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Abstract

Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that
such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex
systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is
approaching are extremely difficult to detect. We hypothesized that increases in firing irregularity are a crucial measure for
predicting state transitions in the underlying neuronal circuits of the prefrontal cortex. We used both experimental and
theoretical approaches to test this hypothesis. Experimentally, we analyzed activities of neurons in the prefrontal cortex
while monkeys performed a maze task that required them to perform actions to reach a goal. We observed increased firing
irregularity before the activity changed to encode goal-to-action information. Theoretically, we constructed theoretical
generic neural networks and demonstrated that changes in neuronal gain on functional connectivity resulted in a loss of
stability and an altered state of the networks, accompanied by increased firing irregularity. These results suggest that
assessing the temporal pattern of neuronal fluctuations provides important clues regarding the state stability of the
prefrontal network. We also introduce a novel scheme that the prefrontal cortex functions in a metastable state near the
critical point of bifurcation. According to this scheme, firing irregularity in the prefrontal cortex indicates that the system is
about to change its state and the flow of information in a flexible manner, which is essential for executive functions. This
metastable and/or critical dynamical state of the prefrontal cortex may account for distractibility and loss of flexibility in the
prefrontal cortex in major mental illnesses such as schizophrenia.
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Introduction

The prefrontal cortex plays a crucial role in flexible decision

making and behavioral planning, which are essential for adapting

to ever-changing environments [1,2]. Rapid shifts in the informa-

tion encoded by prefrontal neurons seem to reflect the flexible

nature of the prefrontal cortex [3–5]. Recent studies have focused

on revealing the underlying mechanisms, particularly how local

prefrontal networks change their functional connectivity in a rapid

and flexible manner [3,6–8].

From the viewpoint of dynamical-systems theory, these rapid

changes in functional connectivity can be considered attractor

dynamics, or state transitions [3,7,9–11]. In a wide range of

complex, dynamic systems, transient increase fluctuations, referred

to as critical fluctuations, are early-warning signals that can be

detected prior to state transitions [12–16] (Fig. 1A). Specifically,

dynamical systems become sensitive to perturbations and often

exhibit increases in fluctuations immediately before state transi-

tions. However, no experimental studies have attempted to

determine whether prefrontal neurons exhibit increased transient

fluctuations in their firing patterns before rapid shifts in the

representation of neuronal information. Thus, the relationship

between neuronal firing fluctuations and changes in the functional

connectivity of neuronal circuits in the prefrontal cortex remains

unclear.

Fluctuations in neuronal firing, measured by examining firing

irregularity, could be derived from the local and/or network states

of neurons. As a local factor, firing irregularity reflects the state of

a single neuron receiving balanced inputs from excitatory and

inhibitory neuronal inputs [17–19]. When excitatory and inhib-

itory inputs to a neuron are balanced, no net constant drift drives
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the membrane potential; instead, only variability in the inputs or

noise modulates membrane potential [18,20]. However, these

reports focused on the synaptic or single-neuronal level. As a

network factor, firing irregularity reflects the stability of the neural

network, depending on functional connectivity (Fig. 1B). Dynam-

ical neuronal networks often fall into a steady state or an attractor,

and the degree of attractor stability varies depending on the gain

functions of constituent neurons. When functional connectivity of

the network allows a stable point attractor, networks maintain

relatively regular firings, with small transient irregularity in

response to perturbations. In contrast, when the network is less

stable, approaching state transition or bifurcation, it becomes

more susceptible to perturbations because of the instability of the

network state. The network could be less stable depending on

subtle changes in functional connectivity, even if each neuron

receives the same balanced excitatory and inhibitory inputs. Thus,

from the viewpoint of dynamical-systems theory, we hypothesize

that increased firing irregularity is a crucial measure of network

stability that can be used to predict state transitions in underlying

neuronal circuits in the prefrontal cortex.

To test this hypothesis, we experimentally examined whether

prefrontal neurons exhibit increases in firing irregularity when

neural representation abruptly changes. Prefrontal neurons

showed increased firing irregularity prior to switching neural

encoding of behavioral goals. Next, we demonstrated theoretically

that such transient increases in firing irregularity could emerge

from changes in gain functions by decreasing neural network

stability through state transitions or bifurcations. These results

suggest that firing irregularity, neuronal gains, and attractor stability

are linked in the dynamical neural networks in the prefrontal cortex

that underlie the flexible and rapid adaptation to ever-changing

environments. Based on these findings, we propose a new scheme

that the prefrontal cortex functions in a metastable state near the

critical point of bifurcation. We discuss the significance of this

scheme, which may account for abnormal executive functions in

major mental illnesses such as schizophrenia.

Materials and Methods

Subjects and Ethics
Two Japanese monkeys (Macaca fuscata) were used for this study.

All experimental protocols were approved by the Animal Care and

Use Committee, Tohoku University (Permit # 20MeA-2), and all

animal protocols conformed with the National Institutes of Health

guidelines for the care and use of laboratory animals and with the

recommendations of the Weatherall Report. The animals were

housed in adjoining individual primate cages in an air-conditioned

room. Food was always available and supplementary vegetables

and fruit were provided daily. Animals were provided with

environmental enrichment and were permitted rich visual,

olfactory and auditory interactions. To achieve adequate environ-

mental richness, we provide toys which are easily manipulated by

the animals and when they are beginning to lose interests in old

toys, we introduce novel objects as toys. Throughout the study, the

animals were monitored daily by the researchers and an animal

research technician or veterinary technician for evidence of disease

or injury and body weight was also documented daily. Animals

were humanely euthanized by anesthetizing with an overdose of

pentobarbital according to endpoint criteria. The endpoints are

defined in our protocol as following two cases: 1) When scientific

objects of the protocol are achieved by recordings neural activities

from all of cortical areas of our research interest, or 2) when the

animals are not able to maintain basic performance because they

are ill or have physical deficits. In this case, we further consult the

veterinarian every time it is necessary for appropriate treatment to

keep animal health and if recovery from this deficit is not expected,

we promptly decide that euthanasia is necessary as a mean to

relieve pain or distress regardless of progress of the study.

Behavioral Procedures
These monkeys were trained on the path-planning task (maze

task) as previously reported [4,21–23] (Fig. 2A). The monkey was

required to move a cursor step by step to reach a final goal in a

checkerboard-like maze on a monitor. After 1 s (Initial hold), a

green cursor appeared at the center of the maze on a monitor

(Start display), and 1 s later, a red square was displayed for 1 s,

indicating the position of a final goal (Final goal display). After a

delay of 1 s, one or two of four possible paths to the goal were

blocked in some trials. This was followed by another 1-s delay

(Delay). Thereafter, when the cursor color was changed from

green to yellow (1st go), the animal was required to move the

cursor within 1 s to the first position (immediate goal). Then, the

animal had to move the cursor stepwise to reach the final goal,

where the animal was rewarded. Supination and pronation of each

forearm were assigned to four cursor directions. To dissociate arm

and cursor movements, the arm–cursor assignments were varied in

three different combinations following completion of a block of 48

trials. In .89% of trials, the animals reached the goal within three

movements of the cursor.

Physiological Experiment and Analyses
Conventional electrophysiological techniques were used to

obtain in vivo single-cell recordings [4,22,23] from the lateral

Figure 1. Network states and firing irregularity. (A) Schematic
diagram for attractor landscapes and state transitions of dynamical
systems. Each row demonstrates representative state transitions or
bifurcations. From top to bottom: pitch fork, saddle-node, and Hopf
bifurcations. Regardless of the type of bifurcation, dynamical systems
exhibit common behavior. Far from the critical point (left), systems are
resilient to perturbations, but when systems are closer to the critical
point (middle), they lose resilience, become sensitive to perturbations,
and are accompanied by increased variability of measurements.
Following the transition (right), systems again become stable. (B) The
stability of neural networks is hypothesized to be reflected in firing
irregularity of constituent neurons.
doi:10.1371/journal.pone.0080906.g001

Firing Irregularity and Neural-State Transition
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prefrontal cortex (lPFC) above and below the principal sulcus in

the right hemisphere. Cortical sulci were also identified using a

magnetic resonance imaging scanner (OPART 3D-System;

TOSHIBA). Eye position was monitored using an infrared eye-

camera system (R21–C–AC; RMS). Neuronal activity was not

associated with eye position or eye movement. Individual spikes

were isolated using a template-based discriminator (Multi-Spike

detector; Alpha-Omega). Only well-isolated spikes that were stable

over entire recordings and had clear single peaks in the

distribution of distance from the template were included in the

analysis.

This study focused on neuronal activities during the preparatory

period (Start display, Final goal display, Delay). To statistically

assess how the final and immediate goals were related to cell

activity, a linear regression analysis [24] was conducted using the

following regression model: firing rate = b0+ b1 6 (final goals)+b2

6 (immediate goals), where b0 is the intercept, and b1 and b2 are

the regression coefficients. The categorical factors for final and

Figure 2. lPFC neurons showing representational transitions. (A) Temporal sequence of events in the path-planning task (maze task). The
behavioral sequence is depicted from left to right. Each panel represents a maze displayed on a monitor, with green squares denoting current cursor
positions, and red squares representing the position of the final goal. Yellow squares represent movement initiation (go) signals, and black arrows
delineate cursor movements. Start display, final goal display, and delay periods constitute the preparatory period. (B) Discharge properties of an lPFC
neuron that represents the final goal followed by the immediate goal during the preparatory period. Raster plots and spike-density histograms of
neuronal activity under task conditions for each combination of final and immediate goals are shown. A red square indicates the location of the final
goal remembered during the preparatory period, and a blue square indicates the planned immediate goal. In the early phase of the preparatory
period, this neuron was selectively active when the final goal was located at the top right of the maze. In the late phase, selectivity was most
prominent when the immediate goal was above the starting position. (C) The time course of modulation of the final- (red line) and immediate-goal
(blue line) selectivity of the neuron shown in B. The goal selectivity, or regression coefficient, is normalized by the t value at the significant level,
P = 0.05. (D) The mean 6 SEM of selectivity for the final (red line) and immediate (blue line) goals of the population of neurons (n = 148) with F-I (final-
immediate) shifts. Arrows, F-I transition times.
doi:10.1371/journal.pone.0080906.g002
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immediate goals were horizontal and vertical directions. The firing

rate was calculated as spike counts in 100 ms. The time

development of the coefficients was normalized by the significance

level of the t-value (P,0.05).

After the time evolution of the final goal (FGS[t]) and the

immediate goal selectivity (IGS[t])) were obtained, the F-I index

(final goal-immediate goal index) was calculated as F-I index

(t) = [IGS(t) – FGS(t)]/[IGS(t)+FGS(t)]. Neurons that showed repre-

sentational shifts from final to immediate goals were defined as F-I

neurons (final goal-immediate goal neurons) whose F-I index

showed a negative-to-positive change and, at its maximum value,

the IGS was significant [4]. We also defined neurons that exhibited

significant selectivity for the final, but not immediate, goals as

final-goal neurons.

The duration of extracellular spike waveforms was also analyzed

to classify neurons as putative pyramidal neurons or interneurons

[25–27]. Two time distances from each waveform were obtained,

one between the trough and the peak and the other between the

inflection point marking the beginning of the initial negativity and

the return to baseline after the first positive deflection. Dots for

each waveform were plotted on the two-dimensional space of the

two distances, and the norms from the origin provided a consistent

classification of putative inhibitory and excitatory neurons.

Evaluation of Firing Variability
To assess firing variability, variability in interspike intervals (ISI)

was evaluated using measures developed to eliminate the influence

of firing rate [28–31]. Unless otherwise noted, the firing variability

was evaluated by LVR [31]. A constant, R, which compensates for

the refractoriness effect of a previous spike, was introduced to

exclude the influences of firing rate. The mean LVR was defined as

follows:

SLV RT~
1

n{1

Xn{1

i~1

LV R(i), and

LV R(i)~ 1{
4ISIiz1ISIi

(ISIiz1zISIi)
2

� �
1z

4R

ISIiz1zISIi

� �
:

ISIs were calculated with a time resolution of 1 ms, and n is the

number of ISIs during the period of interest. For simplicity,

,LVR. is referred to as LVR. The influence of the firing rate was

successfully excluded by using LVR (R .10 ms). Here, we used

R = 11 ms.

Other measures, including the local variance LV [28], were used

as well:

SLV T~
1

n{1

Xn{1

i~1

LV (i), and LV (i)~3
ISIiz1{ISIi

ISIiz1zISIi

� �2

;

IR [29],

SIRT~
1

n{1

Xn{1

i~1

IR(i), and IR(i)~Dlog
ISIi

ISIiz1
D;

and SI [30],

SSIT~
1

n{1

Xn{1

i~1

SI(i), and SI(i)~{
1

2
log

4ISIiz1ISIi

(ISIiz1zISIi)
2

� �
:

These parameters were measured for each 100 ms epoch during

the preparatory period.

Note that the focus of this study was restricted to the task-

dependent modulation of firing variability rather than its absolute

value.

Neural-network Models
Here, the dynamical state of neural networks [3,9,32] consisting

of two mutually connected populations X1 and X2 were

considered. The dynamics of each is described as follows:

t _xxi~{xizSxi
(xjznoise) i~1,2, j~2,1,

where xi was the activity of node Xi, and t is the time constant

(20 ms) [17,18]. Sxi(xj) was the gain function from populations Xj to

Xi. The following first order Naka-Rushton function was used [33–

36] where the output was limited between 0 and 1:

Sxi
(xj)~

1 for cxi

Bxi
zwxixj

xj

hxi
zBxi

zwxixj
xj

§1 i~1,2, j~2,1,

cxi

Bxi
zwxixj

xj

hxi
zBxi

zwxixj
xj

for Bxi
zwxixj

xj§0 i~1,2, j~2,1,

0 for Bxi
zwxixj

xjv0 i~1,2, j~2,1:

8>>>>>>>><
>>>>>>>>:

Here, cxi, Bxi, and hxi define the maximum effect of input, the

offset, and the value of xi at which Sxi(xj) reaches the half of the

maximum, respectively. By varying these parameters, the shape of

the gain function could be controlled systematically. wxixj
is the

connectivity from population xj to xi; its value is 1.0 for excitatory

and 21.0 for inhibitory connectivity. As the source for fluctuations

in the population activities, low levels of Gaussian noise (s= 0.025

or 0.01) were added to the gain functions at each time step

[3,17,18]. The fluctuations of population activities will be

diminished or amplified depending on the stability of point

attractors in the networks.

For these population activities to reflect the firing rate of a

neuron directly, a phase model was used in which the activity of

the population defined the phase velocity as follows [35,37]:

t0 _wwxi
~2pxi,

where t’ is the time constant (50 ms), and the neuron fires when

the phase Q reaches an integer multiple of 2p. The neuron fired

when the phase Q reached an integer multiple of 2p. The

maximum population activity corresponds to 20 spikes/sec.

The differential equations were simulated by the Runge-Kutta

method with the time step Dt = 0.05 ms. Each calculation was

done for 60,000 steps and repeated 100 times. Each parameter

is described in Text S1. The code corresponding to these

Firing Irregularity and Neural-State Transition
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implementations is provided in the ModelDB database (https://

senselab.med.yale.edu/modeldb/ShowModel.

asp?model = 151127).

The Stability of Point Attractors
For the cases of two-node networks, the dynamics of the

deviations Dx1 and Dx2 around a point attractor (x1_0, x2_0) in the

network of two mutually connected populations X1 and X2 is

approximated as follows (Fig. S1A):

tD _xx1~{Dx1z
cx1

hx1
wx1x2

hx1
zBx1

zwx1x2
x1 0

� �2
Dx2 ,

tD _xx2~{Dx2z
cx2

hx2
wx2x1

hx2
zBx2

zwx2x1
x2 0

� �2
Dx1:

The maximum Lyapunov exponent (MLE) is defined as the

maximum real part of eigenvalues of the Jacobian matrix for these

linearized differential equations. The MLE for the above

equations can be represented as

{1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx1

hx1
wx1x2

(hx1
zBx1

zwx1x2
x1 0)2

cx2
hx2

wx2x1

(hx2
zBx2

zwx2x1
x2 0)2

s
t for wx1x2

wx1x2
§0 ,

{
1

t
for wx1x2

wx1x2
v0:

8>>>><
>>>>:

If the network is excitation–inhibition, the MLE stays constant

at 21/t. By varying the gain function of each node, the MLE was

systematically controlled.

‘‘Stiffness’’ as the Second Stability Index
Here, another index for the stability of point attractors referred

to as ‘‘stiffness’’ was introduced. This corresponds to the stiffness

coefficient in a spring pendulum model represented by a one-

dimensional second-order linear differential equation (Fig. S1B).

Using this index, it is possible to assess the stability of point

attractors in excitation–inhibition networks whose stability cannot

be assessed by the MLE. The generalization of this index to n-

dimensional systems is also discussed.

‘‘Stiffness’’ in Two Dimensional Systems
The stability of a steady state in a dynamical system is usually

discussed in relation to its linear approximation of the small

deviation from the steady state (Fig. S1A). The MLE is defined as

the maximum real part of the eigenvalues of the Jacobian matrix

for the linearized differential equations. This has been used as a

standard index for the stability of an attractor for perturbations.

However, influences of the imaginary parts of eigenvalues on the

stability are beyond the scope of the MLE. For this reason, MLEs

are not suitable for quantification of the stability of excitation–

inhibition networks, because the eigenvalues for a point attractor

of an excitation–inhibition network inevitably includes imaginary

parts. Thus, an index called ‘‘stiffness’’ was considered. In the case

of two mutually connected neural populations X1 and X2 in the

main text, the time evolution of the small deviations Dxi (i = 1, 2) of

their activities xi can be expressed as follows:

D _xx1~{c1Dx1zg12Dx2,

D _xx2~{c2Dx2zg21Dx1,

where ci and gij (i = 1, 2; j = 2, 1) are decay factors that were fixed

to 21 in all of the calculations, and connection coefficients,

respectively. These two-dimensional first-order linear differential

equations can be transformed into a one-dimensional second-

order differential equation as follows:

D€xx1{(c1zc2)D _xx1z(c1c2{g12g21)Dx1~0:

Here we compare this equation with a spring pendulum (Fig.

S1B) that is described by the following one-dimensional second-

order linear differential equation:

D€xx1zfD _xx1zsDx1~0:

The coefficients f and s can be regarded as a friction coefficient

and a stiffness coefficient, respectively. For this spring pendulum, a

potential can be defined using this stiffness coefficient as follows:

1

2
sDx2:

A larger stiffness coefficient provides a deeper potential.

Therefore, the spring pendulum is more attracted to the singular

point for a certain deviation. Consequently, for an identical

perturbation to the system, a system with a deep potential is less

sensitive to it than that with shallow potential (schematized in Fig.

S1C). Thus, ‘‘stiffness’’ is defined as

s:c1c2{g12g21~l1l2~ P
2

i~1
({li),

where li is an eigenvalue of the system (i = 1, 2). Note that this

index includes the influences of the imaginary parts of eigenvalues.

Here, it is assumed that all eigenvalues are negative because point

attractors are considered in this argument. Thus, the stiffness for

the point attractor for the two-node networks is described as

follows:

sx1 0x2 0
~

1

t2
1{

cx1
hx1

wx1x2

(hx1
zBx1

zwx1x2
x1 0)2

cx2
hx2

wx2x1

(hx2
zBx2

zwx2x1
x2 0)2

 !
,

where xi, t, cxi, Bxi, hxi and wxixj define the activity of node Xi, the

time constant, the maximum effect of input, the bias, the value of

xi at which the gain function reaches a half of the maximum, and

the connectivity from population Xj to Xi, respectively.

Generalization of ‘‘Stiffness’’ to n-dimensional Systems
The definition of stiffness can be easily extended to higher-order

dynamical systems and can be generalized for networks that

include n mutually connected populations as follows:

Firing Irregularity and Neural-State Transition
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s: P
n

i~1
({li):

where li is an eigenvalue of the system (i = 1, 2, … n). Again, it is

assumed that all eigenvalues are negative. The n-dimensional

coordinates xi (i = 1, …, n) in which the activities of the n

populations are represented can be transformed into the other

coordinates x’i (i = 1, …, n), each of which is defined as the

direction of each eigenvector. By using these new coordinates, the

potential can be defined as

U:
1

2

Xn

i~1

({lix
0
i2):

Then, the volume of hyper-ellipsoid surrounded by the

equipotential surface of U = U0 is

2U0
p

n
2

C n
2
z1

� � ffiffi
s
p :

C is a gamma function. This means that as s is larger, the

volume of the hyper-ellipsoid becomes smaller. That is, the larger s

is, the deeper the potential becomes.

Another advantage of the generalized stiffness is that it can be

easily obtained for higher-order dynamical systems by considering

the relationship between solutions and coefficients in the Jacobian

determinant without solving it, that is, from the constant term of

the characteristic polynomial for arbitrary-dimensional systems.

Results

Of the 887 neurons whose activity was recorded from the lateral

prefrontal cortex (lPFC) while monkeys were performing a maze

task (path-planning task) (Fig. 2A), we found 148 F-I neurons (final

goal-immediate goal neurons) that exhibited representational shifts

in behavioral goals coded by the firing rate during the preparatory

period. We also obtained 259 final-goal neurons that exhibited

significant selectivity for the final, but not immediate, goals during

the same period.

An example of lPFC neurons that exhibited an F-I transition is

shown in Fig. 2B. During the early phase of the preparatory

period, the firing rate increased selectively when the final goal was

located in the top right quadrant of the computer screen. In the

late phase of the preparatory period, the firing rate was highest

when the animals had planned on the immediate goal being

located above the start position. To visualize the time course of the

representations of this cell for the final and immediate goals, we

plotted the goal-selectivity determined by regression analysis for

consecutive 100 ms time frames, as described in the Materials and

Methods (Fig. 2C). The results show how the final goal

representation was developed, reduced, and then replaced with

the immediate goal representation. This temporal pattern was also

confirmed by population analysis of F-I neurons (Fig. 2D). In

contrast, population analysis of goal selectivity of final-goal

neurons revealed almost constant selectivity for the final goals

throughout the preparatory period (Fig. S2). This suggests that

these neurons were involved in spatial working memory for the

position of the final goals, which has long been observed in the

lPFC.

To assess the idea that the representational shifts could be

considered state transitions in the underlying neural network, the

firing irregularity in F-I neurons of lPFC was analyzed. As

mentioned above, lPFC neurons exhibit task-dependent firing-rate

modulation. The use of indices that are robust against the

influences of such modulations can be used to evaluate firing

irregularity. Using LvR [31], we could successfully exclude the

influence of firing rate (r = 0.026, P.0.05) [38]. Figure 3A shows

the changes in LvR for four epochs: start display, final goal display,

delay before transition, and delay after transition. F-I neurons

exhibited gradual increases in firing variability, and reached a

maximum value in the delay before the transition epoch, which

was significantly higher than the reference value obtained in the

start display epoch (P,0.01, t-test), whereas the firing rates of these

two epochs were comparable (5.7 spikes/s). More importantly, the

firing variability during the delay before the transition epoch was

reduced significantly in the delay after the transition epoch

(P,0.01, t-test; Fig. 3A). This profile of firing variability in F-I

neurons contrasted with the final-goal neurons (Fig. S3). Consis-

tent with previous reports [39,40], these neurons exhibited an

increase in firing variability during the delay period compared to

baseline (start display) (P,0.01, t-test). However, there was no

significant decrease in firing variability in the epoch corresponding

to delay after transition in F-I neurons (P = 0.47, t-test). In

addition, the values of firing variability in this epoch were

significantly different between F-I and final-goal neurons (P,0.01,

t-test). Similar temporal patterns were observed using other indices

that are unaffected by firing-rate modulation (Fig. 3B–D).

Cortical neurons are subdivided into excitatory pyramidal

neurons and inhibitory interneurons. To determine whether the

temporal pattern of firing variability was dependent on neuronal

type, F-I neurons were classified into two groups [25–27]. Both

putative excitatory (n = 110) and inhibitory (n = 38) neurons

exhibited significant increases in firing variability prior to the

representational shifts (P,0.05, t-test). These analyses support the

hypothesis that firing variability in lPFC neurons increases with

the representational shifts, regardless of neuronal type (Fig. 3E, F).

These results strongly suggest that the representational shifts in

behavioral goals reflect state transitions in the underlying neural

network. However, it is unknown whether these increases in firing

variability are caused by a destabilization of the network.

Therefore, to investigate how variability in spike trains is

influenced by the stability of dynamical systems in the network,

a simple computational neural-network model composed of

mutually connected neural populations was used. Each neuron

belonged to a population and emitted spikes dependent upon the

activity of the population. By controlling the parameters of the

gain functions in the neural populations, the degree of network

stability was systematically modulated. To examine how firing

variability is influenced by the vulnerability of network to

perturbations, constant Gaussian noise was added to the network.

This model allowed for examination of the relationship between

the stability of the neural network and firing variability (see

materials and methods).

The present study primarily focused on simple networks in

which two nodes of neural populations were mutually connected

(mutual excitation, Fig. 4A, B; mutual inhibition, Fig. 4C, D;

excitation–inhibition, Fig. S4A–D). To graphically understand the

interaction between two mutually connected nodes, the input–

output relationship, or nullcline, was plotted in a two-dimensional

phase plane. In these plots, the two input–output functions or gain

functions are superimposed, with the activity of X1 as a function of

the input from X2 (thick lines); the gain function of X2 can be

plotted by exchanging the horizontal and vertical axes (thin lines).

Firing Irregularity and Neural-State Transition
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The points where the two gain functions intersect are referred to as

equilibrium points or fixed points. If the states of the systems

converge onto an equilibrium point with time, the points are

referred to as point attractors (black dots).

Variability in neuronal firing was influenced by the gain

functions of the population to which the neuron belonged, and the

other populations in the neural network. An example of a mutual-

excitation network is shown in Fig. 4A and B. In these cases,

making the gain function of node X2 steeper resulted in increased

neuronal firing variability in both X1 and X2 when keeping the

gain function of X1 fixed. This was true in cases of mutual-

inhibition networks (Fig. 4C, D). Thus, if the gain function of node

X2 became steeper, the firing variability in both X1 and X2

increased. In excitation-inhibition networks, changing the gain

functions caused changes in firing variability (Fig. S4A–D).

Interestingly, however, the firing variability of X1 decreased even

if the gain function of node X2 got steeper. These calculations

suggest that changes in firing variability should be considered

dynamic properties on the network level, particularly the stability

of point attractors.

To quantify the stability of the networks, the maximum

Lyapunov exponent (MLE) was used as an index reflecting the

degree of convergence speed to an attractor. When MLE is

negative, the point attractor is stable because the system is able to

return to the attractor from small perturbations. To assess the

relationship between the stability of point attractors and firing

variability, MLE values were systematically controlled by selecting

the appropriate parameters of gain functions in X1 and X2.

Neurons exhibited systematic increases in firing variability as the

point attractor became less stable, as indicated by observations

that the MLE was approaching zero in both the mutual-excitation

and mutual-inhibition networks (Fig. 4E, G). These changes were

not associated with changes in firing rates (Fig. 4F, H). The mean

firing variability and firing rate of the neurons shown in Fig. 4A–D

are presented in Fig. 4E–H.

These findings also demonstrated that systematic changes in

firing variability were dependent on the stability of point attractors

in the excitation-inhibition networks (Fig. S4E, G) without

changing firing rates systematically (Fig. S4F, H). In these

calculations, however, we evaluated the stability of the network

point attractor with ‘‘stiffness’’ introduced instead of MLE,

because excitation-inhibition networks inevitably include an

oscillatory component. If the networks do not include an

oscillatory component as mutual excitation or inhibition networks,

stiffness can provide results that are consistent with MLE (Fig. S5).

The simulation data showed that the firing variability increased

systematically as stiffness decreased (Figs. S4E, G and S5).

We also demonstrated that the firing variability increased

systematically with the attractor stability of the network in which

three nodes were interconnected (Fig. S6). Importantly, firing

Figure 3. The firing variability of F-I neurons increases before the representational transitions. (A) The average LVR increases in three
epochs (final goal display, delay before transitions, and delay after transitions) from the initial value (start display; 1.11) (n = 148). (B–D) Increases from
the initial values of firing variability: LV, 0.88 (B); SI, 0.28 (C); IR, 1.21 (D). (E and F) Increases in the firing variability of the putative excitatory (n = 110; E)
and inhibitory neurons (n = 38; F). The initial values are 1.12 and 1.08, respectively. Start display, 2700 to 2800 ms; final goal display, 400 to 500 ms;
delay before transitions, 1100 to 1200 ms from the final-goal onset; delay after transitions, 200 to 300 ms after F-I transition. Error bars = SEM;
*, P,0.05; **, P,0.01 (t-test).
doi:10.1371/journal.pone.0080906.g003
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irregularity increased systematically as stiffness decreased in three

node networks, even if some connections in the networks changed

from inhibition to excitation. Based on these data, we concluded

that the stability of point attractors in neural networks affect the

firing variability of the neurons.

Next, to assess the direct relationship between firing variability

and state transitions of neuronal networks, firing variability was

evaluated in the major types of bifurcations (pitchfork [Fig. 5],

saddle-node [Fig. 6], and Hopf bifurcations [Fig. 7]) by changing

parameters systematically across the critical points of the

bifurcations. In each bifurcation, increases in the firing variability

of excitatory (Figs. 5A, 6A, 7A) and inhibitory (Figs. 5B, 6B, 7B)

neurons were observed when the systems were approaching

bifurcations at critical points compared to the initial states. At

these critical points, instability in the networks manifested as

increases in firing variability only when noise was added to the

networks (firing patterns in pale purple areas, Figs. 5, 6, 7). These

data suggest that the networks become vulnerable to a constant

level of perturbations at critical points, and that the vulnerability is

reflected in firing variability. After the bifurcation, the firing

variability depends on the type of bifurcation that occurred. In

pitchfork and saddle-node bifurcations, the states of the networks

shifted or jumped to another point attractor, resulting in decreased

firing variability. In contrast, the firing variability remained high

after Hopf bifurcation because the point attractors became

unstable with oscillatory activities.

Discussion

We assessed the hypothesis that increases in firing irregularity

are a crucial measure for predicting state transitions in the

underlying neuronal circuits in the prefrontal cortex. Experimen-

tally, we analyzed the activities of neurons in the prefrontal cortex

while monkeys performed a maze task that required them to

perform actions to reach a goal. We identified increases in the

firing variability of F-I neurons in the lPFC as an emergent

property of state transitions in which the neuronal representation

shifted from the final goals of behavior to action. Then, we

Figure 4. Neural network models show changes in firing variability with stability. (A and B) Phase-plane plots (left) for a mutual-excitation
circuit and firing of a neuron in node X1 (right). Each node represents a population of neurons. The thick and thin orange lines in the plots are gain
functions for X1 and X2, respectively. Arrows represent vector fields, and black circles delineate point attractors. (C and D) Mutual inhibition is
presented by green lines, and represents gain functions. In these phase plane plots, these gain functions denote null clines, where _xxi~0 (i = 1, 2). (E
and G) Increases in the firing variability of the X1 neuron with the maximum Lyapunov exponent (MLE) from the initial states. The corresponding firing
rates (F and H), mutual excitation (E and F), and mutual inhibition (G and H) are presented. Error bars = SEM.
doi:10.1371/journal.pone.0080906.g004
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constructed theoretical generic neural networks and demonstrated

that changes in neuronal gain on functional connectivity caused a

loss of their stability and altered the state of circuits, resulting in

increased firing irregularity. The network-dependent irregularity

was a robust phenomenon for the major classes of bifurcations or

state transitions in dynamical systems, regardless of the type of

neuron (excitatory or inhibitory) or network configuration (mutual

excitation, mutual inhibition, or excitation-inhibition). Therefore,

this suggests that increases in neuronal firing variability reflect the

approaching of critical points for state transitions, with a loss of

stability at a state of equilibrium in the network.

Firing Irregularity in the Prefrontal Cortex from the
Viewpoint of Dynamical Systems Theory

We identified two types of neurons in the prefrontal cortex: F-I

neurons with representational changes, and final-goal neurons

with sustained activity reflecting the final goal. From the

dynamical systems view, a transient increase in the irregularity

of F-I neurons reflected instability at a critical transition, as

predicted from the behavior of our model network. Nevertheless,

how to interpret the sustained irregularity of goal-related neurons

appropriately must be considered. If sustained activity represents a

stable, active state of bistability of the network, there should be

little firing irregularity, similar to the stable resting state. Instead,

tonic irregularity during sustained activity seems to reflect tonic

instability of the network, which reflects the active holding of

information in the working memory. Consistent with this, Compte

et al. [39] observed that the prefrontal neurons showed increased

firing variability in the delay period of working memory tasks.

Nevertheless, understanding the increased firing variability and

stable retention of working memory comprehensively is challeng-

ing [41,42]. Machens et al. [3] reported parametric working

memory in the prefrontal cortex during a vibration comparison

task, and proposed a dynamical network model that held

information with a line attractor network with less stability. In

their model, working memory reflected the accumulation of

evidence for future decision-making required for the task.

However, working memory is not only used to maintain

information in the short term, but also for processing information

in the executive function of the prefrontal cortex. According to

Baddely’s working memory model, the central executive, which

acts as a supervisory system, controls the flow of information using

the working memory as a ‘‘slave system’’ [43]. Therefore,

sustained activity could be considered a pending state of the

network near the critical point, open for further phase transitions

in a flexible manner for updating neural representations, such as

decision-making and planning. In the present study, information

on the final goal could be used at any time to update action plans

to achieve the final goal. Based on our current findings and the

dynamical systems theory, a transient and tonic increase in firing

irregularity of the prefrontal cortex reflects two aspects of

executive function: stable maintenance of information, and flexible

updating of information flow. This is consistent with the idea that

Figure 5. Changes in firing variability before and after
transitions in neural- network models showing pitchfork
bifurcation. Increases in LVR from the initial values are plotted for
both excitatory (A) and inhibitory (B) neurons. Schematic illustrations
for pitchfork bifurcation are indicated at the bottom: solid lines: stable
attractors; dotted lines: unstable saddles. Examples of firing for each
case are shown. Also shown are corresponding firing patterns obtained
under the without-noise conditions for comparison. Error bars, SEM.
doi:10.1371/journal.pone.0080906.g005
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the prefrontal cortex, as the central executive, controls information

flow [44–46].

Circular Interactions between Local Gain and the Global
State of the Network

We found that changes in the stability of attractors and

bifurcations at the network level could be induced by modulating

gain functions at the level of neuron or synapse (Fig. S7A). In

addition, the stabilization of the attractor at the level of the

network or representation affected firing variability (Fig. S7B).

Recent studies have indicated that firing variability or spiking

noise could modulate the gain function, particularly the slope and

offset at the level of the neuron or synapse [47–50] (Fig. S7C).

Therefore, gain and stability interact across hierarchies between

the levels of the network and neuron/synapse via firing variability.

Indeed, local changes in connectivity can induce a global network

state, and vice versa. The mutual dependence of gain and stability

suggest that the prefrontal cortex is a self-organizing dynamic

system [51]. Therefore, the network is able to remain far from a

state of equilibrium and evolve towards an emergent network state

depending on balance between the stability of attractors and the

flexibility of bifurcations. Metaphorically, this relationship between

flexibility and stability could be described as the yin-yang concept,

in which seemingly opposite or contradictory forces interrelate to

each other to form a dynamic system beyond the sum of its parts.

Because of this relationship, the system tends to stay at a less stable

attractor for a while accompanied by fluctuations.

Limitations and Generalization of Network Models
The computational model used in this study is highly simplified.

However, it holds substantial generality for networks with large

populations of neurons as discussed below. Biological systems

including the nervous system are dissipative systems that operate

out of, and often far from, points of equilibrium [52]. The

dissipative system commonly involves a self-organization process,

where global order or coordination results from local interactions.

Although such systems generally have large degrees of freedom,

the levels of many parameters can be converged rapidly to a steady

state, resulting in an enormous reduction in degrees of freedom of

the system. Therefore, the macroscopic behaviors of the systems,

such as bifurcations, can be described approximately by a small set

of less stable or unstable parameters, so-called order parameters

[53]. Based on this, our analysis and discussion of a neuronal

model with a relatively small number of parameters does not lose

its basic generality. However, it should be noted that our system

would lose its generality if the systems have other attractors, such

as limit cycles or chaotic attractors. For example, networks with

limiting cycles with noise resulted in irregular firings (Fig. 7). If the

networks have chaotic attractors, the firing of neurons in the

network will be irregular. Nevertheless, we propose that firing

irregularity increases as the point attractors of the underlying

neuronal networks become less stable.

Figure 6. Changes in firing variability before and after
transitions in neural- network models showing saddle-node
bifurcation. Increases in LVR from the initial values are plotted for both
excitatory (A) and inhibitory (B) neurons. Schematic illustrations for
saddle-node bifurcation are indicated at the bottom: solid lines: stable
attractors; dotted lines: unstable saddles. Examples of firing for each
case are shown. Also shown are corresponding firing patterns obtained
under the without-noise conditions for comparison. Error bars, SEM.
doi:10.1371/journal.pone.0080906.g006
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Schizophrenia as an Abnormal Meta-stability of a
Network Losing Balance between Stability and Flexibility

Schizophrenia, one of the most debilitating mental illnesses, has

been repeatedly associated with disturbances in the prefrontal

cortex [54]. It results from an otherwise normal plasticity process

during adolescence corresponding with the development of the

prefrontal cortex [55]. Although schizophrenia remains poorly

understood, working memory is a core cognitive deficit in

schizophrenia due to primary deficits in the functioning of the

prefrontal cortex [54,56]. Rolls et al. [57,58] proposed a

dynamical systems scheme of schizophrenia in which the

instability of high-firing-rate attractor states, which normally

implement short-term memory and attention, contributes to the

cognitive and negative symptoms of schizophrenia. Furthermore,

noise-induced jumps to an attractor state with a higher firing rate,

even in the absence of external inputs, contribute to the positive

symptoms of schizophrenia. In contrast, Stephan et al. [59]

proposed the disconnection theory of schizophrenia in which the

core pathology of schizophrenia is impaired control of synaptic

plasticity that manifests as abnormal functional integration of

neural systems, i.e., dysconnectivity symptoms. Our data reveal

important new information on both the instability and abnormal

functional connectivity that underlie schizophrenia. Based on our

scheme proposed above, the executive functions in the prefrontal

cortex are critically dependent on the balance of stability and

flexibility in metastable states with flexible functional connectivity.

In this regard, schizophrenia could be characterized as a state of

abnormal metastability with unstable flows of information. At the

synaptic or genetic levels, small abnormalities of local networks

may lead to disorders in the stability-gain interaction, and

consequently result in an abnormal flow of information. At the

macroscopic level, behavioral interactions with other individuals in

psychological stress may induce multi-stable networks, and cause

changes in the local gain in functional connectivity. In both cases,

changes in the local gain and network states are amplified

presumably in a self-organized manner, because of the circular

interaction across hierarchies of network stability and gain of

functional connectivity. This stability-gain interaction plays an

important role in linking cognitive functions with network

connectivity.

Supporting Information

Figure S1 Stiffness as an index of the stability of dynamical

systems. (A) A schematic view for linear approximations of input

functions near a point attractor in the phase plane. (B) An image

for a spring pendulum. (C) The stiffness coefficient, or the stiffness

s, defines the deepness (or steepness) of the potential.

(TIF)

Figure S2 The lPFC neurons without showing representational

transitions. The mean 6 SEM selectivity for the final (red line) and

immediate (blue) goals of the population of final-goal neurons

Figure 7. Changes in firing variability before and after
transitions in neural- network models showing Hopf bifurca-
tion. Increases in LVR from the initial values are plotted for both
excitatory (A) and inhibitory (B) neurons. Schematic illustrations for
Hopf bifurcation are indicated at the bottom: solid lines: stable
attractors; dotted lines: unstable repellers. Examples of firing for each
case are shown. Also shown are corresponding firing patterns obtained
under the without-noise conditions for comparison. Error bars, SEM.
doi:10.1371/journal.pone.0080906.g007
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(n = 259). The goal selectivity or regression coefficient is normal-

ized to the significant level, P = 0.05.

(TIF)

Figure S3 Firing variability changes in final-goal neurons. The

average LVR increases in three epochs (final goal display, delay

before transition, and delay after transition) from the initial value

(1.17) in the start display is shown (n = 259). Start display, 2700 to

2800 ms; final goal display, 400 to 500 ms; delay before

transitions, 1100 to 1200 ms from the final-goal onset; delay after

transitions, 200 to 300 ms after the mean F-I transition time of F-I

neurons. Error bars = SEM; *, P,0.05; **, P,0.01 (t-test) for

comparisons between epochs. {, P,0.01 (t-test) for comparisons

between final-goal and F-I neurons.

(TIF)

Figure S4 Changes in firing variability in excitation–inhibition

networks. (A and B) Examples of phase-plane plots (left) of the

nullclines for an excitation–inhibition network and firing patterns

of a neuron associated with the network (right). Each node

represents a neural population. The thick green line and thin

orange line in the phase-plane plots are nullclines for nodes X1 and

X2 respectively. The grey arrows indicate the vector fields.

Examples of neuronal firing are in node X1. Note that the gain

functions of node X1 in A and B are identical, whereas those of X2

are changed. The value of 1 for the population activity

corresponds to neuronal firing at 20 spikes/sec. (C and D), are

the same figures for an inhibition–excitation network. The thick

orange line and thin green line in the phase-plane plots are

nullclines for nodes X1 and X2 respectively. (E–H) Systematic

increases in firing variability from initial values (leftmost in E and

G) with decreases in a stability measure ‘‘stiffness’’ (E and G) and

without significant changes in firing rate (F and H). The firing

variability of a neuron in X2 exhibited similar results. (E and F),

Excitation–inhibition; (G and H), Inhibition–excitation. Black

circles in the phase–plane plots represent stable equilibrium points

(point attractors). Error bars, SEM.

(TIF)

Figure S5 Consistency between stiffness and the maximum

Lyapunov exponents. (A) Increases in LvR with stiffness, s, for cases

where X1 received excitation from X2. Increases from the

minimum value (s = 2.0) are plotted against the maximum

Lyapunov exponent (MLE). Stiffness, s, was changed from 2.0 to

0.0 in 0.25 steps. The range of s from 2.0 to 21.0 corresponds to

inhibition-excitation networks, and a re-plotting of the data in Fig.

S4G. In this range of s, all MLEs were -1, because by definition

they did not include the imaginary part of eigenvalues. In the

range of s from 1.0 to 0.0 (where eigenvalues are not complex

numbers, the networks are mutually excitatory, and the dynamics

of networks do not include oscillatory components), stiffness and

MLE have a one-to-one relationship. (B) As in (A) for cases where

X1 received inhibition from X2. For the range of s from 2.0 to 1.0,

the data in Fig. S4E were re-plotted (excitation-inhibition). Note

that the range of s from 1.0 to 0.0 corresponds to mutual inhibitory

networks. These data are consistent with (A). Error bars denote

SEM. Parameters for these calculations can be found in the

supplementary information.

(TIF)

Figure S6 Changes in firing variability in three-node networks.

The systematic increases in firing variability of a neuron in node

X1 from the initial value (leftmost in A) with decreases in the

stability measure ‘‘stiffness’’ are plotted. (A) Inhibition–excitation–

excitation. (B) Mutual excitation. Parameters of input functions

were set for the network with a point attractor at (0.5, 0.5, 0.5), so

that a neuron emitted spikes at approximately 10 spikes/sec. The

gain function of X1 was not changed in A and B, whereas those of

X2 and X3 were changed and were identical. Note that these

models exhibit systematic increases in firing variability as stability

decreases (A and B) without significant changes in firing rate (C

and D) across different network types, such as inhibition–

excitation–excitation and mutual excitation. Error bars, SEM.

(TIF)

Figure S7 Proposed stability–gain interaction via noise. (A)

Changes in neuronal gain functions determine the stability of the

network and can cause bifurcations at the network level. (B) The

state at the network level, particularly the stability of the attractor,

can affect firing variability. (C) Firing variability can modulate

the shape of the gain function determining the nullcline of the

dynamics, in particular, its slope and offset, at the level of the

neuron/synapse.

(TIF)

Text S1 Parameters of model calculations.

(DOC)
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