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Abstract 

This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation 
type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from differ-
ent forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for 
the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of 
soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic 
carbon (SOC) and STN was significantly positive with the values R2 = 0.1684, p = 0.01, R2 = 0.1537, p = 0.009 and 
R2 = 0.856, p = 7.31E−10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude 
and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest 
(22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf 
total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in 
the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 
7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly 
decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and car-
bon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the 
leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant 
(R2 = 0.608, p = 0.003) and weak non-significant (R2 = 0.04, p = 0.32) relationships were found in STN and STC with 
LM and HB respectively. SOC (75.15 %) was found to be the main contributor to the STC (76.20 %) as compared to 
the SIC (1.05 %). Furthermore, SOC (75.15 %) was the major constituent to the soil organic matter (SOM) as compared 
to the STN (5.85 %). The vegetation type and litter both showed high impact on STN and STC, while altitude and 
HB showed very little or no impact on carbon and nitrogen concentrations. However, altitude puts great impact on 
shaping vegetation structure due to decreasing temperature along the elevation and other climatic factors which are 
further responsible in controlling the carbon and nitrogen concentration.
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Background
Carbon and nitrogen are the two chemical elements in 
organic matter which are the most important, especially 
in their relation and proportion to each other. Carbon 

and nitrogen are both important for energy generation 
and growth regulation (Miller 2000) and both play impor-
tant roles in global warming and climate change (IPCC 
2007). According to Ajani (2011) and Ajani et al. (2013) 
there are three important carbon reservoirs for global 
carbon cycle such as (1) primary (geocarbon and bio-
carbon), (2) anthropogenic (stockpiles, processed), (3) 
atmosphere and ocean (atmosphere and ocean water). 
Soil organic carbon (SOC) is extremely important in 
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the global carbon cycle. Carbon sequestration in non-
disturbed ecosystems are the best sinks of carbon and 
mitigate global climate change (Parras-Alcántara et  al. 
2015). The altitudinal and topographic variation play 
important role in the SOC distribution as the SOC con-
tent from the topsoil varied largely ranging between 27.3 
and 39.9 g kg−1 in a national park of the southern Spain 
along altitudinal gradients (Parras-Alcántara et al. 2015). 
Deforestations is the second largest cause of greenhouse 
gases after fossil fuel (van der Werf et al. 2009). Cutting 
of forest trees to produce goods or heat release the car-
bon about million tons of carbon into the atmosphere per 
year (FAO 2010). Forest and wetland destruction is the 
main source of global climate change (Erwin 2009; Riegel 
et  al. 2013). Nitrogen in soil exists in many forms and 
easy transfer from one to another form. Nitrogen pro-
cess is biologically influenced and which is further influ-
enced by the climatic conditions, physical and chemical 
properties of the soil. Interactions between the terrestrial 
nitrogen (N) and carbon (C) cycles shape the response of 
ecosystems to global change (Zaehle 2013). Nitrous oxide 
also contributes to stratospheric ozone layer depletion 
(Ravishankara et  al. 2009) and has more global warm-
ing potential than CO2 (IPCC 2007; Nguyen et al. 2014). 
The concentration of N2O in the atmosphere is increas-
ing by 0.8 % annually (IPCC 1994). The concentration of 
CO2 has increased from 280 ppm in preindustrial times 
to 392 ppm in the early twenty-first century (Tans 2012), 
highlighting that a reduction in the concentration of 
both gases would aid in the mitigation of climate change 
(Nguyen et  al. 2014). Nitrous oxide is produced from 
nitrification and denitrification processes (Davidson et al. 
1986) and are influenced by pH (Law et  al. 2011), soil 
moisture, and availability of C and N substrates (Beare 
et al. 2009; Nguyen et al. 2014).

Carbon accumulation depends on nitrogen accumula-
tion and nitrogen accumulation depends on the conver-
sion of atmospheric nitrogen into nitrate by legumes. 
The vegetation type and forest composition influences 
the accumulation of carbon and nitrogen. For example, 
leguminous plant species and C4 plants increase the soil 
carbon and nitrogen concentration while the C3 plant 
species decrease the soil carbon and nitrogen concentra-
tion (Knops and Tilman 2000). Soil plays an important 
function in retaining soil nitrogen (N) (Vesterdal et  al. 
2008). The knowledge about the effects of tree species on 
soil carbon is important for the mitigation of greenhouse 
gases and recently gained much significance (Jandl et al. 
2007). Studies show the influence of tree species on C 
and N cycling (Menyailo et al. 2002). Tree species are one 
of several factors that influence soil carbon and nitrogen 
inputs and outputs and soil C and N are determined by 
differences in inputs and outputs in soil. Comparative 

studies of tree species growing under different conditions 
can be beneficial for checking their influence (Binkley 
1995). Tree species further depend on the differences 
in soil conditions such as parent material or land use 
(Vesterdal et  al. 2008). Tree species influence is often 
first detectable in forest floors whereas mineral soil dif-
ferences emerge later (Vesterdal et al. 2002). Soil distur-
bances and land use changes are responsible for releasing 
soil carbon into the atmosphere (Cochran and Collins 
2007). Tree species composition determines the variabil-
ity in soil C/N ratios and N retention (Lovett et al. 2002). 
Deciduous and coniferous species have large variabil-
ity in forest floor C and N (Ovington 1954). Deciduous 
forests with large forest floor C pools store less carbon 
in soil (Oostra et al. 2006), while more carbon has been 
reported in soils under spruce and beech in the central 
and western parts of Europe (Berger et al. 2002).

Carbon and nitrogen both are local indicators of global 
climate change (Zaehle 2013). We can predict future 
global climate change based on knowledge of the car-
bon accumulation in any ecosystem. We conducted this 
study at a high altitude mountain nature reserve. Moun-
tain ecosystems play important role as being the local 
source and sink of carbon and nitrogen for global cli-
mate change. The effects of anthropogenic activities and 
changing climatic conditions have severe impacts on the 
mountain forest ecosystem; this may result in the release 
of carbon and nitrogen stocks along with creating other 
serious local consequences. The altitudinal gradient plays 
vital role in the distribution of SOC, it is therefore sug-
gested to include elevation in SOC models to estimate at 
local and regional level (Parras-Alcántara et al. 2015).

Understanding the distribution of organic/inorganic 
carbon storage in soil profile is crucial for assessing 
regional, continental and global soil C stores and predict-
ing the consequences of global change (Wang et al. 2010). 
Soil is considered to be the most important sink of green-
house gases. The topsoil is the component of the soil 
system showing most rapid responses to environmental 
changes, such as alterations in temperature, precipita-
tion and nitrogen deposition (Liao et al. 2009). Changes 
in the topsoil are particularly important for exploring 
ecosystem response and functioning (Franzluebbers and 
Stuedemann 2010).

The response of soil carbon to the global change is 
important to find both soil organic carbon (SOC) and soil 
inorganic carbon (SIC), but many studies have focused 
on SOC and less attention drawn on SIC (Mi et al. 2008; 
Shi et al. 2012). However, the proportions of carbonates 
in soil total carbon are usually small (Chatterjee et  al. 
2009), thus the method without the direct measurement 
of SIC could produce a large relative error. Therefore, 
studies focused on SIC based on measured data help us 
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to reduce the uncertainties of previous studies and to 
predict response of soil carbon to global changes (Shi 
et al. 2012). SIC pools exchange C with the atmosphere 
through a series of physical and chemical reactions, such 
as C sequestration by carbonate formation or CO2 release 
by acidification and leaching (Ouyang et  al. 2008: Shi 
et al. 2012). Terrestrial biospheres are the largest carbon 
pools, a small change in soil carbon cause a significant 
alteration of atmospheric CO2 concentration (Trumbore 
and Czimczik 2008; Shi et al. 2012). Therefore, both SIC 
and SOC pools should be considered in order to more 
accurately predict future soil carbon dynamics (Shi et al. 
2012).

This is the first comprehensive study of its kind in this 
very important alpine nature reserve. The whole region 
depends on this nature reserve for food, fuel, timber, 
water, electricity and livestock along with other recrea-
tional and biodiversity related benefits. This study aims 
to find relationships between carbon and nitrogen in soil, 
vegetation, HB and LM along altitudinal gradients and 
forest types. We also aimed to determine the relationship 
of the parameters with each other for example TC, TN, 
OC and IC in soil and TC and TN in leaves. This study 
will help researchers foster further in depth investiga-
tions and provide a clearer picture of the impact and rela-
tionship of altitude, forest type, herbaceous biomass and 
litter mass on carbon and nitrogen concentrations and 
will help predict future carbon and nitrogen accumula-
tion in alpine forests.

Results
The trend of soil total carbon (STC), soil total nitrogen 
(STN) and soil organic carbon (SOC) showed significant 
correlation with altitude as p > 0.01 while soil inorganic 
carbon (SIC) showed a nonsignificant negative correla-
tion with altitude as p = 0.575 (Fig. 1; Table 1). Over all 
soil total carbon (STC) was found to be highest along the 
altitudinal gradients 76 % followed by soil organic carbon 
(SOC) 75.15 %, soil total nitrogen (STN) 5.85 % and soil 
inorganic carbon (SIC) 1.05  %. Highest STC and SOC 
was found to be 9.63 and 9.59 % at altitude 3500 m each, 
while lowest was 0.71 and 0.68 % at 3170 m each. Highest 
SIC was found to be 0.38 % at altitudes 2860 m while low-
est was 0.01 % at 2950 m and 3260 m each. Highest STN 
was found to be 0.70, 0.49 and 0.48 % at 3500, 3440 and 
2920 m respectively while lowest was 0.08 % at altitudes 
3010 and 3170 m each (Fig. 2; Additional file 1: Annex-
ure S1). Nitrogen and carbon showed a strong positive 
correlation with altitude with R2 =  0.864 and differ sig-
nificantly at p = 4.05E−10. Inorganic carbon and organic 
carbon showed a weak negative correlation and did not 
differ significantly at R2 = 0.095 and p = 0.16 (Figs. 3, 4). 
There was a strong significant positive correlation found 

between the SOC and STN, while there was a non-signif-
icant correlation observed between SIC and STN (Fig. 5).

Soil total carbon (STC), soil organic carbon (SOC) and 
soil total nitrogen (STN) was highest in the broad leaved 
Betula utilis (BU) forests, followed by Picea smiothiana 
(PS), Pinus willachina (PW), alpine grass, mixed forests 
(JE, Pop, Astr), Juniperus excelsa (JE) and in the Mixed 
forest (PW, JE, BU). It showed soil organic matter (SOM) 
was in high concentration in the broad leaved forest as 
compared to the mixed forest and Juniper forest. Broad 
leaved forest soil is rich with carbon and nitrogen and 
contributes the most as carbon sinks in the area. High-
est STC, SOC and STN was found in B. utilis 22.50, 22.31 
and 1.59 % respectively, while highest soil inorganic car-
bon (SIC) was found in the P. smiothiana followed by 
the P. willachina forest with a concentration of 0.43 and 
0.24 %. Least STC, SOC and STN were found to be 0.87, 
0.85 and 0.09 % in the mixed forest (PW, JE, BU) respec-
tively, while least SIC was found to be 0.02 % in both the 
Mixed forest (PW, JE, BU) and Alpine grass each and 
0.08 % in the J. excelsa forest (Fig. 6, Table 2).

Leaf total carbon (LTC) concentration was highest in 
the leaves of Pinus wallichiana (PW); 632.54 followed by 
J. excelsa; 455.98 Picea smithiana; 375.45 B. utilis; 281.29 
Rosa webiana; 235.64, Ribes alpestre; LTC concentra-
tion was lowest in the Populus alba.; 87.59, Hippophae 
rhamnoides; 46.62, Berberis pseudumbellata; 44.93 and 
Astragalus gilgitensis; 43.45. Leaf total nitrogen (LTN) 
concentration was highest in P. wallichiana; 19.77, fol-
lowed by J. excelsa; 13.76, B. utilis; 10.61, P. smithiana; 
7.62, R. webiana; 7.45, R. alpestre; 5.31 and Populous alba 
4.06 and lowest in H. rhamnoides, 2.81, B. pseudumbel-
lata 1.69 and A. gilgitensis; 1.60 (Fig. 7; Table 3).

LTC and LTN showed a weak correlation with altitude 
and did not differ significantly with R2 = 0.115, p = 0.167 
for carbon and R2 = 0.154 p = 0.090 for nitrogen (Fig. 8). 
The mean results of T test for LTN and LTC in trees and 
shrubs were 3, 2.72 and 97.95, 74.23 and the results for all 
the parameters were found to be non-significantly differ-
ent with p values 0.73 and 0.20 respectively (Table 4). The 
mean results of Paired T test for the LTN and LTC in the 
Conifers and deciduous plants were 2.26, 1.89 and 76.46, 
46.36 and the results showed non-significantly different 
with p values such as 0.55 and 0.08 respectively (Table 5).

The correlation between the concentration of STN, 
STC and SIC with the HB along the altitudinal gradi-
ents was found to be weak non-significant with p values 
0.085, 0.32 and 0.13 respectively. STC and SOC both 
showed a similar trend line and all were positive except 
HB with SIC (Fig. 9; Additional file 1: Annexure S2). The 
correlation of STC, STN and SIC with the LM along the 
altitudinal gradient was strongly significant positive, 
weak non-significant positive and weak non-significant 
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Fig. 1  STC, SOC, STN and SIC correlation with altitude

Table 1  Concentration (%) of STN, STC, SIC and SOC along the altitude

Altitude (m) Dominant trees STN (%) STC (%) SIC (%) SOC (%)

2860 Picea smithiana 0.23 3.70 0.38 3.32

2890 Pinus wallichiana 0.17 2.25 0.03 2.21

2920 Pinus wallichiana 0.48 4.94 0.03 4.91

2950 Picea smithiana 0.18 2.48 0.01 2.46

2980 Pinus wallichiana 0.20 3.05 0.05 3.00

3010 Pinus wallichiana + Juniperus excelsa 0.08 0.87 0.02 0.85

3050 Juniperus excelsa + Astragalus 0.22 2.21 0.03 2.17

3080 Juniperus excelsa 0.17 1.73 0.03 1.70

3110 Juniperus excelsa +Populus 0.26 2.65 0.04 2.61

3140 Picea smithiana 0.36 6.52 0.02 6.50

3170 Juniperus excelsa 0.08 0.71 0.03 0.68

3200 Pinus wallichiana 0.10 1.81 0.02 1.79

3230 Pinus wallichiana 0.21 3.27 0.02 3.25

3260 Picea smithiana 0.45 6.84 0.01 6.83

3290 Betula utilis 0.19 2.22 0.10 2.13

3320 Pinus wallichiana 0.23 0.88 0.04 0.84

3350 Pinus wallichiana 0.13 2.43 0.04 2.40

3380 Betula utilis 0.24 3.05 0.03 3.02

3410 Juniperus excelsa 0.20 1.95 0.03 1.92

3440 Betula utilis 0.49 7.60 0.03 7.57

3470 No tree 0.46 5.42 0.02 5.40

3500 Betula utilis 0.70 9.63 0.03 9.59

Total 5.85 76.20 1.05 75.15
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negative with p values 0.003, 0.100 and 0.109 respectively 
(Fig. 10; Additional file 1: Annexure S2).

Discussion
As the results show, with increasing altitude the STC, 
SOC and STN show increasing values but overall the 
altitudinal variation has little impact on soil carbon and 
nitrogen and the increasing variation are partly due to 

vegetation type and partly altitude. Both organic carbon 
and nitrogen show a strong positive correlation with the 
elevation and significantly differ. Our results support that 
the forest soil carbon density in Beijing also increases 
with increasing altitude (Xiao et  al. 2014) and total 
organic N concentration significantly increased with ele-
vation (Niklińska and Klimek 2007). The SIC showed the 
reverse results as with increasing altitude the inorganic 
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carbon concentration decreased. The mineralization 
process increases in the organic regions with increas-
ing elevation (Sveinbjörnsson et al. 1995) and soil respi-
ration increases with increasing temperatures. Carbon 
and nitrogen content increased with increasing elevation 
and decreasing respiration rate due to decreasing tem-
perature. The carbon and nitrogen stocks increased sig-
nificantly with elevation as the soil and air temperature 
decreased with elevation (Vieira et  al. 2011). Altitude 

is one of the factors influencing C pool in soil (Dar and 
Sundarapandian 2015). The results for the correlation 
of STC, SOC, SIC with the STN showed strongly posi-
tive significant, very strong positive significant and weak 
negative nonsignificant respectively. Our results support 
the findings of Knops and Timal (2000), that the rate of 
carbon accumulation depends on the rate of nitrogen 
accumulation and nitrogen accumulation depends on the 
biological fixation of nitrogen from atmosphere. At high 
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elevations, the mineralization and decomposition pro-
cesses are slow; as a result more nitrogen and carbon are 
found at high elevations as compared to lower elevations. 
It is found that N cycling is more sensitive to climate 
induced soil moisture variations, while C cycling is more 
strongly affected by temperature (Groffman et al. 2009). 
Our findings also show that nitrogen and carbon amount 
increases with increasing altitude.

Our findings showed clearly that SOC is the main con-
tributor (75.1 %) to the carbon stock as compared to the 
SIC (1.05  %). Our results agree with the findings of Shi 
et  al. (2012) in which they found SOC concentration 
was approximately nine times as high as SIC concentra-
tion. The averages of inorganic and organic carbon in the 
topsoil (0–20  cm) in grasslands of China were 0.38 and 

3.63  % respectively. Many factors combined responsi-
ble for the SOC and SIC such as chemical and physical 
processes of soil formation drive the spatial pattern of 
SIC, while biotic processes and climatic factors drive the 
spatial pattern of SOC. SIC is controlled by soil acidifi-
cation and other processes depending on soil pH. Veg-
etation type is the most important variable driving the 
spatial pattern of SOC (Shi et  al. 2012). As this study 
was undertaken in a forest ecosystem. The forest soil is 
more humus as compared to other soils because of more 
organic carbon accumulation in the soil due to more lit-
ter and more decomposition process as compared to 
inorganic carbon. According to the tree models, carbon-
ates and organic carbon in the topsoil were affected by 
different factors such as the pattern of SIC controlled by 
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Table 2  STN, SIC, SOC and STC under different forest types

Dominant trees Total No.  
of plants

STN (%) SIC (%) SOC (%) STC (%)

Mix.PW (224) + JE (31) + BU (18) 273 0.09 0.02 0.85 0.87

Juniperus excelsa 94 0.45 0.08 4.30 4.39

Mix.JE (42) + Pop. (32) + Astr(10) 84 0.49 0.07 4.79 4.86

Alpine grass 0 0.49 0.02 5.40 5.42

Pinus wallichiana 128 1.22 0.24 18.40 18.64

Picea smithiana 172 1.53 0.43 19.10 19.53

Betula utilis 128 1.59 0.19 22.31 22.50

Total 879 5.86 1.05 75.15 76.20
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climate, soil physical and chemical properties (pH, Soil 
moisture etc.) while for SOC biotic and climatic factors 
were predominant. Vegetation type, AGB, BGB and LM 
are major drivers of the SOC (Shi et al. 2012). As a result 
of global changes, the temperature, precipitation, nitro-
gen availability has been altered (Rockström et al. 2009), 
these changes are most likely to have great impact on soil 
carbon. According to Wang et  al. 2010) the density of 
organic carbon was highest in the forest and least in the 
desert while inorganic carbon had reverse results such as 
for SOC: Forest  >  grassland  >  shrub–grassland  >  shrub 
desert > desert; for SIC: forest, grassland < shrub–grass-
land < shrub desert < desert.

Soil organic matter (carbon and nitrogen) was highest 
in the broad leaved B. utilis forest followed by the Picea 
smathiana, P. willachina and lowest in the mixed forest 
(JE, Pop, Astr.) and Juniper forest. The broad leaved for-
est soil is rich with carbon and nitrogen contributing the 
most as a carbon sink in the area. The soil carbon is influ-
enced by the vegetation type. Our results support the 
findings of Dar and Sundarapandian (2015) in which they 
also found highest carbon concentrations in the soil of 
BU forest at 65 %, significantly higher than those in other 
forests. Tree species are considered better indicators of 
soil carbon and nitrogen concentration than other factors 
(Vesterdal et al. 2002). Less carbon was found in the top 
mineral soil of deciduous forest floors. A study indicates 
that deciduous species have larger forest floor C pools 
as compared to other forest species (Oostra et al. 2006). 
Spruce trees have more carbon than beech in the west-
ern parts of Europe (Berger et al. 2002). The species types 
determine the nutrient cycling in the forest ecosystem. 
The canopy complexity in a mixed forest will have vari-
ous different kinds of nutrients with different amounts. 
Similar heterogeneity of nutrients are produced by can-
opy complexity in the forest floor of mixed species. Soil 
nutrient production and availability depend on the mass 
of the litter and further depends on the canopy complex-
ity of plant species. The effect of tree species can be bet-
ter predicted from the mass and nutrient content of litter 
produced, hence total nutrient return, than from litter 
decay rate (Prescott 2002).

0.00

5.00

10.00

15.00

20.00

25.00

-50.00

50.00

150.00

250.00

350.00

450.00

550.00

650.00

Plant species

N
itr

og
en

 co
nt

en
t %

LT
C 

&
 L

TN
  c

on
te

nt
 %

LTC & LTN in Plant species

TC %

TN %

Fig. 7  LTC and LTN in leaf samples of plant species

Table 3  LTC and LTN in leaf samples of plant species

Plant species LTN (%) LTC (%)

Astragalus gilgitensis 1.60 43.45

Berberis pseudumbellata 1.69 44.93

Hippophae rhamnoides 2.81 46.62

populous alba 4.06 87.59

Ribes alpestre 5.31 132.48

Rosa webiana 7.45 235.64

Betula utilis 10.61 281.29

Picea smithiana 7.62 375.45

Juniperus excelsa 13.76 455.98

Pinus wallichiana 19.77 632.54
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When all the plant leaf sample results were analyzed, 
it was found that LTC and LTN were highest in Pinus 
wallichina followed by J. excelsa then in P. smithianaand 
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Fig. 8  LTC and LTN correlation with altitude

Table 4  T test for tree and shrub layer along the altitude

Altitude (m) Tree (LTN) Shrub (LTN) Tree (LTC) Shrub (LTC)

2863 4 3.6 147.1 89.5

2900 1.5 6.4 48.8 143.1

2990 2.5 1.8 94.6 44.2

3006 2.7 2.9 100.8 88.4

3009 1.2 1.6 52.6 43.4

3050 4.1 2.2 95.6 88.7

3089 2.6 1.9 100.5 44.4

3177 5.4 1.4 143.6 52.2

Total 24 21.8 783.6 593.9

Mean 3 2.725 97.95 74.2375

Variance 1.99 2.73 1286.19 1230.55

Observations 8 8 8 8

Hypothesized  
mean difference

0 0

df 14 14

t Stat 0.36 1.34

p (T ≤ t) one-tail 0.36 0.10

t critical one-tail 1.76 1.76

p (T ≤ t) two-tail 0.73 0.20

t critical two-tail 2.14 2.14

Table 5  Paired T test for  conifers and  deciduous trees 
along the altitude

Altitude  
(m)

Conifer 
(LTN)

Deciduous 
(LTN)

Conifer 
(LTC)

Deciduous 
(LTC)

3063 1.1 1.9 50.7 44.2

3177 3.2 2.2 100.2 43.4

3200 0.7 1.9 46.4 47.4

3215 3.9 2.3 145.1 48.3

3222 3.8 0.8 95.1 47.4

3230 1.6 2.3 48.7 47.5

3257 1.5 1.8 49 46.3

Total 15.8 13.2 535.2 324.5

Mean 2.26 1.89 76.46 46.36

Variance 1.79 0.27 1452.39 3.44

Observations 7 7 7 7

Pearson  
correlation

−0.23 0.18

Hypothesized 
mean  
difference

0 0

df 6 6

t Stat 0.64 2.11

p (T ≤ t) one-
tail

0.27 0.04

t critical one-tail 1.94 1.94

p (T ≤ t) two-
tail

0.55 0.08

t critical two-tail 2.45 2.45
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and B. utilis. Much smaller quantities were found in 
shrubs like R. webiana, Hyphoe rhamnoides etc. Among 
the shrubs LTC and LTN was highest in the R. webiana 
and least in the A. gilgitensis. Among the trees the least 

amount was found in the populous species which had a 
very small population size. In all other plant species like 
the shrubs the carbon and nitrogen was found to be very 
low in quantity. This indicates that in the study area PW 
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species contributes the most as a LTC and LTN sink fol-
lowed by JE species. The trees that are more numerous 
and larger in size contribute the most for soil organic 
matter as well as sinks for carbon in their leaves.

Vegetation type is the major cause of carbon and nitro-
gen concentration in the leaves, in our results there is a 
decreasing trend of carbon and nitrogen with increasing 
altitude. This is due to lower decomposition rates because 
of the decreasing temperature. The second major reason 
is the plant type as P. wallichiana leaves contain more 
carbon and nitrogen which is found at lower altitudes as 
compared to B. utilis which has lower carbon and nitro-
gen concentrations and is found at higher altitudes. Leaf 
to soil carbon and nitrogen show a weak positive corre-
lation as leaves take nitrogen from the soil and carbon in 
the soil accumulates by root and microorganism respira-
tion and decomposition of litter process. Leaf and soil car-
bon showed an increasing trend with increasing altitude 
except for the altitudes 2860 and 3500 m respectively. Leaf 
nitrogen also shows an increasing trend except at altitude 
3500 m. As plant type is the more important factor when 
determining soil and leaf carbon and nitrogen, altitude so 
far does not have much impact except on the temperature 
which decreases at high elevations. With increasing alti-
tude the temperature decreases which further decreases 
the mineralization rate. Our results, however, somehow 
support the findings of Zhang et al. (2012) that Soil N min-
eralization and nitrification rates decreased with increas-
ing altitude. The variety and types of herbs and grasses like 
legumes cause more carbon and nitrogen accumulation in 
the soil. We examined the carbon and nitrogen concentra-
tion in the soil with increasing herbaceous biomass in each 
plot. As under the forest, very few herbs were found and a 
weak correlation with carbon and nitrogen was observed.

Our results support the findings that removal or addi-
tion of litter to the forest floor significantly affects the 
decrease and increase of the dissolved organic carbon 
and nitrogen (Park and Matzner 2003). More litter cor-
responds to more decomposition and as result more car-
bon and nitrogen production/accumulation in the soil. 
The other reason is that the N mineralization process 
and decomposition process varies from forest to forest 
depending on the quantity and quality of litter in the for-
est floor. Soil N and C are affected by anthropogenic and 
environmental changes which can be reduced by replac-
ing species in the forest to retain N and carbon (Finzi 
et al. 1989). The live and dead parts of the coniferous and 
deciduous forest contained higher concentrations of sol-
uble and total C and N and higher mineralization poten-
tials than bare soil (Halvorson and Smith 2009). Litter is 
considered the most important factor when determining 
soil nutrient content. Nutrient production and availabil-
ity depends largely on the litter. The decomposition of the 

litter and litter quality has great impact on the soil nutri-
ent production and accumulation (Prescott 2002).

Conclusion
STC, SOC and STN concentration showed a positive 
correlation, while SIC showed a negative correlation 
with increasing altitude. STC and SOC showed a strong 
positive relationship with STN while SIC showed a weak 
negative relationship with the STN and SOC. Broad 
leaved forests contribute the most to SOM as compared 
to mixed forests (PW, PS and JE). P. wallichiana leaves 
stock high carbon and nitrogen content as compared 
to the leaves of all other plant species. Shrubs stock less 
carbon as compared to trees. Altitude has a negligible 
positive impact on both LTC and LTN, but has a greater 
impact on shaping the vegetation structure which in fur-
ther responsible for controlling the carbon and nitrogen 
concentration. LTC and LTN with respect to altitude and 
with respect to the forest type have positive correlations. 
HB had a weak correlation with STC and STN while LM 
contributes more to STN and STN. Mean TLC and TLN 
was higher in trees than in shrubs and in conifers than in 
deciduous plants. Forest type and LM both had a great 
impact on STC and STN, while altitude and HB had very 
little impact on these both. The carbon and nitrogen both 
show high impact on each other and are significantly cor-
related. Over all OC found to be the main contributor to 
both the TC stock and soil organic matter as compared to 
the IC and TN.

Methods
Study area
Naltar Valley, a wildlife sanctuary, is located at N 
36°09′42.2″ E 074°10′46.3″ and covers a total area of 
27,206  ha (272.06  km2) in the Karakorum mountain 
ranges of Pakistan. The valley is designated as IUCN 
Management Category no. 4, according to IUCN-WCMC 
(1993). The altitude of the area ranges from 1700 to 
5000 m (and above) ending in glaciers and the Naltar Pass. 
The dominant forest communities include P. smithiana, 
P. wallichiana, J. excelsa, and B. utilis. Other noticeable 
vegetation include Hippophae, Myricaria, Polygonum, 
Fragaria, Lonicera, Artemisia, Haloxylon and a vari-
ety of other species (Sheikh 1998). The upper and more 
open portion of the valley lies at 3000 m, where most of 
the human settlements and activities are found (IUCN-
WCMC 1993). Glaciations have caused the formation of 
moraines due to the continuous geographical changes. 
In addition to natural geographic changes, man-made 
changes have also been introduced to the valley’s land-
scape, such as the expansion of agriculture, which has 
increased due to the cutting of forests in the lower reaches 
of the valley and the valley basin (Fig. 11). The winter is 
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very harsh, with temperatures falling below −18  °C, and 
an annual rainfall of 254–400 mm (Sheikh et al. 2002).

Data collection and process
Field visits were conducted from June to August 2014 to 
collect soil and leaf samples from 22 different points with 
increasing altitude and vegetation types. The coordinates 
and elevation was recorded with the help of GPS. In each 
stand a 20 m2 circular plot was laid to collect leaf samples 
of the tree species. Within the 20  m circular plot 5  m2 
plots was laid to get leave/branch samples of the shrubs. 
Four 1  m2 rectangular plots were laid down to obtain 
herb and grass samples. Within each 1  m2 plot a small 
0.25 m2 plot was laid. The fresh weight of the individual 
herbaceous roots and shoots were noted with the help of 
an electric balance. Fresh weight of litter was taken from 
a small 0.25 m2 plot laid in the centre of each 20 m2 circu-
lar plot. From each plot soil samples were collected from 
a 25 cm depth with the help of a soil auger. All leaf, lit-
ter and soil samples were packed in tagged bags and then 
transported to the lab for dry weight and chemical analy-
sis. The leaves were oven dried while soil samples were 
air dried. The leaf samples were then ground to powder 
(2 mm) in a Retsch machine and soil samples were also 
sieved to a size of 2  mm. Total carbon, organic carbon 
and total nitrogen was analysed by dry method using All 
of the samples were then analyzed by the Dry method 
using an Elemental analyzer (Model: vario macro cube, 
Germany) for total carbon, organic carbon and total 
nitrogen content while inorganic carbon was analyzed by 
Gas law using a Carbonate analyzer (Eijkelkamp 08.53). 

The results were then analyzed for correlation by a linear 
regression model and the Pearson’s correlation coefficient 
r with the computational formula and their significance 
level p was determined to find the relationship status and 
significance level. The comparisons between trees and 
shrubs and between conifers and deciduous plants were 
performed by paired T test of two samples for means and 
T test assuming unequal variances respectively.
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