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Abstract: In this paper, we propose a graph-transformational approach to swarm computation that is
flexible enough to cover various existing notions of swarms and swarm computation, and it provides
a mathematical basis for the analysis of swarms with respect to their correct behavior and efficiency.
A graph transformational swarm consists of members of some kinds. They are modeled by graph
transformation units providing rules and control conditions to specify the capability of members and
kinds. The swarm members act on an environment—represented by a graph—by applying their rules
in parallel. Moreover, a swarm has a cooperation condition to coordinate the simultaneous actions
of the swarm members and two graph class expressions to specify the initial environments on one
hand and to fix the goal on the other hand. Semantically, a swarm runs from an initial environment
to one that fulfills the goal by a sequence of simultaneous actions of all its members. As main results,
we show that cellular automata and particle swarms can be simulated by graph-transformational
swarms. Moreover, we give an illustrative example of a simple ant colony the ants of which forage
for food choosing their tracks randomly based on pheromone trails.

Keywords: swarm computation; graph transformation; cellular automata; particle swarms

1. Introduction

The idea of swarm computation is to design systems that mimic the problem-solving
behavior of swarms in nature like ant colonies, bee hives, bird flocks, fish schools, etc. One
encounters quite a variety of swarm concepts and swarm algorithms in the literature (see,
e.g., [1–9]). Moreover, there are several general computational approaches like cellular
automata, particle swarms and ant colony optimization that are subsumed under the
heading of swarm intelligence. In this paper, we propose graph-transformational swarms
as a unifying framework using the methods of graph transformation. The notion of graph-
transformational swarms is flexible enough to cover a variety of swarm concepts and
provides a mathematical basis for the analysis of swarms with respect to correctness and
efficiency. The hope is that different models of swarm computation can be better compared
with each other within a common framework and that results for one model can be carried
over to other models more easily. Moreover, the graph-transformational approach allows
to employ graph-transformation tools for simulation, model checking and SAT solving in a
standardized way.

A graph-transformational swarm consists of an arbitrary number of members of a
finite number of different kinds. The members act simultaneously in a common environ-
ment which is represented as a graph. Moreover, there may be a cooperation condition to
regulate the interaction and cooperation of the members as well as a goal to be reached.
Kinds and members are modeled as graph transformation units (see, e.g., [10]) which are
computational devices based on rules. The key is that the framework of graph transforma-
tion provides the concept of parallel rule application to formalize the simultaneous actions
of swarm members. First ideas of graph-transformational swarms are presented by [11]
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and [12] where typical applications of ant colony optimization algorithms are modeled,
but a general definition of graph transformational swarms is missing. A short draft version
of this paper appeared as [13]. A good part of the paper is also integrated into the first
author’s PhD thesis [14].

The paper is organized in the following way. In Section 2, the basic notions of
graph transformation are recalled. Section 3 introduces graph-transformational swarms. In
Section 4, an illustrating example is given: a simple ant colony the ants of which forage
for food in a pheromone-driven manner. To demonstrate the power of our approach, we
embed cellular automata in Section 5 and particle swarms in Section 6.

2. Graph Transformation

In this section, we recall the basic elements of graph transformation as far as needed
in this paper (for more details, see, e.g., [15–17]). We consider directed edge-labeled graphs
and their derivation by applications of rules. The graph transformation approach is chosen
in such a way that rules can be applied in parallel and that their parallel applicability
follows from the applicability of each of the involved rules and an additional independence
condition. Moreover, we use the notion of graph transformation units which comprise a
set of rules and a control condition. Such a unit is a computational device that models the
derivation of graphs while the control condition is obeyed. Units are used as members
of swarms, and the parallelism makes sure that the members can act simultaneously
(cf. Section 3).

2.1. Directed Edge-Labeled Graphs

Let Σ be a set of labels with ∗ ∈ Σ. A (directed edge-labeled) graph over Σ is a system
G = (V, E, s, t, l) where V is a set of nodes, E is a set of edges, s, t : E→ V and l : E→ Σ are
mappings assigning a source s(e), a target t(e) and a label l(e) to every edge e ∈ E.

An edge e with s(e) = t(e) is a loop. If e ∈ E is labeled with z, e is also called a z-edge
or a z-loop resp. An edge with label ∗ represents an unlabeled edge. In drawings of graphs,
the label ∗ is omitted. The components V, E, s, t, and l of G are also denoted by VG, EG,
sG, tG, and lG, respectively. The empty graph is denoted by ∅. The class of all directed
edge-labeled graphs over Σ is denoted by GΣ.

The disjoint union of two graphs G and H is defined as G + H = (VG ] VH , EG ]
EH , s, t, l) where ] denotes the disjoint union of sets and for f ∈ {s, t, l} f (e) = fG(e) if
e ∈ EG and f (e) = fH(e) otherwise.

For graphs G, H ∈ GΣ, a graph morphism g : G → H is a pair of mappings gV : VG → VH
and gE : EG → EH which are structure-preserving, i.e., gV(sG(e)) = sH(gE(e)),
gV(tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG. If the mappings gV and
gE are inclusions, then G is called a subgraph of H, denoted by G ⊆ H. The match of G with
respect to the morphism g is the subgraph g(G) ⊆ H.

2.2. Graph Transformation Rules

A rule r = (L, K, R) consists of three graphs L, K, R ∈ GΣ such that L ⊇ K ⊆ R. A rule
with positive context r = (C, L, K, R) consists of four graphs C, L, K, and R such that (L, K, R)
is a rule and L ⊆ C. If C equals L, it is omitted in r. The components C, L, K, and R are
called positive context, left-hand side, gluing graph, and right-hand side, respectively. Sample
rules are always presented with the inclusion symbols so that left-hand side, gluing graph,
right-hand side, and a possible positive context are clear from their positions. In order to
avoid too much technical detail, we assume that the node sets of L and K are equal. This
means that rule applications do not delete nodes. Figure 1 shows the rule found a variant of
which is used in Section 4 for modeling a simple ant colony.

The gluing graph consists of two nodes, say u and v, as well as an unlabeled edge
from u to v and a food-loop at v. The left-hand side consists of the gluing graph and an
A-edge from u to v. The right-hand side consists of the gluing graph and an A+-edge from
v to u as well as an ε-edge from u to v.
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Intuitively, the application of a rule (L, K, R) replaces an occurrence of L in some
graph by R such that the occurrence of K is kept. Hence, the application of the rule found
reverses an A-edge into an A+-edge provided that it is attached to a node with a food-loop.
Additionally, it inserts an ε-edge.

A rule with positive context (C, L, K, R) is applied in the same way as (L, K, R) pro-
vided that the occurence of L is located within an occurrence of C. If the left-hand-side of
the rule found is regarded as positive context, we can remove the food-loop as well as the
unlabeled edge from the remaining three rule components, because they are not changed.
The result is displayed in Figure 2 where the two nodes of the gluing graph are numbered
to fix their inclusion into the other graphs. It is worth noting that the rule in Figure 1 and
the rule in Figure 2 are semantically equivalent.

found:
A

food

⊇
food

⊆
A+

ε

food

Figure 1. A graph transformation rule.

found:
1 2

A
food

⊇
1 2

A
⊇

1 2
⊆

1 2

A+

ε

Figure 2. A graph transformation rule with positive context.

Formally, the application of r = (L, K, R) with VL = VK to a graph G = (V, E, s, t, l)
consists of the following three steps.

1. Choose a match g(L) of L in G subject to the identification condition, which requires that
those items that are identified via g belong to the gluing graph K, i.e., gE(e) = gE(e′)
for e, e′ ∈ EL implies e = e′ or e, e′ ∈ EK. (Without the identification condition, the
Parallelization Theorem below would not hold.)

2. Remove the edges of gE(EL)− gE(EK) and call the resulting graph Z.
3. Add the right-hand side R to Z by gluing Z with R in g(K) yielding the graph H with

VH = VZ ] (VR − VK) and EH = EZ ] (ER − EK). The edges of Z keep their labels,
sources, and targets so that Z ⊆ H. The edges of R keep their labels; they also keep
their sources and targets provided that those belong to VR −VK. Otherwise, they are
redirected to the image of their original source or target, i.e., sH(e) = g(sR(e)) for
e ∈ ER − EK with sR(e) ∈ VK, and tH(e) = g(tR(e)) for e ∈ ER − EK with tR(e) ∈ VK.

A rule with positive context r = (C, L, K, R) is applied to G in the same way provided
that the morphism g : L→ G can be extended to C. Figure 3 shows two applications of found.

An application of r to G w.r.t. the graph morphism g is denoted by G =⇒
r

H. It is called
a direct derivation from G to H. The subscript r may be omitted if it is clear from the context.
The sequential composition of direct derivations G = G0 =⇒r1

G1 =⇒r2
· · ·=⇒

rn
Gn = H

(n ∈ N) is called a derivation from G to H. As usual, the derivation from G to H can also
be denoted by G n

=⇒
P

H where {r1, . . . , rn} ⊆ P, or just by G ∗
=⇒

P
H. The string 〈r1, . . . , rn〉

is the application sequence of the derivation. Figure 4 shows a derivation with application
sequence 〈 f ound, f ound〉.

Instead of applying f ound to the left upper A-edge and then to the right upper one, one
can interchange the order which yields the same result with a different intermediate graph.

In the following, the class of all rules (with and without positive context) is denoted
byR.
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A
food

A

A

A+

ε

food

A

A

A
food

A

ε

A+

found

found

Figure 3. Two rule applications.

A
food

A

A

=⇒
found

A+

ε

food

A

A

=⇒
found

A+

ε

food

A

ε

A+

Figure 4. A derivation.

2.3. Parallel Rule Application

Let ri = (Ci, Li, Ki, Ri) ∈ R for i = 1, . . . , n. Then the parallel rule p = ∑n
i=1 ri =

(∑n
i=1 Ci, ∑n

i=1 Li, ∑n
i=1 Ki, ∑n

i=1 Ri) is given by the disjoint unions of the components.
Figure 5 shows the parallel rule found + found. It can be applied to the left graph of
Figure 4, if the A-edges are not identified (otherwise, the identification condition would be
violated). The result is equal to the right graph of Figure 4 (see also Figure 6).

found + found:

A food

⊇

A

⊇ ⊆

A+

ε

A food A A+

ε

Figure 5. A parallel rule.

Let r = (C, L, K, R) and r′ = (C′, L′, K′, R′) be two rules and let G =⇒
r

H and G =⇒
r′

H′

be two direct derivations w.r.t. the morphisms g : L→ G and g′ : L′ → G. Then the direct
derivations are parallel independent if the corresponding matches intersect in gluing items
only, i.e., gV(VL)∩ g′V(VL′) ⊆ gV(VK)∩ g′V(VK′) and gE(EL)∩ g′E(EL′) ⊆ gE(EK)∩ g′E(EK′).

The application of parallel rules and parallel independence are closely related as is
shown by the well-known Paralllelization Theorem (see, e.g., [16,17] and Chapter 2 of [15]).
This result is the basis of the simultaneous actions of members of graph-transformational
swarms as introduced in the next section.
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Fact 1 (Parallelization Theorem). For i = 1, . . . , n, let ri = (Ci, Li, Ki, Ri) ∈ R and let
p = (C, L, K, R) = ∑n

i=1 ri be the corresponding parallel rule. Then the following hold.

1. Let G =⇒
p

X be a direct derivation w.r.t. g : L→ G. Then there are direct derivations

G =⇒
ri

Hi with the matching morphisms gi = g|Li that are pairwise parallel inde-

pendent where the morphism g|L′ : L′ → G denotes the restriction of g to L′. for
g : L→ G and L′ ⊆ L.

2. Let G =⇒
ri

Hi for i = 1, . . . , n be direct derivations w.r.t. gi : Li → G. Let each two

of them be parallel independent. Then there is a direct derivation G =⇒
p

X w.r.t.

g : L→ G defined by g|Li = gi for i = 1, . . . , n.

The theorem still holds for an infinite family ri ∈ R with i ∈ N.
According to the Parallelization Theorem, the rule components of found+found in

Figure 6 can be applied separately to the left graph and are parallel independent. Con-
versely, these two parallel independent applications of found can be executed in parallel.

A
food

A

A

A+

ε

food

A

A

A
food

A

ε

A+

A+

ε

food

A

ε

A+
found

found

found+found

Figure 6. Two parallel independent rule applications and their parallelization.

2.4. Control Conditions and Graph Class Expressions

Control conditions can reduce the nondeterminism of rule application. In more detail,
each control condition C is defined over a finite set P of rules and specifies a set SEM(C) of
derivations. The class of all control conditions is denoted by C. Control conditions can be
composed by the operator & with SEM(C1 & C2) = SEM(C1) ∩ SEM(C2) for all C1, C2 ∈ C.

A typical control condition is a priority relation > on a set P of rules meaning that a
rule r ∈ P can only be applied if no other rule with higher priority is applicable. Another
often used control condition is a regular expression over P. By definition, the constants
empty, lambda and r ∈ P are regular expressions and the composites e1; e2, e1|e2 and e∗

are regular expressions if e1, e2, e are regular expressions. A derivation obeys a regular
expression e if the application sequence of the derivation belongs to the language of e.
In other words, e1; e2 allows a derivation if an initial section is allowed by e1 and the
remaining section by e2; e1|e2 allows a derivation if e1 or e2 allows it; e∗ allows a derivation
if it is a sequence of sub-derivations each allowed by e. The expression r ∈ P requires
that r is applied; lambda allows any derivation of length 0; empty forbids any derivation.
Alternatively to r∗, r! is used. It requests that r is applied as long as possible and not
arbitrarily often.
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All these examples of control conditions and their satisfaction apply not only to
derivations over P but also to derivations of the form

G0 =⇒
r1+r′1

G1 =⇒
r2+r′2

· · · =⇒
rn+r′n

Gn

with r1, . . . .rn ∈ P and r′1, . . . , r′n ∈ P′ if 〈r1, . . . , rn〉 is an application sequence in the case
of regular expressions or if, in the case of priorities for all i = 1, . . . , n, Gi−1 =⇒

ri+r′i
Gi implies

ri ≥ r̂ for all r̂ ∈ P applicable to Gi−1.
Graph class expressions restrict the class GΣ to subclasses, i.e., each graph class ex-

pression X specifies a set SEM(X) ⊆ GΣ. The class of all graph class expressions is
denoted by X . Typical examples of graph class expressions are graph properties like
unlabeled with SEM(unlabeled) = G{∗} or simple with SEM(simple) = {(V, E, pr1, pr2, pr3) |
E ⊆ V × V × Σ} where pri is the projection to the i-th component for i = 1, 2, 3. More-
over, each graph G ∈ GΣ is a graph class expression with SEM(G) = {G}. We also use
required(X) and op(X) for X ∈ X as graph class expressions. SEM(required(X)) contains
all graphs with a subgraph in SEM(X). SEM(op(X)) for some graph operator op contains
all graphs obtained by the application of the operator to graphs in SEM(X). Explicit
examples of such operators are nest-looping and f ood∗-looping. Applied to G ∈ GΣ, the
first operator adds one nest-loop to some node, and the second operator adds an arbitrary
number of f ood-loops. Graph class expressions can be composed by the operator & with
SEM(X1 & X2) = SEM(X1)∩ SEM(X2) for all X1, X2 ∈ X . Further graph class expressions
are introduced where needed.

2.5. Graph Transformation Units

In the following we introduce a special case of graph transformation units, which is
suitable for our purposes.

A graph transformation unit is a pair gtu = (P, C) where P ⊆ R is a set of rules, and
C ∈ C is a control condition over P. The semantics of gtu consists of all derivations G ∗

=⇒
P

H

allowed by C.
A unit gtu is related to a unit gtu0 if gtu is obtained from gtu0 by relabeling. For a

mapping rel : Σ→ Σ, the relabeling of gtu0 is the unit rel(gtu0) = (rel(P0), rel(C0)) where
the relabeling replaces each occurring x ∈ Σ in the components P0 and C0 of gtu0 by rel(x).
The set of units related to gtu0 is denoted by RU(gtu0).

Each set P ⊆ R of rules induces a graph transformation unit specified by
gtu(P) = (P, f ree) where free allows all derivations. For gtu({p}) with p ∈ R we write
gtu(p) for short.

3. Graph-Transformational Swarms

In this section, we introduce graph-transformational swarms and their computations.
The swarm members act simultaneously in a common environment represented by a
graph. All the members of a swarm may be of the same kind or of different kinds to
distinguish between different roles members may play. The number of members of each
kind is given by the size of the kind. To increase the flexibility of this notion, we also
allow multidimensional swarms by means of size vectors. In this case, the number of
members of the respective kind is the product of the size components. Given a size vector
(n1, . . . , nl) ∈ Nl

>0, the index vectors (i1, . . . , il) with ij ∈ [nj] for j ∈ [l] are used to identify
the members of the swarms, where N>0 = N− {0} and [n] = {1, . . . , n}. While a kind
is specified as a graph transformation unit, the members of a kind are modeled as units
related to the unit of this kind making sure in this way that all members of some kind are
alike. A swarm computation starts with an initial environment and consists of iterated rule
applications requiring massive parallelism meaning that each member of the swarm applies
one of its rules in every step. In other words, each member acts sequentially according to
its specification while all together are always busy. The choice of rules depends on their
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applicability and the control condition of the members. In some cases, a more restricted
way of computation is reasonable. Hence, we allow to provide a swarm with an additional
cooperation condition. Finally, a swarm may have a goal given by a graph class expression
like the initial graphs are specified by such an expression. A computation is considered to
be successful if an environment is reached that meets the goal.

Definition 1 (swarm). A swarm is a system S = (I, K, s, m, c, g) where I is a graph class
expression specifying the set of initial environments, K is a finite set of graph transformation units,
called kinds, s associates a size vector s(k) ∈ Nd(k)

>0 with each kind k ∈ K where d(k) ∈ N>0
denotes the dimension of the kind k, m associates a family of members (m(k)i)i∈[s(k)] with each kind
k ∈ K with m(k)i ∈ RU(k) for all i ∈ [s(k)], c is a control condition called cooperation condition,
and g is a graph class expression specifying the goal. For s = (n1, . . . , nl) ∈ Nl

>0 and some l ≥ 1,
[s] = {(i1, . . . , il) | ij ∈ [nj], j ∈ [l]}.

A swarm may be represented schematically as in Figure 7 where si = s(ki) and
mi = m(ki) for i ∈ [n].

name
initial: I
kinds : k1, . . . , kn
size : s1, . . . , sn
members: m1, . . . , mn
coop: c
goal: g

Figure 7. The schematic representation of a swarm.

Definition 2 (swarm computation). A swarm computation is a derivation

G0 =⇒p1
G1 =⇒p2

· · ·=⇒
pq

Gq

such that G0 ∈ SEM(I), pj = ∑k∈K ∑i∈[s(k)] rjki with a rule rjki of m(k)i for each j ∈ [q], k ∈ K
and i ∈ [s(k)], and c and the control conditions of all members are satisfied. For the satisfaction of
the control condition of a unit, confer the definition for parallel derivations in Section 2.4.

That all members must provide a rule to a computational step, is a strong requirement
because graph transformation rules may not be applicable. In particular, if no rule of a
swarm member is applicable to some environment, no further computational step would
be possible and the inability of a single member stops the whole swarm. To avoid this
global effect of a local situation, we assume that each member has the empty rule (∅, ∅, ∅)
in addition to its other rules. The empty rule gets the lowest priority. In this way, each
member can always act and is no longer able to terminate the computation of the swarm.
In this context, the empty rule is called sleeping rule. It can always be applied, is always
parallel independent with each other rule application, but does not produce any effect.
Hence, there is no difference between the application of the empty rule and no application
even within a parallel step.

To enhance the feasibility of the swarm concept, we allow also unbounded sizes,
denoted by N or Z. In this case, we allow only computations where in each step all but
a finite number of rules are empty. An example of a swarm with unbounded size is the
swarm version of a cellular automaton in Section 5.

The concept of graph-transformational swarms provides a formal framework for
the study of swarm computation. In many swarm approaches, the environments of the
swarms are either chosen as graphs explicitly or can easily be represented by graphs.
And because rules are widely and successfully used as the core of computation, graph
transformation combining rules and graphs is a natural candidate for the formalization of
swarm computation. The graph-transformational approach offers some advantages:
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• Graphs and rules are mathematically well-understood and quite intuitive syntactic
means to model algorithmic processes. Moreover, the additional use of control and
cooperation conditions as well as graph-class expressions allows very flexible forms
of regulation.

• Derivations as sequences of rule applications provide an operational semantics that is
precise and reflects the computational intentions in a proper way.

• Based on the formally defined derivation steps and the lengths of derivations, the
approach provides a proof-by-induction principle that allows one to prove properties
of swarm computations like termination, correctness, efficiency, etc.

• In the area of graph transformation, one encounters several tools for the simulation,
model checking and SAT-solving of graph transformation systems that can be adapted
to graph-transformational swarms.

• And maybe most important, the Parallelization Theorem establishes a systematic
and reliable handling of massive parallelism. In several swarm approaches, the si-
multaneous actions of swarm members are organized in a very simplistic way by
avoiding any kind of conflict or are required, but not always guaranteed (cf. e.g., [18]).
In contrast to that, the simultaneous actions of members of graph-transformational
swarms is assured whenever the member rules are applicable and pairwise indepen-
dent. Both can be checked locally and much more efficiently than the applicability of
the corresponding parallel rule.

In the next three sections, we make an attempt to demonstrate the stated advantages
by modeling three typical approaches to swarm computation.

4. A Simple Ant Colony

In this section, we illustrate the notion of graph-transformational swarms by modeling
an ant colony the ants of which forage for food by mean of a simple pheromone mechanism.
The sample graph-transformational swarm is presented in Figure 8.

The swarm consists of some ants all of the same kind. They act in directed graphs
with a nest-loop and some f ood-loops. The node with the nest-loop has some further
unlabeled loops that represent the actual food stock. All other initial edges are labeled by
a positive integer representing a pheromone rate. We assume nest- f ood-connectedness
meaning that the paths from the nest-looped node to some f ood-looped node visit all
nodes. Moreover, we assume that the underlying environment graph is simple meaning
that there are no parallel pheromone-labeled edges. This class of graphs is denoted by
(nest & f ood∗)-looping(simple & pheromone-labeled & nest- f ood-connected). During swarm
computations further edges appear and disappear.

The kind ant defines the potential activities of an ant by means of five rules and some
priorities. It can leave the nest by placing an A-edge and an ε-labeled edge in parallel
to a pheromone-labeled edge with the nest-looped node as source. Then it can forage for
food by walking through the graph passing one pheromone-labeled edge per step and
placing a parallel ε-edge. The label A refers to the ant, and ε is an integer to be added to the
pheromone value. If an ant reaches a f ood-node, then the rule f ound is applied changing
the label A into A+ and indicating in this way that the ant takes food. In this state, it moves
back using the rule return until it can deliver which adds a food unit to the stock. Note that
the returning ants pass edges from target to source so that the same paths are used as for
foraging. Moreover, an ant leaves the amount ε of pheromone along the return paths too.
The pheromone values of the passed edges are not updated immediately, but in the next
computational step. This allows several ants to pass the same edge in the same step. The
control condition requests some priorities. An ant can only leave the nest if it cannot do
anything else, i.e., if neither the label A nor A+ is around. In other words, it leaves the
nest at the beginning and after each delivery. Moreover, foraging for food stops whenever
food is found. And moving back stops whenever the nest is reached. Further control is
provided by the labels A+ and A. As long as A is present, only the rules f orage and f ound
may be applied. As long as A+ is present, only return and deliver may be applicable. The
application of f ound turns a foraging phase into a returning phase that ends with deliver.
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control condition requests some priorities. An ant can only leave the nest if it cannot do
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members: ant(Ai, A+
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rules:
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φ
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⊆
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A
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ε

forage:
A
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⊇
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⊆

φ

A

ε

found:
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⊇
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⊆
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A+

return:
φ

A+

⊇
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⊆
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A+

ε

deliver:
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⊇
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⊆
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control: leave < f orage | f ound | return | deliver
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return < deliver

update
rules:

update:
φ

ε
⊇ ⊆

φ+ε

control: ‖ update ‖!
Figure 8. The swarm simple ant colony with the kinds ant and update.

Due to the nest- f ood-connectivity of the environmental graph, an ant can always act.
If the A-edge points to a f ood-looped node, then rule f ound can and must be applied.
Otherwise the A-edge has a target with another outgoing edge so that f orage can be
applied. If there is an A+-loop, then return can be applied. To match the left-hand side of

Figure 8. The swarm simple ant colony with the kinds ant and update.

Due to the nest- f ood-connectivity of the environmental graph, an ant can always act.
If the A-edge points to a f ood-looped node, then rule f ound can and must be applied.
Otherwise the A-edge has a target with another outgoing edge so that f orage can be
applied. If there is an A+-loop, then return can be applied. To match the left-hand side of
the rule in this case, its A+-edge must be mapped to the A+-loop. This is possible because
matches are not assumed to be isomorphic images. If there is an A+-edge pointing to the
nest-looped node, then deliver can and must be applied. Otherwise, the A+-edge points
to a node with an incoming edge so that return can be applied. If all other fail, leave is
allowed and possible.

The members of kind ant are obtained by relabeling A and A+ by Ai and A+
i resp.

for i = 1, . . . , n where n is the chosen size of the ant colony. All other labels are kept.
As all rule applications remove only edges with labels Ai and A+

i , all rule applications
are pairwise parallel independent if they concern different labels. In other words, the
maximal parallel computation steps can be performed whenever an applicable rule is
chosen for each ant. But there is one restriction given by the cooperation condition. It
requires that ants act pheromone-driven meaning that the number of ants that pass an edge
corresponds to the pheromone value of the edge. More precisely, let l be an ant that can
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pass the edges e1, . . . , ek with pheromone values φ1, . . . , φk in the next step, then ej is used

with the probability
φα

j

∑k
i=1 φα

i
where the parameter α can be chosen in a suitable way. The

larger α is, the more the effect of the pheromone values is intensified in the heuristic choice.
The cooperation condition requires that after each action of the ants an update of the

pheromone values takes place. The only member equals the kind and provides a single
rule that adds ε to each pheromone-labeled edge for each parallel ε-labeled edge. The
control condition requires that the update-rule is applied with maximal parallelism as
long as possible. The applications of the update-rules are parallel independent if they
update different pheromone-labeled edges. Therefore, update needs m steps where m is
the maximum number of parallel ε-edges.

Finally, the goal specifies graphs where the stock, i.e., the number of extra loops at the
nest-looped node, exceeds a given bound b that can be chosen freely.

From the description of this swarm, it is clear how the computations look like. The
ants act in parallel each applying one of its five rules according to applicability and priority.
In the first step, all ants leave the nest. Later in the computations, all five types of rules may
occur simultaneously. After each ants action step, an update takes place. The alternation
between ant action and update can go on for ever, but can be stopped if the stock is
large enough. Will this event occur eventually? We assume that the initial graphs are
nest- f ood-connected so that there are paths from the nest to each f ood-labeled node in
particular. The ants use those paths with some probability depending on the pheromone
values. Consequently, the ants come back to the nest after they found food with some
probability so that the stock increases with some probability if the computation runs long
enough and the number of ants is large enough. This can be guaranteed by assuming
in addition that the initial environments are finite and cycle-free because then every ant
finds food and returns to the nest eventually. The pheromone mechanism favors short
paths before long ones. The fastest way to increase the stock is by running a shortest path
from nest to f ood and back. Short paths get some extra pheromone earlier than long ones
so that they will be used in the further computation with even higher probability. This
reasoning shows that there is a correlation between the length of paths and the number of
computation steps needed to fill the stock.

Because this is a very first example of graph-transformational swarms, we have kept
it simple. In particular, the kind update could be designed in a more sophisticated way
by adding evaporation rules. Moreover, the only member update could be replaced by
update-members that are related to the pheromone-labeled edges so that the pheromone
updating is also in the style of swarms.

We have implemented the simple ant colony swarm in the graph transformation tool
GrGen.NET [19]. An experimental computation with a swarm of 20 ants is documented in
Figure 9. For a better visualization, we omit the labels of the ants and replace the loops
representing the food stock by a single loop labeled with the number of food units. The
initial graph H0 has 23 nodes including a node with a nest-loop and two nodes with f ood-
loops. The initial pheromone values of all edges correspond to φ = 1. In the probability
function, we use α = 2. The seven further displayed graphs Hi for i ∈ {4, 5, 7, 11, 18, 28, 270}
are the graphs after the i-th step of the ants and the following update each. The graph H2
represents the resulting graph after four ant-steps. More precisely, in the first ant step all
ants leave the nest, however the swarm is split in two groups from almost the same size 9
and 11. This is due to the pheromone-driven action of ants and the equal initial pheromone
values. Afterwards all ants apply their f orage-rules three times. The edges visited from
each group can be easily recognized in H4. Since their initial values are augmented by
the underlying group’s number of members. The graph H5 results after the 5th ant-step.
One can see how all members go forward applying their forage rules again. However
the group of 11 members splits in three subgroups when arriving in the node, say u, with
three outgoing edges. In the 7th ant-step which generates H7, a group of 5 ants find the
f ood-node, say f1, while all other ants forage further. In the 11th ant-step, 11 ants have
found food and are returning to the nest. The other members still forage. H18 displays the



Entropy 2021, 23, 453 11 of 19

results of the 18th ant-step. The first ants have delivered 4 units of food, in addition one
can see that the path between u and f1 starts slowly to be preferred. In H28 the ants have
performed already 28 steps, and 20 units of food are delivered. The path between u and f1
is frequently walked through meanwhile. H270 displays the graph after 270 ant-steps with
337 food units. Based on the pheromone values, one can see that ants prefer the shortest
path between the nest- and one of the f ood-nodes. The computation may be terminated
whenever the chosen bound of the food stock is reached.

Entropy 2021, 1, 0 12 of 20
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Figure 9. A sample computation of the simple ant colony swarm.Figure 9. A sample computation of the simple ant colony swarm.
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Our ant colony model is meant to exemplify how the features of graph-transformational
swarms look like and work. How such models can be turned into applications that solve
concrete optimization problems can be seen in [11,12].

5. Cellular Automata

Cellular automata are computational devices with massive parallelism known for
many decades see, e.g., [20–24]. They are also considered as typical representatives of
swarm computation [2]. In this section, we embed cellular automata into the framework of
graph-transformational swarms.

A cellular automaton is a network of cells where each cell has got certain neighbor cells.
A configuration is given by a mapping that associates a local state with each cell. A current
configuration can change into a follow-up configuration by the simultaneous changes of
all local states. The local transitions are specified by an underlying finite automaton where
the local states of the neighbor cells are the inputs. If the network is infinite, one assumes
a particular sleeping state that cannot change if all input states of neighbor cells are also
sleeping. Consequently, all follow-up configurations have only a finite number of cells that
are not sleeping if one starts with such a configuration.

To keep the technicalities simple, we consider 2-dimensional cellular automata the
cells of which are the unit squares in the Euclidean plane

(i, j+1) (i+1, j+1)

(i, j) (i+1, j)

for all (i, j) ∈ Z×Z and can be identified by their left lower corner. The neighborhood
is defined by a vector N = (N1, . . . , Nk) ∈ (Z× Z)k where the neighbor cells of (i, j) are
given by the translations (i, j) + N1, . . . , (i, j) + Nk. If one chooses the local states as colors, a
cell with a local state can be represented by filling the area of the cell with the corresponding
color. Accordingly, the underlying finite automaton is specified by a finite set of colors, say
COLOR, and its transition d : COLOR× COLORk → COLOR. Without loss of generality,
we assume white ∈ COLOR and use it as sleeping state, i.e., d(white, whitek) = white. Under
these assumptions, a configuration is a mapping S : Z×Z→ COLOR and the follow-up
configuration S′ of S is defined by

S′((i, j)) = d(S((i, j)), (S((i, j) + N1)), . . . , S((i, j) + Nk))).

If one starts with a configuration S0 which has only a finite number of cells the colors of
which are not white, then only these cells and those that have them as neighbors may change
the colors. Therefore, the follow-up configuration has again only a finite number of cells
with other colors than white. Consequently, the simultaneous change of colors of all cells can
be computed. Moreover there is always a finite area of the Euclidean plane that contains all
changing cells. In other words, a sequence of successive follow-up configurations can be
depicted as a sequence of pictures by filling the cells with their colors.

Example 1. The following instance of a cellular automaton may illustrate the concept. It is called
SIER, has two colors, COLOR = {white, black}, and the neighborhood vector is N = ((−1, 0), (0, 1))
meaning that each cell has the cell to its left and the next upper cell as neighbors.

The transition of SIER changes white into black if exactly one neighbor is black, i.e., d : COLOR×
COLOR2 → COLOR with d(white, (black, white)) = d(white, (white, black)) = black and
d(c, (c1, c2)) = c otherwise.

If one starts with the configuration S0 with S0((10, 0)) = S0((0, 10)) = S0((30, 0)) =
S0((0, 40)) = black and S0((i, j)) = white otherwise, then one gets the configuration in Figure 10
after 50 steps.
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Figure 10. A pictorial representation of the configuration S50.

Starting with a single black cell, SIER iterates the Sierpinski gadget (cf., e.g., [25]).

Cellular automata can be considered as graph-transformational swarms. Let CA be a
cellular automaton with the neighborhood vector

N = (N1, . . . , Nk) ∈ (Z×Z)k,

the set of colors COLOR and the transition function d : COLOR× COLORk → COLOR.
Then a configuration S : Z×Z→ COLOR can be represented by a graph gr(N, S) with the
cells as nodes, with an unlabeled edge from each cell to each of its neighbors and two loops
at each cell where one loop is labeled with the color of the cell and the other loop with the
coordinates of the cell. The set of all these graphs is denoted by G(CA).

If the color of a cell (i, j) changes, i.e., d(S((i, j)), (S((i, j) + N1), . . . , S((i, j) + Nk))) 6=
S(i, j), then the following rule with positive context

c

(i, j)

...

(i, j)+N1
c1

(i, j)+Nk

ck

⊇
c

(i, j)

⊇

(i, j)

⊆

d(c, (c1, . . . , ck))

(i, j)

can be applied to the node (i, j) in gr(N, S) provided that c = S(i, j) and cp = S((i, j) + Np)
for p = 1, . . . , k. Due to the loops that identify the nodes, the matching is unique and
the matches of the left-hand sides of each two of such applicable rules do not overlap.
Consequently, all those applicable rules can be applied in parallel yielding gr(N, S′) where
S′ is the follow-up configuration of S. This remains true if the (empty) sleeping rule is
applied to each other node because it is always applicable, is always independent of each
other rule application and does not change the result. In other words, the derivation step
gr(N, S) =⇒ gr(N, S′) is a swarm computation step if the rules above belong to members
of a swarm which can be defined as follows:

swarm(CA)
initial: G(CA)
kinds : gtu(P((0, 0)))
size : Z×Z
members: gtu(P((i, j))) for (i, j) ∈ Z×Z
coop: free
goal: all

where the kind and the members are units induced by the sets of rules P((i, j)) containing
all rules above for (i, j) ∈ Z × Z and the transition d. Every member gtu(P((i, j))) is
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obtained from the kind gtu(P((0, 0))) by translating all points in the plane by (i, j) which is
a special relabeling. Conversely, a computation step gr(N, S) =⇒H in swarm(CA) changes
a c-loop into a d(c, (c1, . . . , ck))-loop at the node with the (i, j)-loop if and only if, for
l = 1, . . . , k, the neighbor with the (i, j) + Nl-loop has also a cl-loop. All other c-loops
are kept. This means that H = gr(N, S′). Summarizing, each cellular automaton can
be transformed into a graph-transformational swarm such that the following correctness
result holds.

Theorem 1. Let CA be a cellular automaton with neighborhood vector N and let swarm(CA) be
the corresponding graph-transformational swarm. Then there is a transition from S to S′ in CA if
and only if gr(N, S)) =⇒ gr(N, S′) in swarm(CA).

Therefore, cellular automata behave exactly as their swarm versions up to the rep-
resentation of configurations as graphs. We have considered cellular automata over the
2-dimensional space Z×Z. It is not difficult to see that all our constructions also work for
the d-dimensional space Zd in a similar way. One may even replace the quadratic cells by
triangular or hexagonal cells.

6. Particle Swarm Optimization

Particle swarm optimization is one of the major approaches to swarm intelligence
one encounters in the literature in various variants (see, e.g., [26–30]) In this section,
we model a discrete version of particle swarm optimization in the framework of graph-
transformational swarms.

A particle swarm acts in the Euclidean space Rd for some dimension d ∈ N. The
space is provided with a fitness function f : Rd → R and a neighborhood N : Rd → P(Rd)
(where P(X) denotes the power set of some set X). A swarm consists of n particles i ∈ [n]
each of which carries the following information at each time t ∈ N: a position pit ∈ Rd, a
velocity vit ∈ Rd, a personal best (position) pbit ∈ Rd, and a best neighbor (position) bnit ∈ Rd.

The initial positions pi0 and initial velocities vi0 are chosen randomly. The initial
personal bests coincide with the initial positions, i.e., pbi0 = pi0. In all steps, the best
neighbor bnit is the position of a particle j in the neighborhood of i, pjt ∈ N(pit), with
maximum fitness, i.e., f (pjt) ≥ f (pkt) for all pk ∈ N(pit). The positions, velocities and
personal bests at time t + 1 are given by the following formulas using the positions,
velocities and personal bests at time t:

• vi(t+1) = vit + Ut(0, φ1)⊗ (pbit − pit) + Ut(0, φ2)⊗ (bnit − pit),
• pi(t+1) = pit + vi(t+1),
• pbi(t+1) = pi(t+1) if f (pi(t+1)) > f (pbit) and pbi(t+1) = pbit otherwise.

Here φ1 and φ2 are two pregiven bounds, Ut(0, φ1) and Ut(0, φ1) are vectors with
randomly chosen components between 0 and φ1 and φ2 respectively and ⊗ is the compo-
nentwise product. A velocity represents a direction and a speed so that a particle moves
in this direction with this speed from step to step where the velocity is adapted in such
a way that the particle moves partly in the direction of the personal best and partly in
the direction of the best neighbor. It is assumed that each particle is a neighbor of itself
to guarantee that the best neighbor always exists. The goal is that one of the particles
reaches a position the fitness of which meets or exceeds a given bound. In the literature,
one can find a long list of examples of particle swarms which run successfully for a variety
of optimization problems see, e.g., [28,29].

A simple way to discretize particle swarms is to assume that all position and velocity
components and all randomly chosen scalars are integers. This discrete version of particle
swarms can be transformed into the framework of graph-transformational swarms. Let PS
be such a discrete particle swarm with the fitness function f : Zd → Z, the neighborhood
N : Zd → P(Zd), the bounds φ1, φ2 ∈ N, the goal value b ∈ Z, and n particles. Then the
corresponding graph-transformational swarm is given in Figure 11.
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swarm(PS)
initial: space(N, f )
kinds : particle
size : n
members: particlei for i ∈ [n]
coop: synchronize(self , newvel)

goal: required(
m

pi | i ∈ [n], m ≥ b)

Figure 11. A graph transformational particle swarm.

The initial environment graph is called space(N, f ) and has all points Zd in the d-
dimensional Euclidean plane with integer coordinates as nodes. There is an unlabeled edge
(x, y) for x, y ∈ Zd with the source x and the target y whenever y ∈ N(x). Furthermore,
each x ∈ Zd has two loops (x, 1) and (x, 2) where x is source and target. The label of (x, 1)
is also x, the label of (x, 2) is f (x). All particles are of the same kind specified by the unit
particle in Figure 12. (For technical simplicity, we assume d > 1).

particle
rules:

init: ⊇ ⊆
p pb

v

self:
p

⊇
p
⊆

p bn

improve:
p bn

p′′

p′

m
n

⊇
bn

⊇ ⊆ for m, n ∈ Z
with n > m

bn

newvel: ⊇
pbp

bn v

xyz u

w
⊇

v

⊆

v

for x, y, z, u ∈ Zd with w = u+U(0, φ1)⊗ (y− x)+U(0, φ2)⊗ (z− x)
and U(0, φ1) and U(0, φ2) chosen as above

newpos: ⊇
pv

xy x + y

⊇
p

⊆ for x, y ∈ Zd

p

newpb: ⊇
p pb

m n

⊇
pb

⊆ for m, n ∈ Z

with m > n

pb

control: init ; (self ; improve! ; newvel ; newpos ; try(newpb))∗

Figure 12. The unit particle.



Entropy 2021, 23, 453 16 of 19

The member particlei for i ∈ [n] is obtained by indexing p, v, pb and bn with i. All
other labels are kept variable with p′, p′′ ∈ {p1, · · · , pn} in particular. Due to the control
condition, the rule init is applied first and then never again. It chooses two points x and y,
generates a new node (representing a particle) and two edges from this node to x labeled
with p and pb respectively and an edge to y labeled with v choosing randomly an initial
position, which is also the personal best, and an initial velocity. As nothing is removed, each
two applications of init are parallel independent such that all particles can be initialized
simultaneously. Afterwards, a sequence of rule applications is iterated starting with self
followed by improve as long as possible. The application of self takes the current position as
best neighbor by adding a bn-edge parallel to the p-edge. The rule improve can be applied
if one can find a particle in the neighborhood with a better fitness. Applied as long as
possible, the bn-edge points to the current best neighbor.

If now newvel and then newpos are applied, then the velocity and position of a particle
are changed using the formulas above by redirecting the v-edge and p-edge accordingly.
If the new position has a better fitness than the former personal best, then the rule newpb
can be applied to update the personal best. The control condition try(newpb) requires that
newpb is applied if possible.

The rules self can be applied to all particles in parallel as again nothing is removed.
Two applications of improve for different particles are parallel independent as only the
different bn-edges are redirected. Therefore, the improvements can be done in parallel
provided that at most one improve-rule per particle is applied. The cooperation condition
requires that the applications of newvel are synchronized, which means that they are done
in parallel after all improvements are performed. Each two applications of newvel for
different particles are parallel independent as only different edges are redirected. Because
of the same reason, all particles can get a new position by applying the newpos-rules in
parallel. And analogously the newpb-rules can be applied in parallel afterwards as far as
they are applicable at all. The cooperation condition requires that self is synchronized,
which means that in the next round all applications of self start simultaneously. The goal
requires that one of the particles reach a position the fitness of which meets or exceeds the
bound value b.

The rules improve, newvel, newpos and newpb describe how the attributes of a particle
can be changed by redirecting the respective edges where the positive context (placed
left-most) provides the parameters that must be considered in each case.

By definition, a run ρ of a particle swarm is determined by the choices of pi0 and
vi0 for i ∈ [n] and the vectors Ut(0, φ1) and Ut(0, φ2) for t ∈ N. The family of quadruples
st = ((pit, vit, pbit, bnit))i∈[n] may be seen as the swarm state at time t ∈ N. Such a state can
be transformed into a graph gr(st) that has space (N, f ) as subgraph and, for each i ∈ [n],
an additional node i as well as four new edges of the form

i
pi vi bpi bni

pit vit pbit bnit

Consider, on the other hand, the computation of swarm(PS) using the same choices as
the run ρ. Then the considerations of this section show that, for each t ∈ N, the graph gr(st)
is computed after all improve-steps in round t through the iteration in the control condition.
This proves the following correctness result.

Theorem 2. Let PS be a discrete particle swarm and swarm(PS) the corresponding graph-
transformational swarm. Then there is a one-to-one correspondence between the runs in PS and the
computations in swarm(PS).

While particle swarm optimization is usually defined over a continuous space, we
have transformed discrete versions of particle swarms into graph-transformational swarms
because of the following reasons.
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1. In the framework of graph transformation, the usual underlying structures are finite
graphs or infinite discrete graph in exceptional cases. But all the concepts employed in
the paper work for arbitrary sets of nodes and edges including the set of real numbers,
the Euclidean space of some dimension or other continuous domains. Nevertheless,
we have decided to consider a discrete version of particle swarm optimization as we
want to demonstrate the potential of the usual graph transformation rather than to
introduce a new kind of graph transformation. Nevertheless, the latter may be an
interesting topic of future research.

2. Moreover, implementations of particle swarm models are always discretized. As
long as the abstract models are continuous, testing is the only way to validate an
implementation against the model. A discrete abstract model between a continuous
model and the implementation may allow to prove general properties and to improve
the trustworthiness of system development in this way.

3. In the literature, one encounters applications of particle swarm optimization to solve
discrete problems (see, e.g., [30–33]). In such a case, a discrete abstract model seems
to be appropriate. The particles correspond to problem solutions and the velocity and
position updates, as introduced above, are redefined to be applicable to the discrete
space. The graph-transformational model swarm(PS) above can also be adapted in
the same way to solve discrete problems. In this case space(N, f ) and the operators
in the rule newvel should be adapted to the corresponding domains. Despite those
changes all other components can be used unchanged

7. Conclusions

In this paper, we have introduced a graph-transformational approach to swarm
computation providing formal methods for the modeling of swarms and the analysis of
their correctness and efficiency. The concept exploits graph transformation units and the
massive parallelism of rule applications.

As a first example, an ant colony with a simple pheromone-driven cooperation is
modeled to illustrate the basic features of graph-transformational swarms. Our main
results show that two other major approaches to swarm computation, cellular automata
and particle swarms, can be embedded into the graph-transformational framework in a
natural way.

The aim of this paper has been to advocate the syntactic and semantic concepts of
graph-transformational swarms as a unifying framework for swarm modeling and analysis.
To shed more light on the significance and usefulness of our approach, it would be of great
interest to demonstrate that it does not only work on the abstract conceptual level, but also
on the level of concrete real-world applications. To deliver convincing examples of this
kind, quite some further work is needed and is a matter of future research. As first small
steps in this direction, we refer to three papers where we consider potential applications
concerning the solution of practical problems in cloud-based engineering systems [34] and
in dynamic logistic networks with decentralized processing and control in [35] as well as
of the routing problem of the automated guided vehicles in [36].

Future studies should provide further correct transformations from models with
massive parallelism like ant colony optimization with more sophisticated pheromone-
based computation, L-systems and DNA-computing into graph-transformational swarms.
The hope is that graph-transformational swarms can serve as a common formal framework
for a wide spectrum of swarm approaches.
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