN\{i,C} · · · TN\{C−1,C}

TPC
TN\{C}

FNC FNC FNC FNC FNC

In contrast, for micro_ modification, to count the precision and recall values, one must
look at all classes together. In this way, each correctly classified sample into a class is a
component of all correctly classified samples. In other words, we calculate TP as the sum of
all TP values for individual classes (the sum of the values from the main diagonal). The FP
value will be the sum of all values off the main diagonal, equal to the FN value. Therefore,
micro_precision and micro_recall are the same because they are the sum of TP values to
all values in the confusion matrix [16]. In multi-class classification, micro_precision is
calculated by Formula (19) and micro_recall is calculated by Formula (20).

micro_precision =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FPi
(19)

micro_recall = ∑c
i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FNi
(20)

The Fβ measure is also used for multi-class classification problems; however, the
results of this measure are obtained by macro-averaging or micro-averaging [20]. When
we assume that all classes are of the same weight, we use macro-averaging, where two
additional methods can be adopted. The first is the calculation of the Fβ measure from the



Entropy 2022, 24, 531 10 of 24

macro_precision (see Equation (17)) and macro_recall (see Equation (18)) measures, and the
second is the arithmetic mean of the F-beta scores for each class separately, based on the Fβ

measure for binary classification (see Equation (8)). The macro_Fβ measure is specified by
Formula (21).

macro_Fβ = (1 + β2)× macro_precision×macro_recall
β2 ×macro_precision + macro_recall

(21)

In contrast, in the classification depending on the frequency of classes, the Fβ re-
sults are calculated by micro-averaging based on micro_precision (see Equation (19)) and
micro_recall (see Equation (20)). The micro_Fβ measure is specified by Formula (22). In
all of the discussed variants of the Fβ measure, the beta parameter determines the weight
of the reference in relation to the precision. When β < 1, precision has more weight, and
when β > 1, recall has more weight [20].

micro_Fβ = (1 + β2)× micro_precision×micro_recall
β2 ×micro_precision + micro_recall

(22)

The F1 measure (the most common instance of Fβ, where β = 1) is calculated based on
recall and precision (present in the multi-class classification) [44], and thus can be used in
the multi-class classification as well. For a problem where class imbalance does not matter
and all classes are equally valid, we use the macro_ modification and apply macro_precision
(see Equation (17)) and macro_recall (see Equation (18)). Thus, the measure macro_F1 can
be calculated according to Formula (23).

macro_F1 = 2× macro_precision×macro_recall
macro_precision + macro_recall

(23)

In problems with unbalanced classes, where selected classes are more important
than others, the micro_ modification leads to the micro_precision (see Equation (19)) and
micro_recall (see Equation (20)). Thus, the measure micro_F1 can be calculated according
to Formula (24).

micro_F1 = 2× micro_precision×micro_recall
micro_precision + micro_recall

(24)

From Formulas (19), (20) and (24), one can conclude that, for the multi-class classification
problem, the values of the measures micro_precision, micro_recall, and micro_F1 are equal
to each other. At the same time, the values of these measures are equal to the accuracy of
Formula (16).

The Matthews correlation coefficient (MCC) is only used in classifications of up to
two classes (see Equation (10)). For classifications with more than two classes, it is often
irrelevant to determine the division of multiple classes into two classes (positive and
negative) [45]. Therefore, J. Gorodkin, in his work [46], proposed an extended correlation
coefficient (called the RK statistic, for K different classes) that can be used in multi-class
classification. Based on this, we defined MCC for multiple classes denoted as Formula (25),
where s is the sum of all samples, TPi + FPi is the value of all samples in row i, and
TPi + FNi is the value of all samples in column i.

MCC_multiclass =
s×∑c

i=1 TPi −∑c
i=1((TPi + FPi)× (TPi + FNi))√

s2 −∑c
i=1 (TPi + FPi)2 ×

√
s2 −∑c

i=1 (TPi + FNi)2
(25)

The last discussed measure is BalancedAccuracy, which could be used to calculate
accuracy for unbalanced classes [41]. According to Formula (11), BalancedAccuracy_binary
is the arithmetic mean of recall_binary and speci f icity_binary. For binary classification, the
value of speci f icity_binary for the first class equals recall_binary for the second class. For
this reason, in multi-class classification, to calculate BalancedAccuracy, one must count
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the recall for each class separately and then calculate the arithmetic mean of these values,
according to Formula (26).

BalancedAccuracy =
1
c

c

∑
i=1

TPi
TPi + FNi

(26)

4. Preference-Driven Quality Assessment for Multi-Class Classification

Considering the measures described above, the preferences for individual classes in the
classifier quality assessment are insufficient because there is no place in their construction
to indicate such preferences. Thus, we propose a new preference-driven classification
quality evaluation measure to evaluate classification quality based on different weights for
each decision class. The proposed measure works independently of the number of decision
classes—its definition is the same in binary and multi-class classification. We also suggest
default values for this measure that can be used, in the test case, without specifying exact
preferences for each decision class.

4.1. Proposed Preference-Driven Classification Measure

According to the measures given in Section 3.2, the proposed measure was defined
based on the confusion matrix given in Table 2. We aim to keep it as simple as possible while
satisfying the assumption of adjustment to preferences (of each decision class). Therefore,
the proposed measure is based on a confusion matrix and precision and recall measures
with κ parameters determining their relative importance.

The preference-driven classification measure is denoted as preference-driven−→κ , where
−→κ is the preference vector, whose length is equal to the number of decision classes (see
Formula (27)). The κ weights for each of the subsequent measures are written on the
subsequent positions of the vector. The higher the κ value for a given decision class,
the greater the importance of precision (determined by Formula (28)) relative to recall
(determined by Formula (29))—based on this class only. Therefore, changing the κ values
of a given class makes it possible to control the relative importance of precision and recall.
This is a multi-criteria process because the κ value can differ for each class.

Finally, the preference-driven−→κ measure can be expressed by Formula (30). One
should note that −→κ is a parameter related to the measure by which the relative importance
between precision and recall can be established for each decision class separately. For
example, −→κ = [0.2, 0.6, 0.3] means that, for the first class, 20% precision and 80% recall are
used; for the second class, 60% precision and 40% recall are used, and for the third class,
30% precision and 70% recall are used. To keep the final value of the preference-driven−→κ
measure in the range [0.0, 1.0], the sum of all these values is divided by the number
of classes.

pre f erence-driven−→κ =
1
c

c

∑
i=1

κi ×
TPi

TPi + FPi
+ (1− κi)×

TPi
TPi + FNi

(27)

precisioni =
TPi

TPi + FPi
(28)

recalli =
TPi

TPi + FNi
(29)

pre f erence-driven−→κ =
1
c

c

∑
i=1

κi × precisioni + (1− κi)× recalli (30)

4.2. Proposed Measure Analysis in the Test Case

The sample confusion matrix was prepared for a classification problem with two
decision classes to demonstrate how the measure works depending on the preference and
classification outcome. The two classes were chosen to visualize the measure’s values.
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Figure 1 presents nine confusion matrices for which preference-driven−→κ values were
determined for −→κ , being a combination of all values from 0.0 to 1.0 with a step of 0.1, i.e.,

[0.0, 0.0], [0.0, 0.1], . . . [0.5, 0.4], [0.5, 0.5], [0.5, 0.6], . . . [1.0, 0.9], [1.0, 1.0].

It gives a total of 121 different combinations vectors of preferences. The results are visual-
ized in the following figures.

To better capture the distribution of values for the preference-driven measure, an
analysis based on the confusion matrix cm4 (see Figure 1) was presented. It was se-
lected because the quality assessment in terms of classical measures always means the
same values, i.e., precision (see Equation (17)) is 0.7500, and recall (see Equation (18)) is
0.8333. In Figure 2, one can see that the value of the preference-driven measure ranges
from 0.5833 for −→κ = [1.0, 0.0] to 1.0000 for −→κ = [0.0, 1.0]. It is possible to obtain ex-
actly the same values for recall (−→κ = [0.0, 0.0]) and precision (−→κ = [1.0, 1.0]), but
depending on the preference, the classifier will be evaluated differently. For example,
preference-driven[0.1,0.3], i.e., for κ1 = 0.1 and κ2 = 0.3 is 0.8083 (green dot in Figure 2); sim-
ilarly, preference-driven[0.1,0.8] = 0.9333 (black dot in Figure 2), preference-driven[0.4,0.4] =
0.7833 (red dot in Figure 2), preference-driven[0.9,0.1] = 0.6250 (light blue dot in Figure 2),
and preference-driven[0.9,0.8] = 0.8000 (bright orange dot in Figure 2).
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Figure 1. Confusion matrix used for measure analysis.
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Figure 2. All possible values of the preference-driven measure for the confusion matrix cm4.



Entropy 2022, 24, 531 13 of 24

Next, we present different solution spaces obtained for successive confusion matrices.
Figure 3 presents such solution spaces for the proposed measure for cm4 and cm8 confusion
matrices (please refer to Figure 1, which can be described as an opposition to each other,
and thus they were selected for the analysis. The value of κ1 increases, and the value of
κ2 decreases (the value of the proposed measure for cm4 decreases, while that for cm8
increases—and vice versa).

Figure 3. All possible values of the preference-driven measure for the confusion matrix cm4 and its
opposite cm8.

Different solution spaces for the confusion matrices from Figure 1 are presented in
Figures 4 and 5. In the first case (Figure 4), specific confusion matrices are selected:

• cm1, which represents the ideal classification—in Figure 4a, it can be seen that the
value of the preference-driven−→κ measure is the same for each −→κ vector;

• cm9, which represents a classification in which all samples are assigned to only one
class (in this case, the first one)—in Figure 4b, it can be seen that κ2 does not affect the
value of the preference-driven−→κ measure;

• cm4 and cm8, which were previously presented in Figure 3, but this time are shown
separately in Figure 4c,d, respectively—they represent an example, not an extreme,
case of classification.

Figure 5 presents the solution spaces for all (except cm9) confusion matrices from
Figure 1. It allowed us to present the dynamics of the solution space based on the
preference-driven−→κ , depending on the classification being evaluated and the value of
the −→κ vector. Depending on the values of the −→κ vector, the proposed measure differently
evaluates the classifier. It is also presented in Table 3, where the results for different values
of the −→κ vector are presented. Examples [0.3, 0.6], [0.9, 0.4], and [0.5, 0.5] have been cho-
sen, as well as precision (which is equivalent to −→κ = [0.0, 0.0]) and recall (equivalent to
−→κ = [1.0, 1.0]). As can be seen, depending on the given preferences, the evaluation of the
classifier even in this case changes noticeably.
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Figure 4. Example distributions of values of the preference-driven measure: (a) confusion matrix
cm1; (b) confusion matrix cm9; (c) confusion matrix cm4; (d) confusion matrix cm8.

Figure 5. Solution spaces of proposed measure values for selected confusion matrices.

Analogously to Table 3, Figure 6 presents the classification quality assessment values
for each of the prepared confusion matrices. Such a visualization allows us to observe
the influence of the proposed measure on the classification evaluation (compare with the
earlier discussed example for cm4 and cm8 for which precision, recall, and F1 have identical
values), where diagonal lines allow a more straightforward analysis of changes between
sample confusion matrices; in this case, we can see that the mentioned measures have
identical values for these confusion matrices, but the proposed preference-driven measure
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obtains different scores for the same preference vectors. Please note that confusion matrices
should not be interpreted as consecutive occurrences. Classification evaluation values
should be compared regardless of the order in which they are presented.

To further compare the proposed preference-driven measure with the F1 measure,
which is also based on recall and precision values, we analyzed the values of the preference
vector (−→κ ) that produce the same classification score as the F1.

We performed careful analyses for all the confusion matrices described in this section,
except for cm1, for which the value of all measures is always 1.0000 (this confusion matrix
represents the ideal classification). Our observations indicate that there are (unlike the
recall and precision measures) no classical values for the preference vector to find the
equivalent value of the F1 measure. Therefore, for subsequent confusion matrices, the F1
counterparts are, respectively, preference-driven measures with preference vectors: for cm2,
it is−→κ = [0.015, 0.095], then for cm3, it is−→κ = [0.010, 0.145]; for cm4, it is−→κ = [0.189, 0.284];
for cm5, it is −→κ = [0.045, 0.095]; for cm6, it is −→κ = [0.06, 0.12]; for cm7, it is −→κ = [0.5, 0.5];
for cm8, it is −→κ = [0.284, 0.189], and for cm9, it is −→κ = [0.67, 0.00].

These observations indicate significant differences between the F1 and the proposed
preference-driven measures. As we have already presented, F1 for a single confusion matrix
(i.e., the classifier score) is always represented by a single value. In contrast, it is possible to
control the quality score according to preferences in the preference-driven case.

Table 3. Example values of the proposed preference-driven measure in comparison with other
measures for assessing the quality of classification (p-d is the abbreviation for the preference-driven
measure). Results determined for all confusion matrices presented in Figure 1.

p-d[0.3,0.6] p-d[0.9,0.4] p-d[0.5,0.5] Precision 1 Recall 2 F1 3

cm1 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
cm2 4 0.9350 0.8650 0.9083 0.9157 0.9000 0.9083
cm3 4 0.8771 0.7514 0.8286 0.8571 0.8000 0.8276
cm4 4 0.8500 0.7000 0.7917 0.8333 0.7500 0.7895
cm5 4 0.7250 0.6700 0.7042 0.7083 0.7000 0.7041
cm6 4 0.6866 0.6098 0.6574 0.6648 0.6500 0.6573
cm7 4 0.5585 0.5366 0.5503 0.5505 0.5500 0.5502
cm8 4 0.7250 0.9083 0.7917 0.8333 0.7500 0.7895
cm9 4 0.4250 0.2750 0.3750 0.2500 0.5000 0.3333

1 macro_precision (Equation (17)) is equal to preference-driven[1.0,1.0].
2 macro_recall (Equation (18)) is equal to

preference-driven[0.0,0.0].
3 macro_F1 (Equation (23)). 4 See Figure 1.
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Figure 6. Example values of the proposed measure in comparison with other measures for assessing
the quality of classification (the diagonal lines allow easier analysis of the changes between the
sample confusion matrices).

4.3. Default Values of the Preference Vector

The proposed measure is used to evaluate the classifier’s quality as closely as possible
to the stated preferences (as long as the decision maker clearly describes these preferences).
To make the measure more comparable with other measures, we propose, as an alternative,
the default values of the preference vector for the preference-driven−→κ measure.

The ratio of the number of objects in each class to the number of all samples is taken as
the default value of the preference vector. This means that, for classes with many samples,
higher weight is related to precision for this class, while, for classes with a relatively small
number of samples, higher weight is related to recall of this class. Such a solution allows
compensation for the situation in which the samples are more often classified into classes
with many samples. When validating a classifier, there is always a learning set (whether for
train-and-test or cross-validation), which each time allows the mentioned default values
of the preference vector to be determined—the preference vector can correspond to the
distribution of cases in the learning data.

In analogy with previously adopted designations, a notation for the default value of
the−→κ vector in Formula (31) is proposed. The designations are the same as those contained
in Table 2; additionally, s is the sum of all samples.

−→κ =

[
TP1 + FN1

s
,

TP2 + FN2

s
, . . . ,

TPi + FNi
s

, . . . ,
TPC−1 + FNC−1

s
,

TPC + FNC
s

]
(31)

For example, in the situation described in Section 4.2, where the classes in the confusion
matrix are at equilibrium, the implicit vector would be of the form −→κ = [0.5, 0.5]. Its value
is incidentally given in Table 3, in column preference-driven[0.5,0.5].

Extending the example, a confusion matrix is proposed, shown in Table 4. In this case,
there are three classes, containing 50, 20, and 30 samples each, respectively. Therefore, the
default values of the preference vector would be as follows:

−→κ =

[
50

100
,

20
100

,
30

100

]
,

so
−→κ = [0.5, 0.2, 0.3].
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Here, 50 out of 100 instances are in class 1, 20 out of 100 instances are in class 2, and 30 out
of 100 instances are in class 3. The preference-driven measure value is 0.656, because

preference-driven[0.5,0.2,0.3] =
1
3
×
(

0.5× TP1

TP1 + FP1
+ (1− 0.5)× TP1

TP1 + FN1

)
+

1
3
×
(

0.2× TP2

TP2 + FP2
+ (1− 0.2)× TP2

TP2 + FN2

)
+

1
3
×
(

0.3× TP3

TP3 + FP3
+ (1− 0.3)× TP3

TP3 + FN3

)
so

preference-driven[0.5,0.2,0.3] =
1
3
×
(

0.5× 40
40 + 8 + 9

+ 0.5× 40
40 + 7 + 3

)
+

1
3
×
(

0.2× 10
10 + 7 + 1

+ 0.8× 10
10 + 8 + 2

)
+

1
3
×
(

0.3× 20
20 + 3 + 2

+ 0.7× 20
20 + 9 + 1

)

preference-driven[0.5,0.2,0.3] =
1
3
× (0.5× 0.702 + 0.5× 0.8 + 0.2× 0.556 + 0.8× 0.5 + 0.3× 0.8 + 0.7× 0.667)

preference-driven[0.5,0.2,0.3] =
1
3
× (0.351 + 0.4 + 0.111 + 0.4 + 0.24 + 0.467)

preference-driven[0.5,0.2,0.3] = 0.656

The results for the default values of the preference vector for the preference-driven−→κ
measure are also analyzed in Section 5, when testing the proposed measure with different
real data sets.

Table 4. Example confusion matrix used to demonstrate how to determine the proposed preference-
driven measure.

Predicted Class 1 Predicted Class 2 Predicted Class3

Actual class 1 40 7 3
Actual class 2 8 10 2
Actual class 3 9 1 20

5. Analysis on Real-World Data Sets

As the paper proposes a new classification quality assessment measure whose value
depends on the stated preferences (called preference vector), we conducted experiments on
real-world data sets. First, we checked the importance of the proposed measure depend-
ing on the given preference vector—while comparing the performance and ranks of the
classifiers with classical measures of classification quality assessment.

5.1. Experiment Conditions

The proposed measure preference-driven−→κ is compared with the classical measures
described in this paper (see Section 3.2). As some of the measures, in the case of multi-class
classification, reduce to the same measure, the following names are used in this section:
accuracy (see Equation (16)), precision (see Equation (17)), recall (see Equation (18)), F1 (see
Equation (23)), and MCC (see Equation (25)).
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Four well-known data sets were selected for classification, whose structures are de-
scribed in Table 5. As one can see, multi-class data sets were selected, in which, additionally,
the distribution of samples in classes was uneven (see “percent of samples per class” in
Table 5, where the ratio of samples of each class to the whole data set is given). On the other
hand, as test classifiers, we selected classifiers available in the system Weka-3-6-11 [47].
More specifically, these were the following classifiers: Bagging [48], BayesNet [49], Deci-
sionTable [50], C4.5 (J48) [51], and RandomForest [52]. In each case, 10-fold cross-validation
was used so that each sample was subject to prediction.

Classification results from the Weka system (including confusion matrices) and the
values of the proposed classification quality evaluation measure for fixed preference vectors
are available on the website of the Department of Machine Learning of the University of
Economics in Katowice (https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-
uczenia-maszynowego/zrodla-danych/preference-driven.html (accessed on 6 February
2022)).

Table 5. Characteristics of the real data sets used to test the proposed preference-driven measure and
comparison with classical measures.

Data Set Number of
Samples

Number of
Attributes

Number of
Classes

Percent of Samples
per Class

car 1728 6 4 0.70 0.22 0.04 0.04

nursery 12960 8 5 0.00 0.33
0.33 0.03 0.31

dermatology 366 34 6 0.17 0.31 0.20
0.14 0.13 0.05

krkopt 28056 6 18

0.10 0.00 0.00
0.01 0.00 0.01
0.02 0.02 0.02
0.05 0.06 0.07
0.10 0.13 0.15
0.16 0.08 0.01

The number of decision classes in each data set is different, so the checked combina-
tions of values in the preference vector determined different, possible values of subsequent
elements of the vector. Thus, the number of combinations is close to 15,000 (except for the
krkopt data set, which is too large and had to exceed this value). In this way, we obtained:

• car—[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], which gives 14,641 combinations
(because: 4 decision classes and 11 values of κ, so 114 = 14,641);

• nursery—[0, 0.166, 0.332, 0.498, 0.664, 0.83, 1], which gives 75 = 16,807 combinations;
• dermatology—[0, 0.25, 0.5, 0.75, 1], which gives 56 = 15,625; combinations;
• krkopt—[0.33, 0.66], which gives 218 = 262,144 combinations.

5.2. Experimental Results

Tables 6–9 present the results for all data sets and all classifiers. Ratings have been
made for all measures, with preference-driven−→κ determined each time for the default
values and five different, selected preference vectors. Evaluation values were presented
along with the ranking order of the classifier for each measure (in brackets). This approach
allows us not only to evaluate the differences between the evaluation values but also to
indicate whether, using the proposed measure, it could happen that another classifier would
be better than those indicated by the classical classification quality evaluation measures.
On the other hand, Figure 7 shows histograms of the preference-driven−→κ measure values
for all tested preference vectors.

Figure 7 presents 20 different histograms used to show the distribution of values
(without any unnecessarily detailed information). In part (a), successive histograms are
shown for the car data set, then (b) contains the nursery histograms, (c) is related to

https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-maszynowego/zrodla-danych/preference-driven.html
https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-maszynowego/zrodla-danych/preference-driven.html
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dermatology, and (d) is the krkopt results. This figure concerns the value of the preference-
driven measure determined for different preference vectors (−→κ ). Therefore, the X-axis
represents the value of the preference-driven measure, while the Y-axis represents the
number of occurrences of this value.

This presentation in Figure 7 allows us to notice that in each case, using the pro-
posed measure, it is possible to obtain a different score with the same confusion ma-
trix. In addition, in most cases, the values of the measure are close to a normal distri-
bution. A slightly more interesting case is (b), with the Bagging, BayesNet, and Ran-
domForest classifiers. In this case, however, it should be noted that the classification
each time gives a specific confusion matrix (detailed results are available on the UE Ka-
towice website (https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-
maszynowego/zrodla-danych/preference-driven.html) (accessed on 6 February 2022)).
Note that there are only two samples in the first class. The class with the most significant
number of samples is always correctly identified. Additionally, in case (c), the particular
histogram is obtained for the RandomForest classifier, where the classification was excel-
lent, close to error-free. In contrast, the values were rounded to the second decimal for the
histogram, hence such a high concentration of preference-driven measure values.

Bagging BayesNet DecisionTable J48 RandomForest

car

(a)

BayesNet DecisionTable J48 RandomForest

nursery

(b)

Bagging BayesNet DecisionTable J48 RandomForest

dermatology

(c)

Bagging BayesNet DecisionTable J48 RandomForest

krkopt

(d)

Bagging

Figure 7. Histogram of preference-driven measure values in the (a) car data set; (b) nursery data set;
(c) dermatology data set; (d) krkopt data set—the X-axis represents the value of the preference-driven
measure, while the Y-axis represents the number of occurrences of this value.

Analyzing the experimental results, it is worth noting that by using different vectors,
in the case of a preference-driven measure, it is possible to indicate a different classifier
as more adapted to the problem. For example, in the case of the car data set (see Table 6),

https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-maszynowego/zrodla-danych/preference-driven.html
https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-maszynowego/zrodla-danych/preference-driven.html
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the classifier DecisionTable turns out to be the best for some preference vectors (e.g.,
[0, 1, 1, 0.9]); similarly, the classifier BayesNet turns out to be better than Bagging if the
preference vector is, among others, [0.3, 1, 1, 1]. The situation is similar for the set of nursery
data (see Table 7), where also DecisionTable turns out to be the best, while the preference
vector is [0.498, 1, 0.166, 1, 0]. A similar difference, but on subsequent ranks (between 3
and 4), can be observed also in the case of the krkopt data set (see Table 9). Although, in
the case of the dermatology data set (see Table 8), no change of ranks was observed, it
could be observed that the disproportion between the assessment of specific classifiers
changed a lot and, e.g., in the case of vector [0, 0, 0, 1, 1, 0.75], the difference between the
best BayesNet and the second RandomForest was less than 0.0083, where, with classical
measures of classification quality assessment, this difference was around 0.02.

The aim of the experiment was to check whether the proposed measure will show
different classifiers for the same problem depending on the value in the preference vector.
It turned out that, indeed, the measure indicates different classifiers, even with a limited
number of vectors tested.

Table 6. Results for the car data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.9167 (3) 0.8571 (5) 0.9149 (4) 0.9236 (2) 0.9462 (1)
precision 0.7586 (5) 0.7940 (4) 0.8557 (2) 0.8179 (3) 0.8565 (1)

recall 0.7665 (4) 0.6040 (5) 0.8177 (3) 0.8289 (2) 0.8581 (1)
F1 0.7625 (4) 0.6861 (5) 0.8363 (2) 0.8233 (3) 0.8573 (1)

MCC 0.8208 (3) 0.6737 (5) 0.8101 (4) 0.8345 (2) 0.8842 (1)
preference-driven 1 0.7670 (4) 0.6031 (5) 0.8171 (3) 0.8291 (2) 0.8584 (1)

p-d[0,0.8,0.6,1] 0.7757 (4) 0.7582 (5) 0.8600 (1) 0.8295 (3) 0.8600 (1)
p-d[0,1,0,1] 0.8021 (4) 0.6853 (5) 0.8631 (2) 0.8475 (3) 0.8647 (1)

p-d[0,1,1,0.9] 0.7494 (5) 0.7954 (4) 0.8601 (1) 0.8127 (3) 0.8499 (2)
p-d[0.3,1,1,1] 0.7555 (5) 0.8012 (4) 0.8609 (1) 0.8160 (3) 0.8534 (2)

p-d[0.6,1,0.8,1] 0.7664 (5) 0.7743 (4) 0.8587 (1) 0.8233 (3) 0.8572 (2)

1 Default value of the preference vector (see Section 4.3).

Table 7. Results for the nursery data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.9737 (2) 0.9033 (5) 0.9470 (4) 0.9705 (3) 0.9909 (1)
precision 0.7518 (3) 0.7250 (5) 0.7661 (2) 0.7453 (4) 0.7849 (1)

recall 0.7226 (3) 0.5666 (5) 0.6722 (4) 0.7313 (2) 0.7765 (1)
F1 0.7369 (3) 0.6361 (5) 0.7160 (4) 0.7382 (2) 0.7806 (1)

MCC 0.9614 (2) 0.8579 (5) 0.9234 (4) 0.9568 (3) 0.9867 (1)
preference-driven 1 0.7224 (3) 0.5671 (5) 0.6727 (4) 0.7312 (2) 0.7764 (1)

p-d[0,0,0,1,0] 0.7550 (3) 0.7362 (5) 0.7733 (2) 0.7470 (4) 0.7857 (1)
p-d[0,0,0,1,1] 0.7524 (2) 0.7412 (5) 0.7520 (3) 0.7428 (4) 0.7850 (1)

p-d[0,0.83,0,1,0] 0.7545 (3) 0.7228 (5) 0.7850 (2) 0.7490 (4) 0.7856 (1)
p-d[0.498,1,0.166,1,0] 0.7544 (3) 0.7200 (5) 0.7874 (1) 0.7495 (4) 0.7855 (2)

p-d[0.83,0.332,0.166,0,1] 0.7198 (3) 0.5662 (5) 0.6555 (4) 0.7280 (2) 0.7757 (1)

1 Default value of the preference vector (see Section 4.3).
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Table 8. Results for the dermatology data set—the value of the classification quality assessment
(in brackets, we give the ranking of the classifier, according to the given measure). The ranking
determines the order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.3798 (5) 0.9727 (1) 0.8388 (4) 0.9454 (3) 0.9536 (2)
precision 0.3798 (5) 0.9692 (1) 0.8549 (4) 0.9372 (3) 0.9492 (2)

recall 0.3947 (5) 0.9707 (1) 0.8204 (4) 0.9368 (3) 0.9477 (2)
F1 0.3871 (5) 0.9699 (1) 0.8373 (4) 0.9370 (3) 0.9484 (2)

MCC 0.2170 (5) 0.9660 (1) 0.7982 (4) 0.9316 (3) 0.9418 (2)
preference-driven 1 0.3923 (5) 0.9708 (1) 0.8217 (4) 0.9368 (3) 0.9477 (2)

p-d[0,0,0,0,1,0] 0.4090 (5) 0.9589 (1) 0.8030 (4) 0.9400 (3) 0.9506 (2)
p-d[0,0,0,1,1,0.75] 0.4014 (5) 0.9589 (1) 0.8430 (4) 0.9369 (3) 0.9506 (2)
p-d[0,0,1,1,0,1] 0.3807 (5) 0.9707 (1) 0.8800 (4) 0.9315 (3) 0.9477 (2)

p-d[0.5,0,0.25,0.5,0.5,1] 0.3823 (5) 0.9699 (1) 0.8575 (4) 0.9375 (3) 0.9492 (2)
p-d[0.5,1,0.75,0.5,0.5,0] 0.3921 (5) 0.9699 (1) 0.8178 (4) 0.9364 (3) 0.9477 (2)

1 Default value of the preference vector (see Section 4.3).

Table 9. Results for the krkopt data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.5872 (2) 0.3607 (5) 0.4908 (4) 0.5658 (3) 0.7025 (1)
precision 0.5735 (3) 0.3579 (5) 0.5784 (2) 0.5547 (4) 0.7377 (1)

recall 0.5406 (2) 0.2982 (5) 0.5187 (3) 0.5178 (4) 0.6628 (1)
F1 0.5566 (2) 0.3253 (5) 0.5469 (3) 0.5356 (4) 0.6982 (1)

MCC 0.5377 (2) 0.2784 (5) 0.4300 (4) 0.5135 (3) 0.6669 (1)
preference-driven 1 0.5404 (2) 0.2967 (5) 0.5191 (3) 0.5177 (4) 0.6629 (1)
preference-driven−→κ

2 0.5776 (3) 0.3717 (5) 0.5806 (2) 0.5576 (3) 0.7426 (1)
preference-driven−→κ

3 0.5542 (2) 0.3176 (5) 0.5415 (3) 0.5288 (4) 0.6869 (1)
preference-driven−→κ

4 0.5554 (2) 0.3262 (5) 0.5462 (3) 0.5396 (4) 0.6925 (1)
preference-driven−→κ

5 0.5741 (2) 0.3467 (5) 0.5472 (4) 0.5485 (3) 0.7287 (1)
preference-driven−→κ

6 0.5638 (2) 0.3461 (5) 0.5587 (3) 0.5410 (4) 0.7033 (1)
1 Default value of the preference vector (see Section 4.3). 2 −→κ = [0, 1, 1, 1, 1, 1, 0.9, 0.9, 1, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0.9,
1]. 3 −→κ = [0.33, 0.66, 0.33, 0.33, 0.66, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.66, 0.66, 0.33, 0.33]. 4 −→κ =
[0.66, 0.33, 0.33, 0.33, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.66, 0.33, 0.33, 0.66, 0.33, 0.33, 0.33, 0.33]. 5 −→κ = [1, 0.1, 1, 1, 1,
1, 0.1, 0.1, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0.9, 1]. 6 −→κ = [1, 1, 0.9, 0.9, 0.8, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.3, 0.2, 0.2, 0.1, 0.1, 0.0, 0.0].

6. Discussion

In supervised learning, one of the necessary steps in adequately designed research is
teaching on training data different classifiers, sometimes with different parameters, and
then evaluating their quality. In our work, we assume that the user has specific preferences.
In addition, they relate to particular decision classes. Thus, we can immediately identify a
suitable classifier.

Using a vector of preferences, it is possible to indicate whether precision or recall is
more important. It is crucial for many problems to indicate that it is possible to select a
classifier better adapted to the structure of the data and decision makers’ expectations for
each class separately. The best strategy is to examine the training of as many classifiers
as possible (with different parameters). Such an approach allows the identification of the
potentially best classifiers for a given problem.

The proposed preference-driven measure used in the experiments allowed for a better
selection of the classifier most suitable for the task. With an approach allowing us to
indicate whether precision or recall is more important—for each class separately—it is
possible to select a classifier more adapted to the more important (from the evaluation
point of view) decision class.
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Despite the limited number of combinations, the conducted experiments indicated that
the proposed measure, depending on the preferences conveyed in the form of a preference
vector, points to different classifiers as the best choice for further prediction.

Since the set of values in the preference vector is infinite, the measurement values are
also unlimited. Therefore, the calculation of a measure and comparison with other measures
is possible only by calculating them at specific points. It should be noted that it is not
necessary to test many combinations of the preference vector in a real application. Instead,
these should be predetermined, indicating the relative importance of the recall–precision
balance in each decision class.

This also distinguishes the preference-driven measure from the Fβ measure, which also
raised attempts to weigh between precision and recall. However, the proposed preference-
driven measure is different. Note that, in the case of Fβ, there is a weighting between
precision and recall overall for the classifier. In contrast, there are weights for each decision
class with the preference-driven measure. It allows us to change the emphasis on precision
and recall depending on each decision class (differently). In the case of Fβ, this possibility
does not exist.

7. Conclusions

This article presents a new idea for a preference-driven classification measure. We
tried to show that the measure works, i.e.,

• for different preference vectors, different classifiers are more advantageous then others;
• the obtained results of the comparison make it easier for the user to understand the

effects of classification and make the right decision as to which classifier to use.

In the “objective” approach (without preferences), the result is unambiguous and
comparable, but the best classifier will not necessarily be adjusted to the subjective needs
of the user. In the “subjective” approach (preference-driven), comparability is difficult, but
in return, users can acquire a classifier better suited to their requirements.

The concept of this measure results from the shortcomings of measures related to the
multi-class classification. Nowadays, we observe a large number of classification methods.
There is no single versatile classification measure capable of catching up on concepts related
to both: overall good classification quality and a particular focus on the selected decision
classes. The whole idea of different classification measures is mostly extended for the
binary decision classes, which often fail to achieve good results for real-world data. At the
same time, multi-class classification measures are based on averaging the results, which
can be fair for general cases but fails to include decision makers’ preferences related to the
particular classes.

Similarly, for unbalanced cases, where there is a need to focus on particular classes,
the proposed preference-driven measure fits well for this gap. To be more precise, our
proposed preference-driven measure can be aligned with the decision makers’ preferences
regarding the relative importance of precision and recall. We also present the idea of setting
the default values for the vector of preferences based on the overall number of samples
assigned to every decision class. The most important advantage of the proposed idea is
the good fit between the well-known measures such as precision and recall. Moreover, the
κ preference vector allows us to direct the focus to a particular decision class, or even to
express the importance of selected decision classes in terms of the precision measure (and
others in terms of recall).

At the same time, we show that even for potentially trivial cases, such preference-
driven measures could lead to entirely different results based on the κ selection. It opens a
discussion for multi-class classification and leads to an interesting situation. The solution
for the classification problem should not be considered a single scalar value.

In the future, a preference-driven measure can be used in line with the proposed
approach. Alternatively, the factors of which the measure is composed could be scrutinized,
and other measures could be used instead of the class’s relative precision and recall values.
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