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Abstract Errors can occur at any level during the replication and transcription of genetic

information. Genetic mutations derived mainly from replication errors have been extensively

studied. However, fundamental details of transcript errors, such as their rate, molecular spectrum,

and functional effects, remain largely unknown. To globally identify transcript errors, we applied an

adapted rolling-circle sequencing approach to Escherichia coli, Bacillus subtilis, Agrobacterium

tumefaciens, and Mesoplasma florum, revealing transcript-error rates 3 to 4 orders of magnitude

higher than the corresponding genetic mutation rates. The majority of detected errors would result

in amino-acid changes, if translated. With errors identified from 9929 loci, the molecular spectrum

and distribution of errors were uncovered in great detail. A GfiA substitution bias was observed in

M. florum, which apparently has an error-prone RNA polymerase. Surprisingly, an increased

frequency of nonsense errors towards the 30 end of mRNAs was observed, suggesting a Nonsense-

Mediated Decay-like quality-control mechanism in prokaryotes.

Introduction
Transcript errors refer to any inconsistencies between RNA transcripts and their corresponding

genomic loci. They can occur during ribonucleotide (rNTP) incorporations by RNA polymerases and/

or via post-transcriptional modifications. Errors on RNA transcripts may directly cause dysfunctions

due to the regulatory roles of small RNAs and the fate determination of mRNAs by RNA structural

motifs (Strathern et al., 2012). Such errors can also indirectly induce various effects at the protein

level. Transcript errors can inactivate proteins and result in a loss-of-function (Gordon et al., 2013).

They can also indirectly give rise to misfolded proteins and induce proteotoxic stress (Gout et al.,

2017; Vermulst et al., 2015). Errors on RNA transcripts may be causal factors leading to neuron

degenerative diseases (van Leeuwen et al., 1998a; van Leeuwen et al., 1998b) and tumorigenesis

(Saxowsky et al., 2008). Therefore, transcript errors represent a significant potential mechanism

influencing cellular integrity and fitness.

Reporter-construct assays have long been the major approach to evaluating the fidelity of RNA

polymerases and identifying transcript errors (Blank et al., 1986; Bubunenko et al., 2017;

Nesser et al., 2006; Rosenberger and Foskett, 1981; Rosenberger and Hilton, 1983; Shaw et al.,

2002; Springgate and Loeb, 1975; Strathern et al., 2012), but these methods focus only on indi-

vidual loci and cannot identify errors without phenotypic marker effects. Conventional high-through-

put sequencing approaches have been considered to identify transcript errors at a large scale

(van Dijk et al., 2015). However, the challenge is to distinguish the real signal of transcript errors

from noise produced by technical errors resulting during reverse transcription and sequencing. To

circumvent this problem, a rolling-circle amplification-based sequencing (CirSeq) method

(Acevedo and Andino, 2014; Acevedo et al., 2014; Lou et al., 2013) was recently proposed and

later applied to identify transcript errors in the whole transcriptome of prokaryotes (Traverse and
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Ochman, 2016). We further modified this protocol to minimize RNA damage potentially introduced

during the preparation of sequencing libraries (Gout et al., 2017).

In this study, we applied an adapted CirSeq approach, which has been demonstrated to identify

transcript errors accurately and efficiently at a large scale in eukaryotes (Gout et al., 2017), to pro-

karyotes for the first time. A large number of transcript errors was detected, and transcript-error

rates were revealed to be orders of magnitude higher than corresponding genetic mutation rates.

Our results indicate that the bias in molecular spectra of transcript errors can be influenced by both

RNA polymerases and cellular rNTP concentrations. Furthermore, the spatial distribution of tran-

script errors on RNAs provides novel insights into the mechanism of RNA quality-control in

prokaryotes.

Results

A global view of the transcript error distribution
Applying the adapted CirSeq method (see Materials and methods) to E. coli, B. subtilis, A. tumefa-

ciens, and M. florum, RNA sequencing libraries were made with three biological replicates for each

species. Key steps of library preparations involve circularizing RNA fragments and generating cDNAs

with tandem repeats by rolling-circle reverse transcription. In this way, transcript errors

tend to appear on all repeats of sequencing reads, while sequencing and reverse transcription errors

are nearly always revealed as singletons (Figure 1—figure supplement 1). The number of loci where

transcript errors were identified from each species ranges from 2006 to 2942, totaling 9929 loci

across all species. M. florum showed a per-site error rate of 1:82� 0:01 SEMð Þ � 10
�5, the highest

among the four species (P ¼ 0:009, Mann-Whitney U test). The error rates in E. coli, B. subtilis, and

A. tumefaciens were 5:84� 0:10 SEMð Þ � 10
�6, 5:80� 0:14 SEMð Þ � 10

�6, and

7:26� 0:35 SEMð Þ � 10
�6, respectively. These error rates are 3 to 4 orders of magnitude higher than

the corresponding genomic (DNA-level) mutation rates estimated from mutation-accumulation

experiments in these species (Lee et al., 2012; Lynch et al., 2016; Sung et al., 2016; Sung et al.,

2015; Sung et al., 2012).

eLife digest Most cells contain molecules of DNA that carry instructions to make the proteins

cells need to perform different tasks. When a cell requires a certain protein, the corresponding DNA

sequence is first transcribed into molecules of ribonucleic acid (RNA) known as transcripts. These

sequences of RNA are then read by the cell and translated into the desired protein sequence.

Errors in copying DNA before a cell divides, can lead to genetic mutations that affect the ability

of the cell to carry out certain roles, influencing the overall ‘fitness’ of the cell. Similar to genetic

mutations, errors that arise when forming RNA transcripts may also alter the tasks a cell performs.

However, it is difficult to find out what kinds of errors cells have in their transcripts and how often

these mistakes occur. This is because current methods for sequencing RNA are prone to technical

inaccuracies that interfere with the ability to detect true transcript errors.

Now, Li and Lynch have adapted a method for high-throughput sequencing of RNA, which can

accurately identify transcript errors in Escherichia coli and other species of bacteria. The experiments

showed that errors in RNA molecules occurred more frequently than genetic mutations in the same

sequence of DNA. Li and Lynch also found that the transcripts contained more nonsense errors –

that is, mutations which prematurely stop transcripts from being translated, resulting in shorter

proteins – at the end of the RNA molecule than at the beginning or middle. It is possible that

transcripts with errors at the beginning or the middle are more efficiently eliminated than those at

the end, suggesting that bacteria have a quality-control mechanism for removing transcripts with

premature stop sequences.

These findings suggest that at any one-time cells carry thousands of transcripts with inaccuracies

in their sequence, which likely impact the tasks cells perform. The next step will be to investigate

how these different transcript errors affect the fitness of cells.

Li and Lynch. eLife 2020;9:e54898. DOI: https://doi.org/10.7554/eLife.54898 2 of 15

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.54898


With such a large number of transcript errors identified, a transcriptome-wide view of the error

distribution in each species was uncovered. Based on the circular genomes of bacteria (except for A.

tumefaciens, which has one circular chromosome, one linear chromosome, and two plasmids

[Goodner et al., 2001]), we annotated genomic positions of transcript errors with different potential

functional effects and plotted transcript-error rates in 10 kb sliding windows (1 kb for M. florum)

(Figure 1). To test whether transcript errors are randomly distributed across different genes, a previ-

ously proposed test (Long et al., 2016) was performed to identify genes enriched with transcript

errors. For each gene, the expected number of transcript errors was calculated as the product of the

average transcriptome-wide error rate per base and the sequencing coverage of the gene. The Pois-

son probability of observing a number of errors greater than or equal to the observed number was

calculated. Out of 607, 495, 586, and 186 genes with detected transcript errors in E. coli, A. tumefa-

ciens, B. subtilis and M. florum, respectively, 1, 4, 0 and 4 genes were revealed to have significantly

larger numbers of errors than random expectations (Bonferroni-corrected P values of 0.05,

Supplementary file 1, Tables 2-5), suggesting that transcript errors are in general randomly distrib-

uted across genes.

The whole bacterial transcriptome is synthesized by a single type of RNA polymerase. However,

RNA products from protein-coding and noncoding RNA (ncRNA) regions undergo distinct co- and

post-transcriptional processes. mRNAs are mature upon transcription and ready for translation, while

ncRNAs, such as ribosomal RNAs (rRNA) and transfer RNAs (tRNA), need to be further processed to

be functional (Cooper, 2000). To evaluate whether transcript-error rates of these two genomic

regions are different, we calculated the error rates of protein-coding and ncRNA transcripts by divid-

ing the number of errors by the number of nucleotides assayed in corresponding regions. Transcript-

error rates of these two regions are similar in E. coli and A. tumefaciens, but the error rate of ncRNA

transcripts is higher than that of protein-coding transcripts in B. subtilis and lower in M. florum

(p<0.05, paired t-test) (Figure 2).

The molecular spectra of transcript errors are biased to CfiU and GfiA
substitutions
A transition/transversion bias of genetic mutations has been widely observed in different species,

with the molecular spectrum mostly dominated by G:CfiA:T substitutions (Hershberg and Petrov,

2010; Hildebrand et al., 2010; Lynch, 2010). However, knowledge on the molecular spectrum of

transcript errors in prokaryotes remains limited (Imashimizu et al., 2015; Traverse and Ochman,

2016; Traverse and Ochman, 2018). In this study, we calculated the error rate of all twelve catego-

ries of substitutions for each species (Figure 3), revealing a general bias of transitions over transver-

sions. This bias has been thought to be driven solely by CfiU substitutions (Traverse and Ochman,

2016), which may mainly result from post-transcriptional cytosine deaminations. However, the transi-

tion/transversion bias here even holds after CfiU substitutions are excluded (P < 0.005, c2 test,

Supplementary file 1, Table 6). This observation indicates that the transcriptional machinery in bac-

teria, similar to the replication machinery, tends to have a low ability to distinguish rNTPs within the

same structural class of nitrogenous bases (Keightley et al., 2009; Kucukyildirim et al., 2016;

Lee et al., 2012; Long et al., 2015a; Long et al., 2015b; Lynch, 2007; Lynch, 2010; Lynch et al.,

2008; Ossowski et al., 2010; Sung et al., 2015). Of all transitions, the CfiU substitution rate is con-

sistently high in all four species. In addition, an unexpectedly high GfiA substitution rate is revealed

in M. florum, which displayed the highest transcript-error rates among four species in the present

study. Intriguingly, this substitution bias was also recently observed in yeast and E. coli transcription-

machinery mutants with decreased fidelity (Gout et al., 2017; Imashimizu et al., 2015;

Traverse and Ochman, 2018). Thus, the GfiA substitution bias may be a signature of error-prone

RNA polymerase in both eukaryotes and prokaryotes.

Characterization of transcript errors
To evaluate potential functional effects of transcript errors, we categorized transcript errors within

protein-coding regions into synonymous, missense, and nonsense substitutions using SnpEff

(Cingolani et al., 2012; Table 1). Based on the bias of rNTP substitution rates (Figure 3) and codon

usages of each bacterium, we also calculated the expected percentages of each error type under

the assumption that transcript errors are randomly generated across the genome without error-
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Figure 1. The distribution of transcript errors across the whole transcriptomes of E. coli, B. subtilis, A. tumefaciens, and M. florum. The first nucleotide

of the circular chromosome starts at the 12 o’clock position. For A. tumefaciens, chromosomes and plasmids are arranged from the largest to smallest

size in a clockwise orientation. From the outer ring to the inner ring: bacterial chromosomes (dark gray), protein-coding region (grey, black strokes

indicate gene densities), synonymous substitutions (blue), missense substitutions (orange), nonsense substitutions (purple) and average transcript-error

rates (plots in dark gray) in a 10 kb sliding window with a step size of 1 bp (1 kb windows for M. florum). Windows without sufficient sequencing

coverages to detect transcript errors are left blank.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Numerical data that are represented as a graph in Figure 1.

Figure supplement 1. The flowchart of CirSeq method.

Figure supplement 2. An overview of the bioinformatic pipeline to process CirSeq reads to identify transcript errors.
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correction processes (see Materials and methods, and Supplementary file 1, Table 7). Consistent

with observations, the majority of transcript errors are expected to result in amino-acid changes, if

translated (Table 1). For nonsense errors, the observed percentages are close to or significantly

lower than the random expectation (P < 0.005, c2 test, Table 1).

Figure 2. Transcript-error rates of protein-coding and ncRNA regions. cds includes all protein-coding genes that were sequenced in this study. ncRNA

refers to RNAs that are functional but not translated into proteins, for example tRNA and rRNA. Transcript-error rates were calculated by dividing the

number of errors by the number of nucleotides assayed in corresponding regions. Error bars indicate standard errors. The level of significance

difference is indicated by asterisks (*p<0.05, paired t-test).

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical data that are represented as a graph in Figure 2.
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Biased distribution of nonsense errors in RNA transcripts
As shown in Table 1, nonsense errors represent only a small percentage of all errors. However, they

are of particular interest because they will result in the formation of a premature termination codon

(PTC) and thus truncated proteins if not degraded. To ameliorate the potential severe fitness effects

resulting from such errors, eukaryotes have evolved the Nonsense Mediated Decay (NMD) mecha-

nism (Losson and Lacroute, 1979; Maquat, 1995; Peltz et al., 1993) to facilitate the degradation

of RNA transcripts carrying PTCs. A key to the success of NMD is distinguishing a PTC from the orig-

inal stop codon (Amrani et al., 2004; Le Hir et al., 2001), and the ability of the NMD machinery to

identify a PTC is thought to diminish as the PTC approaches the 30 end of a mRNA (Isken and

Figure 3. The molecular spectra of transcript errors for four bacterial species. The conditional error rates of each type of substitutions were calculated

from the number of particular transcript errors, divided by the number of corresponding ribonucleotides assayed. Error bars indicate standard errors.

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data that are represented as a graph in Figure 3.

Table 1. Percentages of transcript errors in mRNAs that are synonymous, missense, or nonsense

(other potential types of transcript errors with small percentages, such as start/stop codon loss-

errors, are not shown).

Observed and expected (in parentheses) percentages are presented. Based on the bias of observed

rNTP substitution rates and codon usages of each bacterium, expected percentages are calculated

assuming a random generation of errors and an absence of error-correction processes. The level of

significant difference is indicated by asterisks (*P < 0.05, ** P < 0.005, c2 test).

Species Synonymous Missense Nonsense

E. coli 40.18 (34.35) ** 56.25 (59.79) * 3.57 (5.62) **

B. subtilis 32.76 (31.86) 61.69 (61.63) 5.15 (6.15)

A. tumefaciens 40.68 (36.76) * 56.36 (59.17) 2.96 (3.86)

M. florum 17.58 (24.12) ** 79.27 (70.58) ** 2.37 (4.85) **
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Maquat, 2007). This hypothesis is supported by yeast transcript-error data that show a marked

increase in the frequency of PTCs towards the 30 end of mRNAs (Gout et al., 2017).

Although no analog of the eukaryotic NMD system is known in prokaryotes, a destabilizing effect

of PTCs on mRNA stability has been observed in bacteria (Arnold et al., 1998; Braun, 1998;

Morse and Yanofsky, 1969; Nilsson et al., 1987). Evaluating the distribution of nonsense errors

across the whole length of mRNA transcripts, we observed an increased frequency of nonsense

errors at the 30 end of transcripts, although the trend is not statistically significant in A. tumefaciens

(Figure 4A). Compared to other three species, a smaller number of nonsense errors were detected

in A. tumefaciens (Supplementary file 1, Table 7), which may result in a low statistical power to

reveal a potential pattern for the distribution of nonsense errors. We further modified the analysis by

dividing the frequency of nonsense errors by that of all errors. This ratio tends to be higher at the 30

end of mRNAs (Figure 4—figure supplement 1), excluding the possibility that the enrichment of

nonsense errors results mainly from a higher overall transcript-error rate at the 30 end of mRNAs.

Of all types of genetic codons, those with one nucleotide difference from a stop codon (one-off

codons) have a higher probability of mutating into PTCs. We further normalized the frequency of

nonsense errors by the abundance of one-off codons at corresponding loci. This still revealed an

increased frequency of nonsense errors towards 30 ends of transcripts (Figure 4—figure supplement

2), suggesting the higher frequency of nonsense errors is not caused by more abundant one-off

codons at the 30 end of transcripts.

The increased frequency of PTCs at the 30 end of mRNA transcripts suggests the presence of an

NMD-like process, albeit by a likely different mechanism than in eukaryotes, which largely rely on

the poly-A tail or exon-exon junction complex (Amrani et al., 2004). One speculative model for the

degradation of PTCs in eukaryotes, the ribosome-release model (Brogna and Wen, 2009), in which

the degradation of RNAs with PTCs depends on the degree of ribosome coverage on RNA mole-

cules, has the potential to hold true in prokaryotes. Ribosomes can load on to nascent transcripts

immediately after RNA synthesis. Therefore, a whole transcript with a normal stop codon can be cov-

ered by multiple ribosomes towards its 30 end, with these ribosomes protecting the transcript from

degradation by blocking ribonuclease cleavage sites. In contrast, a PTC upstream of the original

stop codon will stall the ribosomes, leaving the ribonucleotides between the PTC and the site of the

original stop codon unprotected by ribosomes, potentially promoting degradation by cellular ribo-

nucleases (Figure 4B).

Discussion
A key to accurately identifying bona fide transcript errors is to distinguish them from technical errors

and low-frequency genetic mutations. With previous efforts on method development to eliminate

sequencing errors (Acevedo and Andino, 2014; Acevedo et al., 2014; Lou et al., 2013) and to

evaluate the error rate of the reverse transcriptase (Gout et al., 2013), it is now possible to ensure

that contributions from such technical errors are orders of magnitudes lower than true transcript-

error rates by the CirSeq approach (See Materials and methods). Except for M. florum, transcript-

error rates in bacteria estimated by the current study are about one order of magnitude lower than

those from a previous study (Traverse and Ochman, 2016). Specifically in E. coli, our error-rate esti-

mates for each type of substitutions tend to be lower than those from Traverse and Ochman

(2016), the most striking difference involving the CfiU substitution rate, which could be partly due

to the use of a metal ion-based RNA fragmentation approach in the previous work vs. enzymatic

RNA fragmentation in the present study. The latter minimizes RNA damage (Gout et al., 2017), in

particular cytosine deaminations, introduced during the preparation of the sequencing library.

Besides base-substitution errors, a small portion of transcript errors can occur in other forms such

as insertions and deletions. Estimates of transcript insertion/deletion (indel) error rates from species

in this study are 0.1 to 0.2 of the corresponding base-substitution error rates (Supplementary file 1,

Table 1).

Bacterial transcriptomes predominantly consist of ncRNA transcripts, such as rRNAs and tRNAs

(Westermann et al., 2012). However, only a small portion of the whole ncRNA transcripts was evalu-

ated in the present study (Supplementary file 1, Table 8) because of technical limitations. The rRNA

depletion procedure in the sequencing library preparation protocol removes the majority of rRNAs.

Secondary structures and nucleotide modifications of tRNAs interfere the cDNA synthesis and
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sequencing adapter ligations. In the future, to achieve a better measurement of transcript-error rates

of ncRNA transcripts, total RNAs can be mixed with rRNA-depleted RNAs at a certain ratio to

increase the abundance of rRNAs in the sequencing library. Demethylase enzymes and thermophilic

reversetranscriptase can be used to remove nucleotide modifications of tRNAs and to improve

Figure 4. Nonsense errors in prokaryotic transcripts. (A) Distributions of nonsense errors across mRNA transcripts. The frequency of nonsense errors is

calculated in a 100-nt sliding window with a step size of 1 nt for data visualization. Grey intervals represent standard deviations assuming the number of

errors at each locus follows a binomial distribution. Linear regression between the distance to the original stop codon and the frequency of nonsense

errors of each window is indicated in dark grey lines. P values were calculated from weighted linear regressions of individual data points before binning

into a window. (B) The ribosome-release model for PTCs degradation in prokaryotes. Compared to a late PTC, an early PTC results in a larger portion

of ribonucleotides unprotected by ribosomes, and therefore a higher probability of being digested by cellular ribonuclease.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numerical data that are represented as a graph in Figure 4A.

Figure supplement 1. Distributions of the ratio of nonsense error frequency to total error frequency across mRNA transcripts.

Figure supplement 1—source data 1. Numerical data that are represented as a graph in Figure 4—figure supplement 1.

Figure supplement 2. Distribution of PTCs across the length of mRNA transcripts.

Figure supplement 2—source data 1. Numerical data that are represented as a graph in Figure 4—figure supplement 2.
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processivity in generating cDNAs from highly structured RNA templates (Schwartz et al., 2018;

Zheng et al., 2015).

The molecular spectrum of transcript errors revealed in our work indicates a general CfiU substi-

tution bias, which has been proposed to be due to spontaneous deamination (Imashimizu et al.,

2013; Traverse and Ochman, 2016) owing to the chemical instability of cytosine (Alberts et al.,

2015). Besides this widely accepted mechanism, non-Watson-Crick base pairing during rNTP incor-

porations may also contribute to this bias. Because dG and rU can form a base pair

(Sugimoto et al., 2000; Sugimoto et al., 1997), mispairing between a template DNA (dG) and an

RNA (rU) during rNTP incorporations likely also contributes to the CfiU substitution bias.

Another intriguing observation from the molecular spectra in the present study is the GfiA sub-

stitution bias in M. florum. One source for this substitution may be unrepaired uracils on the DNA

antisense strand, which pair with rATPs during transcription, resulting in a GfiA substitution on the

RNA transcript. Although M. florum has a diminutive genome (0.79 Mb) and lacks many genes

(RefSeq NC_006055.1), a uracil-DNA glycosylase (UDG) ortholog whose product presumably

removes uracils (McCullough et al., 1999) does exist in the genome. Therefore, the extent to which

mismatches between the unrepaired uracil and rATP can explain the GfiA bias remains unclear.

Taking data from previous studies (Gout et al., 2017; Imashimizu et al., 2015; Traverse and

Ochman, 2018) and this work together, GfiA substitution bias seems to be a general pattern in

cells with error-prone transcription machineries. What might be the underlying mechanism? The

error spectrum is shaped by two factors. One is the ability of an RNA polymerase to distinguish cor-

rect rNTPs from incorrect ones. The other factor, which is sometimes neglected, is the rNTP pool

within a cell. The error rate of competitive binding of rNTPs to the template can be expressed as,

kincorrect � Cincorrect�rNTPsð Þ= kcorrect � Ccorrect�rNTPsð Þ, where k refers to the rNTP incorporation rate and C

indicates the concentration of rNTPs. As suggested by this equation, a biased cellular rNTP concen-

tration might present an additional challenge to transcriptional fidelity for certain categories of

rNTPs. Based on observations that RNA polymerases have a low ability to distinguish rNTPs with the

same structural class of nitrogenous bases and that the cellular concentration of rATPs is the highest

among all types of nucleotides in both eukaryotes and prokaryotes (Bennett et al., 2009;

Buckstein et al., 2008; Traut, 1994), it is reasonable to speculate that the high cellular concentra-

tion of rATPs contribute to the observed bias towards GfiA substitutions.

An additional cellular process influencing transcript errors is RNA quality-control. Because genes

involved in NMD, such as up-frameshift (UPF) genes, have not been identified in prokaryotes, evi-

dence for the existence of NMD in prokaryotes is still lacking. However, previous studies based on

single gene-reporters (Baker and Mackie, 2003; Braun, 1998; Nilsson et al., 1987) and our tran-

scriptome-wide survey suggest a Nonsense-Mediated Decay-like quality-control mechanism in pro-

karyotes. A key implication of the increased frequency of nonsense errors at the 30 end of mRNAs

(Figure 4A) is that the degradation of RNAs carrying nonsense errors may simply result from a

higher degree of exposure to cellular ribonucleases rather than from a reliance on specific protein-

based systems.

Current models of mRNA surveillance mechanisms mostly focus on stop codon-related errors

(Deutscher, 2006; Richards et al., 2008), which are expected to represent only a small portion of

the total transcript errors in a cell. It is largely unknown whether, and if so by which mechanisms the

major transcript errors (missense errors) get degraded. To resolve this, future research will be

required to evaluate the rate at which transcript errors are degraded after initially being generated

during transcription. This might be possible by comparing transcript errors on nascent transcripts

bound to RNA polymerases with those on mature transcripts associated with ribosomes.

Materials and methods

Bacteria strains and growth conditions
All bacteria strains were inoculated into liquid culture from single colonies and grew to mid-expo-

nential growth phase upon harvest. E. coli MG1655 and B. subtilis NCIB 3610 were grown at 37˚C in

LB liquid medium. M. florum L1 (ATCC #33453) was grown at 30˚C in SNE liquid medium. A. tumefa-

ciens C58 was grown at 28˚C in LB liquid medium.
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RNA extraction
Bacteria were harvested from liquid culture media by centrifugation and total RNA was extracted

and purified using the FastRNA Blue Kit (MPBiomedicals), RNase-free DNase set (Qiagen), and the

RNeasy Mini Kit (Qiagen). rRNA was depleted by the Ribo-Zero rRNA Removal Kit (Bacteria) (Illu-

mina) for the following library preparations.

Library preparation and sequencing
We followed a refined protocol of CirSeq (Gout et al., 2017) to prepare libraries for transcript error

identifications. Five hundred nanograms of rRNA-depleted RNAs were firstly fragmented with the

NEBNext RNase III RNA Fragmentation Module (New England Biolabs) for 90 min at 37˚C. After a

clean-up using the Oligo Clean and Concentrator kit (Zymo Research), RNA fragments were circular-

ized with RNA ligase 1 (New England Biolabs) according to the manufactuer’s guidelines. cDNA with

tandem repeats was generated by the rolling-circle reverse transcription as described in the refined

CirSeq protocol. Synthesis of the second strand of cDNA and sequencing library preparation were

performed using the NEBNext Ultra RNA Library Prep Kit and NEBNext Multiplex Oligos for Illumina

(New England Biolabs). The size selection and clean-up during sequencing library preparations were

performed by Agencourt AMPure XP Beads (Beckman Coulter) according the NEB guideline that is

optimized for approximately 200nt RNA inserts. A final gel-based size selection was performed to

enrich PCR amplified products that are longer than 300nt. Single-end reads (300nt) were then gener-

ated using Illumina HiSeq 2500 System. The sequencing data were deposited in NCBI with the Bio-

Project Number PRJNA592142.

Genome references and annotation files
The accession numbers of genome references for E. coli, B. subtilis, and M. florum are

NC_000913.3, NZ_CM000488.1, and NC_006055.1. For A. tumefacien, accession numbers are

NC_003062.2, NC_003063.2, NC_003064.2 and NC_003065.3. The corresponding genome annota-

tion files are from RefSeq.

Data analysis
Several analysis pipelines already existed to process reads with multiple tandem repeats and call

transcript errors, but with their own limitations. The CirSeq_v2 pipeline (Acevedo and Andino,

2014; Acevedo et al., 2014) can only analyze reads with exactly three repeats and reads generated

by CirSeq approach can contain more than four repeats if the original RNA template is smaller than

75 nt. Another pipeline described in a recent work in yeast (Gout et al., 2017) cannot generate con-

sensus calls and recalculate the quality score from a site where not all base calls are identical. There-

fore, we developed Python scripts following the methods outlined by Lou et al. (2013) (Figure 1—

figure supplement 2). The structure of repeats within one read was identified by an autocorrelation-

based method, in which the length of one potential repeat P is detected by the maximum fraction of

identical base calls that are separated by a distance P within one read. The consensus sequence was

constructed and the corresponding new quality score was calculated by a Bayesian approach where

an inferred consensus call is taken with the maximum posterior probability given all observed base

calls. This approach also allows the processing of varied numbers and types of base calls at one site.

To identify the ligation junction of circular templates and to reorganize the consensus sequence, a

tandem duplicate of the consensus sequence was constructed and then mapped back to the refer-

ence genome by BWA (Li and Durbin, 2009). The longest continuous mapped regions of the dupli-

cated consensus sequences therefore correspond to original RNA fragments. We also excluded the

4 nucleotides at both ends of the reorganized consensus sequence to minimize potential confusions,

because mapping can be ambiguous at the two ends of RNA fragments. After mapping of recon-

structed consensus sequences, reads uniquely mapped to protein-coding regions and all reads

mapped to ncRNA regions were kept. Transcript errors were called if a mismatch between a consen-

sus call and the reference was supported by less than 1% of reads at corresponding loci. To exclude

false positives of transcript errors from genetic mutations in multiple copies of ncRNA genes (such

as rRNA and tRNA genes), an additional filter was included to exclude an error call that is supported

by genetic variations from different copies of ncRNA genes. The transcript error rate of a given

region was calculated as the number of transcript errors divided by the total number of rNTPs
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assayed from the corresponding region. The code for the bioinformatic pipeline can be found at

https://github.com/LynchLab/CirSeq4TranscriptErrors (Li, 2020; copy archived at https://github.

com/elifesciences-publications/CirSeq4TranscriptErrors).

Strategies to distinguish transcript errors from other types of errors
First, reverse transcription and sequencing errors need to be filtered out in the analysis. Because the

rate of transcript error is generally 10-6 ~ 10-5 /nt , the recalculated probability of an erroneous base

call at 10-7 or lower was required to minimize contaminations from sequencing errors. Because the

error rate of the reverse transcriptase used here is ~10-4 /nt (Gout et al., 2013), at least two tandem

repeats were required in the analysis to minimize false positives from reverse transcription errors.

Second, genetic mutations (DNA level) can arise during cell culture and low frequency mutations

can behave like transcript errors in the sequencing data. The probability of capturing a genetic muta-

tion can be calculated by dividing the expected number of genetic mutations generated during cell

propagations by the total transcriptome size at the time point of sample collection, ��g�T�n
T �n , in which m

is the per site per generation mutation rate, g is the number of generations during cell culture, T is

the size of genome regions get transcribed, and n is the average expression level per site. This equa-

tion can be further simplified as mg. Because we know the mutation rate from mutation accumulation

experiments (Lee et al., 2012; Lynch et al., 2016; Sung et al., 2016; Sung et al., 2015; Sung et al.,

2012) and the number of generations from culture-growth dynamics (~30 generations), Low fre-

quency genetic mutation can only inflate the transcript-error rate we calculated here by ~1‰ -1%.

To calculate the expected percentages of transcript errors with
different effects
Take the calculation for synonymous substitution as one example. The percentage can be calculated

by summing the probabilities of each codon to have a synonymous change, P synð Þ ¼
P64

i¼1

Pi � Pi synð Þ. Pi

refers to the probability of having codon i based on the codon usage of a specific genome and there

are 64 codons in total. Pi synð Þ is the probability that codon i has a synonymous substitution and it can

be calculated from, Pi synð Þ ¼
P9

j¼1

�j � 1 j results in synf g. �j denotes the substitution probability of 1 of the 9

single-base substitutions that can happen in one codon. And it can be calculated by, �j ¼
ej

P9

j¼1

ej

; in

which ej refers to the error rate of 1 of the 9 substitutions in one codon. Estimates of ej are displayed

in Figure 3.

The sliding window analysis and weighted linear regression to evaluate
the distribution of nonsense errors on mRNA transcripts
The sliding window analysis (window size = 100nt and step size = 1nt) of the distribution of nonsense

errors across mRNAs was used for data visualization. To evaluate whether or not the negative corre-

lation between the frequency of nonsense errors and the corresponding distance from a nonsense

error to the original stop codon is statistically significant, a weighted linear regression method was

used. The weight was calculated as the reciprocal of a variance of a nonsense error frequency.

Because the observed number of transcript errors at each locus is expected to follow a binomial dis-

tribution, the variance of the nonsense error frequency can be estimated as p 1�pð Þ
n

, where p is the esti-

mated frequency of errors and n refers to the read coverage at the corresponding locus.
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