nature communications

Article

https://doi.org/10.1038/s41467-022-34381-8

VeChat: correcting errors in long reads using
variation graphs

Received: 4 March 2022

Accepted: 24 October 2022

Published online: 04 November 2022

M Check for updates

Xiao Luo™?, Xiongbin Kang' & Alexander Schénhuth ® 2

Error correction is the canonical first step in long-read sequencing data ana-
lysis. Current self-correction methods, however, are affected by consensus
sequence induced biases that mask true variants in haplotypes of lower fre-
quency showing in mixed samples. Unlike consensus sequence templates,
graph-based reference systems are not affected by such biases, so do not
mistakenly mask true variants as errors. We present VeChat, as an approach to
implement this idea: VeChat is based on variation graphs, as a popular type of
data structure for pangenome reference systems. Extensive benchmarking
experiments demonstrate that long reads corrected by VeChat contain 4 to 15
(Pacific Biosciences) and 1 to 10 times (Oxford Nanopore Technologies) less
errors than when being corrected by state of the art approaches. Further, using
VeChat prior to long-read assembly significantly improves the haplotype
awareness of the assemblies. VeChat is an easy-to-use open-source tool and
publicly available at https://github.com/HaploKit/vechat.

Third-generation sequencing (TGS) such as single-molecule real-time
(Pacific Biosciences, or short PacBio) or nanopore sequencing (Oxford
Nanopore Technologies or short ONT) has been emerging rapidly over
the last few years. The most obvious reason is that the length of TGS
reads exceeds the length of next-generation sequencing (NGS) reads
by orders of magnitude. While the length of TGS reads ranges from
several Kbp up to even a few Mbp', NGS reads only span a few hundred
base pairs. The fact that TGS is relatively inexpensive and, depending
on the particular platform can even be carried out on mobile, handheld
devices, greatly adds to its popularity. Last but not least, TGS does not
suffer from PCR induced biases, because it circumvents polymerase
chain reaction (PCR) as part of its protocol. Thanks to these advan-
tages, TGS has been able to make decisive contributions in various
areas of application. Prominent examples are haplotype phasing?,
genome assembly’” and (complex) variant calling® ™.

The downside of TGS, however, are the significantly elevated error
rates the reads are subject to. For example, PacBio CLR and ONT reads,
as the currently most representative examples of TGS reads, contain
5% to 15% errors'. This comes in obvious contrast to NGS short reads,
whose error rates usually do not exceed 1%. The fact that the majority
of errors affecting long reads consists of insertions and deletions adds
to the difficulties because it prevents the application of principles and

straightforward adaptation of tools for correcting errors in short
reads. This implies that direct usage of raw TGS reads or successful
application of existing error correction tools is hardly possible in the
majority of relevant applications. Novel methods and tools are
required for correcting errors in TGS reads.

Because correcting errors in TGS reads is imperative for sound
analyses, various TGS read error correction methods have been pre-
sented in the meantime. The corresponding range of methods can
be divided into two major categories: hybrid correction and self-
correction. While hybrid correction addresses to integrate short reads
into the error correction process, self-correction seeks to correct
errors without auxiliary data.

Hybrid correction reflects a sound and reasonable approach in
general (see”™ for prominent approaches). However, hybrid correc-
tion suffers from certain pragmatic issues. First, while long reads can
span repetitive regions, short reads cannot; this introduces ambi-
guities in the process of assigning short to long reads (or vice versa),
and as a consequence biases in the quality of the correction,
depending on the uniqueness of the region in the genome the reads
stem from. Second, short reads re-introduce PCR induced biases. For
example, certain areas of genomes are not sufficiently covered by
short reads because of sequence content (e.g. GC content). This

'Genome Data Science, Faculty of Technology, Bielefeld University, Bielefeld, Germany. 2Life Science & Health, Centrum Wiskunde & Informatica,

Amsterdam, The Netherlands. . e-mail: a.schoenhuth@cwi.nl

Nature Communications | (2022)13:6657

http://orcid.org/0000-0003-3529-0856
http://orcid.org/0000-0003-3529-0856
http://orcid.org/0000-0003-3529-0856
http://orcid.org/0000-0003-3529-0856
http://orcid.org/0000-0003-3529-0856
https://github.com/HaploKit/vechat
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34381-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34381-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34381-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34381-8&domain=pdf
mailto:a.schoenhuth@cwi.nl

Article

https://doi.org/10.1038/s41467-022-34381-8

hampers error correction in these areas. Last but not least, employing
several different sequencing protocols can be impossible for equip-
ment related or financial reasons, which prevents the application of
hybrid error correction in the first place.

Self-correction, as the second class of methods, does not suffer
from any of these issues. However, because of the lack of external (e.g.
short read based) assistance, self-correction faces other methodically
principled challenges. It is key to overcome these challenges before
one can profit from the great practical advantages of self-error cor-
rection. In terms of prior, related work, self-correction can be further
divided into three sub-categories, each of which is characterized by
particular algorithmic strategies and methodical foundations.

The first, and most common of the three categories is based on
multiple sequence alignments (MSAs). For prior approaches and tools
that crucially rely on computing MSAs, see Racon®, the error correc-
tion module of the assembler Canu', and FLAS". The second prin-
cipled class of approaches relies on de Bruijn graphs (DBGs).
Corresponding tools employ DBGs at some point crucial for the cor-
rection process. The prevalent tool to consider is Daccord™®, which is
based on raising local DBGs, where local refers to reads, from which
DBGs are constructed, stemming from relatively small segments of the
genome. The third class of self-correction methods collects approa-
ches that make combined use of both MSAs and DBGs. Such metho-
dically combined approaches seek to balance the advantages and
disadvantages of the two concepts, MSAs on the one hand, and DBGs
on the other hand. Prominent tools that make successful, combined
use of MSAs with DBGs are LORMA'® and CONSENT?.

The common denominator that unifies all of these self-correction
approaches is to raise consensus sequence as a summary of the reads
observed. This consensus sequence then serves as a template during
error correction, by indicating default variation. However, because
sequence-based templates cannot capture ambiguities, one experi-
ences biases during the correction process: the default allele provided
by the template wins in case of uncertainties remaining. As a con-
sequence, these approaches tend to mask variation that characterizes
little-covered or low-frequency haplotypes/strains in mixed samples
(metagenomes, cancer genomes) or polyploid genomes. Haplotypes
exhibiting template masked variants virtually disappear, such that
downstream analyses remain blind to them.

To address this issue, we suggest VeChat ([V]ariation graph-
based [e]rror [Clorrection in [halplo[tlypes), a self-correction
method to perform haplotype-aware error correction for long
reads. From a larger perspective, VeChat considers the full
spectrum of all possible haplotypes that possibly affect the
sample already during error correction, and not—as is common—
only thereafter. This reflects a novelty for ploidies larger than
two, because earlier approaches only deal with diploid
scenarios”. From a methodical point of view, the novelty of
VeChat is to integrate variation graphs* as a fundamental data
structure into the process of error correction. Variation graphs
have been effectively used to solve various problems in compu-
tational genomics, such as improving read mapping and variant
calling %, modeling haplotypes®® and assembling genomes from
mixed samples”?%. To the best of our knowledge, VeChat is the
first approach to apply variation graphs to long-read error cor-
rection. We have tested VeChat and extensively compared it with
the current state of the art on datasets reflecting various settings
of current interest. Benchmarking experiments on both simulated
and real data demonstrate that our approach basically achieves
the best performance rates, across all categories of common
sequencing errors. Moreover, using VeChat for long-read error
correction prior to haplotype-aware genome assembly largely
improves assemblies in terms of most relevant categories, most
prominently including completeness, contiguity and accuracy.

Results

We have designed and implemented VeChat, an approach to haplo-
type aware long-read self error correction. The key concept underlying
VeChat are variation graphs. Unlike single consensus sequences, which
current self-correction approaches are generally centering on, varia-
tion graphs are able to represent the genetic diversity across multiple,
evolutionarily or environmentally coherent genomes®. This enables to
preserve haplotype-specific variation during error correction also for
samples of higher, known or unknown ploidy.

In this section, we first provide a high-level description of the
workflow of VeChat. We then evaluate the performance of VeChat on
both simulated and real data in comparison with the state of the art
approaches. Finally, we assess the effect of integrating VeChat as a
preprocessing tool in common haplotype aware genome assembly
pipelines.

Workflow
See Fig. 1 for an illustration of the workflow of VeChat. See also
Methods for full details in the following.

The basic idea of VeChat is to construct a variation graph from the
all-to-all alignments of the raw reads. One then identifies nodes and
edges in the resulting graph that are likely to be artifacts, and removes
them. Subsequently, reads are realigned against the resulting, pruned
graph. The path in the pruned graph corresponding to the optimal re-
alignment points out an error-corrected sequence of the read. The
procedure of spurious node and edge removal followed by re-
alignment is repeated until convergence (note that the statistical
evaluation of remaining nodes and edges changes upon re-alignment,
which may reveal new likely spurious nodes and edges in the next
iteration). The re-alignment of the original read with the final graph
points out the fully error-corrected sequence of the read.

VeChat consists of two cycles. While the first cycle yields pre-
corrected reads, the second cycle generates the final, corrected reads
from the pre-corrected reads. Each cycle proceeds in 6 steps. While the
two cycles generally agree on these 6 steps, they disagree in terms of
small, but crucial details affecting steps 1 and 4.

During the first cycle, step 1 computes minimizer based all-vs-all
overlaps, for which we employ Minimap2*. Minimap2 prevents the
need for computing base-level alignments. Therefore, this stage pro-
ceeds rapidly and without additional efforts.

Steps 2-6 reflect the technical core of the error correction pro-
cedure in Fig. 1. In step 2, a target read is selected as the read whose
errors are to be corrected. A read alignment pile that consists of all
reads that overlap it is computed. Subsequently, in step 3, the read
alignment pile is divided into small segments, where each of the seg-
ments gives rise to a window like part of the pile in step 3; the part of
the target read in a particular window is further referred to as 'target
subread'.

Subsequently, in step 4, the error correction for target subreads is
performed in each window. Step 4 is methodically more involved,
because it captures the novel, variation graph-based approach; see
Fig. 2 for detailed illustrations on the version of that particular step
used in the first cycle. Step 4 involves the construction of a variation
graph using the partial order alignment (POA) algorithm®°, and prun-
ing this graph in an iterative manner from nodes and edges that are
spurious because they reflect errors (‘Graph pruning’ and ‘Graph re-
pruning’ in Fig. 2). For pruning the graph, we make use of a frequent
itemset model that involves read coverage, sequencing errors and co-
occurrence of characters in reads. The path in the pruned variation
graph that corresponds to the optimal alignment of the target subread
is then taken as the pre-corrected target subread; see subsection Step
4: Error correction for target subreads in Methods for details. The first
cycle concludes with concatenating the different "target subreads’ of
one target read, which results in a pre-corrected read at full, original

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

All pre-corrected
reads (cycle1)

Raw reads

(PacBio/ONT)

1. Read overlap calculation
| V l¢ |

&
Overlapping reads

X X X

2. Read alignment pile
generation l

X X

{

3. Window
segmentation

<
Cycle2 begins

X €«—
X
X

4. Error correction
for target subreads

<_
<_

5. Concatenationl

[)

L J
'T6. Merging corrected

/ | target reads

\ 4

All pre-corrected
reads (cycle1)

All final corrected
reads (cycle2)

Fig. 1| Workflow of VeChat. The input and output of cycle 1 and cycle 2 are labeled
with purple and blue, respectively. Both cycle 1 and cycle 2 share the steps 1-6
except some differences in step 1 and 4. The target read is highlighted with orange.
Red forks indicate the sequencing errors in reads.

length. These pre-corrected reads then serve as input for the sec-
ond cycle.

While the (vast) majority of errors have already been corrected
during the first cycle, a few errors, to be considered statistical outliers
that escape correction during iterative graph pruning during the first
cycle, have resisted their correction. The second cycle is supposed to
spot such outliers. The second cycle is less complex than the first cycle,
because it does no longer include the statistically involved graph
pruning procedure; the blue elements in Fig. 1 point out the different
routes along which the second cycle proceeds. Overall, as above-

PXCX

— Subreads from

> a window R
h]

¢Variation graph construction

All subreads
re-alignment

[d)

Fig. 2 | Error correction for one target subread in cycle 1. The error correction
process for the target read ris illustrated assuming a diploid scenario (the orange
path represents the optimal alignment path, whereas the green path represents the
other true haplotype). “Graph pruning” and “Graph re-pruning” refer to the core
error correction procedures. These procedures rely on a variation graph that is
constructed from segments of a read alignment pile that results from a multiple
alignment of the target read and the reads that overlap it, see Fig. 1. During graph
pruning and re-pruning spurious edges (dashed arrows), induced by sequencing
errors, are removed from the variation graph. The pink elements indicate that these
procedures are repeated.

X

' Subreads from
[a window

|

|

¢Variation graph construction

@@f@\‘©®

¢ Consensus generation

Fig. 3 | Error correction for one target subread in cycle 2. The bold orange path
indicates the consensus sequence. The false nucleotide 'G' in the pre-corrected
target subread in cycle 1 (see in Fig. 2) is marked with red and further corrected in
cycle 2.

mentioned, the second cycle is identical with the first cycle in steps 2,
3, 5 and 6. In step 1, however, beyond computing all-vs-all overlaps,
base-level alignments are computed, which enables haplotype aware
read overlap filtration. Step 4, as shown in Fig. 3, then proceeds dif-
ferently insofar as graph (re-)pruning is no longer part of the cycle.
Instead of iterative re-pruning, which did not lead to removal of the
errors that we would like to remove during this second cycle, (haplo-
type-aware!) consensus sequences (displayed as thick yellow arrows in

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

Table 1] Error correction benchmarking results for simulated PacBio CLR reads of various polyploid genomes (ploidy =2, 3, 4)

Method #Reads Errorrate (%) Mismatch (%) Indel (%) Haplotype N50 (bp) NGA50 (bp) #Misassemblies
coverage (%)
Ploidy =2
VeChat 31958 0.014 0.006 0.008 100.0 12,556 38,515 (0]
CONSENT 33115 0.194 0.152 0.042 99.9 12,509 38,318 38
Racon 32183 0.276 0.190 0.085 99.2 12,514 38,421 72
Canu 25924 0.308 0.183 0.124 99.9 13,280 38,517 3
Daccord 31403 0.423 0.412 0.01 99.2 12,604 38,598 3
Ploidy =3
VeChat 48085 0.031 0.015 0.016 100.0 12,595 38,467 13
CONSENT 50462 0.276 0.205 0.07m 100.0 12,51 38,187 105
Racon 48986 0.558 0.427 0.131 98.7 12,484 38,257 288
Canu 37210 0.612 0.405 0.207 99.9 13,675 38,360 30
Daccord 48189 0.807 0.752 0.055 99.7 12,485 38,357 16
Ploidy=4
VeChat 62743 0.074 0.047 0.027 99.9 12,593 38,442 44
CONSENT 66315 0.275 0.180 0.095 100.0 12,492 38,268 m
Racon 64342 0.547 0.398 0.149 93.2 12,464 38,016 387
Canu 46698 0.549 0.335 0.214 99.5 13,956 38,255 86
Daccord 63440 0.833 0.790 0.043 97.5 12,463 38,335 22

The average sequencing coverage per haplotype is 30x and sequencing error rate is 10%. ‘#Reads’ indicates the number of corrected reads. The error rate is equal to the sum of mismatch and indel

rate. The results are sorted by the error rate in ascending order.

Fig. 3) are derived from the constructed variation graphs by using a
dynamic programming algorithm®. After concatenating these con-
sensus sequences in step 5, joining all target reads in step 6 generates
the final output of Vechat.

Benchmarking results

Table 1 shows the error correction benchmarking results for simulated
PacBio CLR reads from genomes of varying ploidies, namely 2,3 and 4.
VeChat achieves approximately 14-30, 9-26 and 4-11 times lower
error rates on diploid, triploid and tetraploid genomes, respectively. At
the same time, it maintains better or comparable performance in terms
of other aspects such as number of corrected reads, completeness
(haplotype coverage), number of misassemblies and length of cor-
rected reads (as shown by N50/NGAS5O0). In particular, VeChat outper-
forms other tools in terms of mismatch rate (4-69 times lower than
others).

Table 2 shows the error correction benchmarking results for
simulated Oxford Nanopore reads from genomes of varying ploidies,
namely 2, 3 and 4. VeChat achieves approximately 10-20, 3-9 and 2-5
times lower error rates on diploid, triploid and tetraploid genomes,
respectively, while maintaining better or comparable performance in
terms of all other aspects. Just as for PacBio reads, VeChat also shows
better performance in terms of mismatch rate: 2-59 times lower than
other correction tools, compared with indel rate.

Table 3 shows the error correction benchmarking results for
simulated PacBio CLR reads of metagenomic datasets with different
complexity. VeChat achieves approximately 6-7 and 3-4 times lower
error rates on low and high complexity metagenomes, respectively,
while maintaining comparable performance in terms of other aspects.
In particular, VeChat outperforms other tools in terms of mismatch
rate (6-12 times lower) quite substantially on the low-complexity
dataset.

Table 4 shows the error correction benchmarking results for real
PacBio sequencing data (mock communities). The three sections of the
table show results on the yeast pseudo-diploid genome dataset (mock
community) first, the NWC metagenome dataset (real) second, and the
Microbial 10-plex metagenome dataset (mock community) as the third
section of rows in Table 4. VeChat achieves approximately 2-4,1.4-7.8

and 3.3-5.6 times lower error rates on Yeast, NWC and Microbial 10-
plex datasets, respectively, while maintaining comparable perfor-
mance in terms of other aspects.

See Supplementary Table 1 for error correction benchmarking
experiments for real ONT sequencing data (non-synthetic), which have
been evaluated using Merqury® because of the lack of reference
genomes. Before discussing results, see Supplementary Table 2, which
puts evaluations with and without a reference genome (QUAST resp.
Merqury), that is, with and without available ground truth into context.
Corresponding results immediately point out that Merqury is subject
to substantial biases with respect to the choice of methods. For
example, on ONT sequenced diploid genomes, Merqury under-
estimates the true error rates (as performed by QUAST relative to the
ground truth) by factors of 4.33 (CONSENT) and even 11.84(!) (Dac-
cord), but only by factors of 2.54 (Racon), 2.05 (Canu), and 1.75
(VeChat).

The quality of the results persists on the other datasets: Merqury
evidently favors CONSENT and Daccord quite substantially in com-
parison with Racon, Canu and VeChat. Because Merqury is k-mer
based, an immediate hypothesis is that Merqury tends to favor k-mer
(e.g. de Bruijn graph) based approaches (CONSENT, Daccord) over
approaches that do not make use of de Bruijn graphs (Racon, Canu and
VeChat), where VeChat appears to be the only tool whose error rates
are not substantially underestimated, at least on the lesser complex
datasets. In summary, we have experienced that Merqury is affected by
considerable volatility with respect to the methodological background
of error correction tools, clearly favoring certain tools over others.

Therefore, the discussion of the following results are to be taken
with the corresponding caution in terms of the method-specific biases
that Merqury appears to induce.

As becomes obvious from Supplementary Table 1, VeChat
achieves approximately 1.5 times lower error rate (QV) and 1.2 times
lower switch error on HGOO2 compared with CONSENT (the only
alternative tool available to compare), while loosing more haplotype
coverage. Whereas on the human gut microbiome dataset, Daccord
achieves the lowest error rate (QV) while VeChat obtains comparable
read accuracy. VeChat achieves about 1.4 and 1.7 times lower error
rates (QV) in comparison to CONSENT and Canu, respectively, while

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

Table 2 | Error correction benchmarking results for simulated Oxford Nanopore reads of various polyploid genomes

(ploidy =2, 3, 4)

Method #Reads Error rate (%) Mismatch (%) Indel (%) Haplotype coverage (%) N50 (bp) NGA50 (bp) #Misassemblies
Ploidy =2

VeChat 30920 0.022 0.007 0.014 99.9 13,095 40,612 5
CONSENT 32661 0.212 0.160 0.052 99.9 13,040 40,903 37
Racon 31840 0.346 0.234 0.112 99.3 13,039 40,725 120
Canu 25506 0.390 0.206 0.183 100.0 13,820 40,846 6
Daccord 31438 0.438 0.410 0.027 99.2 12,987 40,730 3
Ploidy=3

VeChat 45113 0.090 0.041 0.050 100.0 13,130 40,497 90
CONSENT 49826 0.298 0.221 0.077 99.9 13,037 40,877 103
Racon 48520 0.673 0.501 0.172 98.6 13,028 39,286 631
Canu 36962 0.748 0.453 0.295 99.9 14,141 40,605 59
Daccord 49033 0.821 0.751 0.069 99.7 12,712 39,193 "
Ploidy =4

VeChat 58739 0.169 0.098 0.071 99.7 13,129 40,450 177
CONSENT 65384 0.292 0.195 0.097 100.0 13,033 40,864 121
Racon 63670 0.666 0.469 0.197 94.9 13,012 40,007 668
Daccord 65072 0.840 0.784 0.056 96.9 12,606 39,076 22

The average sequencing coverage per haplotype is 30x and sequencing error rate is 10%.

Table 3 | Error correction benchmarking results for simulated PacBio CLR reads of metagenomic datasets with different

complexity
Method #Reads Errorrate (%) Mismatch (%) Indel(%) Haplotype coverage (%) N50 (bp) NGA50 (bp) #Misassemblies
Low complexity (20 genomes)
VeChat 293466 0.036 0.020 0.015 96.9 11,866 29,555 104
Racon 299053 0.200 0.122 0.078 91.7 1,81 29,514 794
CONSENT 299333 0.214 0.149 0.065 98.4 1,841 29,556 515
Canu 253381 0.259 0.134 0.125 97.4 12,370 29,457 139
Daccord 298284 0.259 0.243 0.016 92.8 11,862 29,595 280
High complexity (100 genomes)
VeChat 1441190 0.088 0.061 0.026 97.5 11,886 30,129 2774
CONSENT 1497216 0.274 0.163 0.112 99.4 11,839 30,204 3263
Canu 1185152 0.354 0.192 0.162 99.0 12,706 30,016 873
Racon - - - - - - - -
Daccord - - - - - - - -

The average sequencing coverage of strains is about 30x and the sequencing error rate is 10%. Racon and Daccord failed to run for high complexity dataset.

keeping comparable performance in terms of other aspects. (We recall
that Daccord was the tool whose error rate was underestimated by the
by far largest factors, which points out that, potentially, VeChat vir-
tually achieves better error rates). As we mentioned earlier in the
subsection ‘Metrics for evaluation’, the error rate (QV) ignores long-
range switch errors in evaluation, which is unable to represent the
overall error rate of reads. In fact, in simulated datasets of which the
ground truth are known, we observed that VeChat achieves much
lower switch error rate compared with others, and in both metagen-
ome datasets VeChat achieves much lower overall error rate (from
QUAST), even though its error rate (QV, from Merqury) is comparable
with Daccord in the metagenome dataset of low complexity (see
Supplementary Table 2). In summary, we speculate VeChat can achieve
better performance in terms of overall error rate on the real human gut
microbiome data.

Varying read coverage
In order to evaluate how sequencing coverage influences the error
correction approaches, we focused on the triploid genome, consisting

of three E. coli strains as described before. We simulated PacBio CLR
reads at varying sequencing coverage, namely, 10x, 20x, 30x, 40x, 50x
per haplotype.

Supplementary Table 3 shows the benchmarking results of error
correction. In summary, VeChat achieves approximately 2-47 times
lower error rates on all datasets, while maintaining better or compar-
able performance in terms of other aspects such as number of cor-
rected reads, completeness (HC) and length of corrected reads. As the
sequencing coverage increases (from 10x to 50x), VeChat achieves
better error correction (error rate from 0.311% to 0.017%), while
keeping comparable performance in terms of other aspects.

In addition, we particularly tested VeChat in the scenario of ultra-
high sequencing coverage over a small genome. To reflect this context,
we simulated a 5-strain HIV mixture (genome size =10 Kbp) dataset,
which has been used for benchmarking experiments in many related
studies, such as refs. 27, 33-35. The average sequencing coverage per
strain is about 1000x. See the Supplementary Table 4 for the details
about the data descriptions and the benchmarking results. The results
show that VeChat outperforms others on the PacBio data in terms of

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

Table 4 | Error correction benchmarking results for real PacBio sequencing data (mock communities)

Method #Reads Error rate (%) Mismatch (%) Indel(%) Haplotype coverage (%) N50 (bp) NGA50 (bp) #Misassemblies
Yeast pseudo-diploid genome

VeChat 107210 0.236 0.1m 0.126 99.6 5693 15,537 505
Daccord 149020 0.503 0.285 0.217 96.5 4762 15,161 1457
Racon 136199 0.758 0.282 0.476 98.3 6349 16,001 3836
Canu 118367 0.787 0.214 0.573 99.9 5684 15,603 743
CONSENT 160136 0.947 0.344 0.603 99.4 5622 16,001 7973
NWC metagenome

VeChat 156426 0.101 0.031 0.070 99.3 9619 27,416 14961
Daccord 163313 0.140 0.079 0.061 99.5 8461 26,343 12440
Racon 168879 0.394 0.062 0.332 99.5 9914 28,428 10832
Canu 37779 0.551 0.090 0.461 99.1 13811 27,729 4066
CONSENT 176764 0.787 0.107 0.680 99.7 9708 27,638 9731
Microbial 10-plex metagenome

VeChat 245804 0.089 0.066 0.023 99.3 7837 17,51 1533
Racon 253817 0.297 0.160 0.137 97.8 8019 17,760 3724
Canu 193810 0.328 0.121 0.206 99.8 8477 17,824 1170
Daccord 254003 0.336 0.298 0.038 98.2 7704 17,342 2073
CONSENT 256935 0.495 0.107 0.388 100.0 8017 17,729 3470

error rate, whereas it achieves the second best performance on the
Nanopore data. In summary, VeChat still works for the ultra-high
sequencing coverage case, but is not necessarily very effective espe-
cially for ONT reads.

Varying sequencing error rates
In order to evaluate the effect of sequencing error rate on the different
methods, we again focused on the triploid genome consisting of three
E. coli strains as described above. Accordingly, we simulated PacBio
CLR reads at varying sequencing error rates, namely, at 5%, 10% and
15%. The average sequencing coverage per haplotype is 30x.
Supplementary Table 5 shows the corresponding bench-
marking results of error correction. Overall, VeChat achieves
approximately 10-93, 9-26 and 7-9 times lower error rates on
datasets with 5%, 10% and 15% errors, respectively, while main-
taining comparable performance in terms of other aspects. On
decreasing sequencing error rate (from 15% down to 5%), VeChat'’s
error correction undoubtedly improves with error rates dropping
from 0.091% to 0.009%.

Improving genome assembly

De novo genome assembly sticks out among the many possible
applications that depend on sequencing reads in two ways. First,
sequencing reads are its only input. Second, genome assembly seeks to
reconstruct the very sequences from which the reads stem. In other
words, arguably, de novo assembly is the primary application of gen-
ome sequencing.

It is therefore also of primary interest how correcting errors in
reads influences the quality of de novo genome assemblies that build
on the corrected reads.

To investigate related effects, we carried out some straightfor-
ward experiments, and ran (Hi)Canu'®*® and (meta)Flye®”, as the pre-
dominant long-read genome assemblers, with and without correcting
reads using VeChat before. We did this on the datasets described
earlier.

Before discussing results, note that the construction of pipelines
that are optimized in terms of combining error correction and genome
assembly approaches requires further investigation, which is beyond
the scope of this manuscript. Here, we report the quick application
“VeChat + Assembler” on various polyploid genome and metagenome
datasets.

See Supplementary Tables 6-9 for details on the following results.
We evaluated genome assemblies in terms of various relevant aspects,
again using Quast.

It becomes immediately evident that (Hi)Canu and (meta)Flye
profit from VeChat corrected reads considerably. On the vast majority
of datasets, greater haplotype coverage, longer contigs (NSO/NGAS0),
lower error rates (especially mismatch rates) and fewer misassemblies
are reported upon prior application of VeChat.

For example, in the diploid case (Supplementary Table 6), VeChat
+HiCanu increases haplotype coverage (HC) by 7.6% over Canu, from
92% to 99.6%, which also implies that VeChat+HiCanu supports to
reconstruct both haplotypes at nearly full length. N50/NGASO is about
10 times greater for VeChat+HiCanu. Also, VeChat+HiCanu yield fewer
number of misassemblies, and error rate is more than 90 times lower.
The substantial improvements of VeChat+HiCanu persist when raising
the ploidy. We note particularly that VeChat+HiCanu increase the
haplotype coverage by 14% in tetraploid genomes, at remarkably
enhanced alternative metrics as well. Moreover, VeChat+Flye sub-
stantially improves genome assemblies for the triploid and the tetra-
ploid case, compared with Flye alone. Overall, this points out that one
can use VeChat for substantially improving on polyploid genome
assembly quality when working with state-of-the-art assemblers for
long reads.

Runtime and memory usage evaluation

The runtime of VeChat is dominated by three steps: while the com-
putation of read overlaps (without base-level alignment) is fast, sub-
sequent edit-distance-based alignment (for segmenting windows) is
time-consuming. Second, the POA algorithm that drives the con-
struction of the variation graphs performs sequence-to-graph align-
ment, which comes at computational complexity of O(N2N,, +1)|V)),
where N is the length of the sequence to be aligned, N, is the average
number of predecessors in the graph and |V] is the number of vertices
in the graph®®. Third, VeChat follows an iterative paradigm, such as
read overlap computation (with base-level alignment) and error cor-
rection (consensus generation) steps during the second iteration; this
also requires a non-negligible amount of running time.

We performed most of benchmarking analyses on x86_64 GNU/
Linux machines using 48 cores. The runtime and peak memory usage
evaluations for different methods are reported in Supplementary
Tables 10-13. VeChat takes 23-81 CPU hours and 8-92 CPU hours on

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

simulated PacBio CLR and ONT reads from datasets reflecting varying
ploidy (2, 3 or 4, as usual), which is 1.1-6.2 and 0.6-6.9 times slower
than other methods. At the same time, it requires higher peak memory
usages (Supplementary Tables 10 and 11). VeChat is 2.4-7.1 times
slower than other approaches on the simulated metagenomic dataset,
and reaches higher peak memory usages (Supplementary Table 12).
Note that the high complexity metagenomic dataset is too large to be
processed by Racon and Daccord, whereas our approach is able to
handle it. In addition, VeChat is 0.7 ~ 32 times slower on real sequen-
cing datasets (mock communities), while requiring higher peak
memory usages (Supplementary Table 13).

Discussion

We have presented VeChat, as an approach that performs haplotype-
aware error correction for third-generation sequencing (TGS) reads.
To the best of our knowledge, VeChat is the first approach that
explicitly addresses to preserve haplotype-specific variation already
during the correction process. The methodical improvement over
prior approaches has been to make use of graph-based instead of
sequence-based reference systems, which avoids the typical consensus
sequence-induced biases.

Results have demonstrated the superiority of VeChat: in all
benchmarking scenarios, VeChat suppresses error rates by at least a
factor of 1-3, if not, as is the case for the majority of scenarios, sup-
pressing error rates by one or even two orders of magnitude in com-
parison with the leading competitive approaches. At the same time,
VeChat preserves the haplotype identity of the reads, which means
that after correction with VeChat, all reads contribute to the coverage
of the haplotype they stemmed from. The most obvious interpretation
of these results is that capturing haplotype structure already during
error correction is not just beneficial, but perhaps even imperative,
when seeking to remove all errors from TGS reads.

For appropriately capturing haplotype-specific variants during
the error correction step, we construct variation graphs from the noisy
TGS reads directly. Note that direct construction of variation graphs
from heavily erroneous reads is not standard. In fact, at first glance, it is
even counterintuitive, because the seminal idea of variation graphs is
to be constructed from true haplotype-specific, sufficiently long pat-
ches of sequence. Here, patches of sequence contain up to even 15% of
errors.

As a consequence, upon initial construction, the graphs contain a
large amount of nodes and edges that reflect sequencing errors. For
identifying spurious nodes and edges, one exploits that sequencing
errors are randomly distributed, whereas variants tend to re-occur
across different reads. In particular, edges that link spurious nodes
(with true nodes or other spurious nodes) tend to be little covered by
reads, because reads do not tend to share errors, whereas they do tend
to share true variation. To systematically identify spurious edges as
edges that are covered by too little reads, in a sound, principled way,
we adopt two metrics from frequent itemset mining. While Support
measures the relative coverage of edges in the graph, Confidence
measures the association between the two nodes incident to the edge
they share; if basic support or the association is too little, the edge and
possibly resulting isolated nodes are removed.

A particular effect of VeChat is to achieve substantial improve-
ments in terms of mismatch rates; improvements on indel rates are
also evident in all scenarios, but usually a bit less substantial. One
possible explanation is that substitution events, much more than
insertion and deletion events, dominate the evolutionary processes of
living organisms, and thus are often characteristic of strains or hap-
lotypes. VeChat appears to be the first approach to correctly preserve
these single nucleotide polymorphisms (SNPs), because the distinction
of haplotypes is just what variation graphs are made for. At any rate,
VeChat appears to prevent masking of true variants as a consequence
of generating consensus sequence.

Further, we have demonstrated that correcting reads using
VeChat prior to performing de novo genome assembly significantly
enhanced the resulting assemblies. Obviously, and unsurprisingly, not
mistaking haplotype specific variation as errors, and so preserving the
haplotype identity of the reads results in assemblies that are con-
siderably enhanced in terms of haplotype awareness. Particularly
notably, correcting reads with VeChat enabled the application of
HiCanu thereafter, as the best strategy evaluated here, which is inter-
esting because HiCanu crucially relies on clean reads. Nevertheless, the
exploration of optimal strategies and pipelines in terms of combining
preprocessing, error correction and core assembly tools, relative to
particular settings such as polyploid, cancer or metagenomes, still
requires further efforts, which are beyond the scope of this study.

As for future perspectives, the rapid development of long-read
sequencing technologies will lead to decreasing sequencing error
rates. However, because the advantages of VeChat become even more
evident when sequencing error rates drop, VeChat will also be a
superior tool when correcting long reads in which errors appear at a
rate of 5% or lower (see Supplementary Table 5).

Of course, future improvements are conceivable: in particular,
although not requiring excessive amounts, VeChat does not win the
competition in terms of computational resources. In particular on
large datasets, VeChat experiences longer runtimes and higher peak
memory usage. However, there is room for improving on that point.
VeChat uses off-the-shelf approaches in some places, without making
use of all features these off-the-shelf approaches provide. This
amounts to unnecessary overheads when running these tools, which
one can avoid by disintegrating approaches into their single func-
tionalities and running them separately. In particular, there is good
hope that computations such as edit-distance-based alignments, or the
sequence-to-graph alignments, can be replaced by more efficient
routines in the future.

Methods

Datasets

We made use of PBSIM2®, as a most recent tool to simulate PacBio CLR
and Oxford Nanopore reads using built-in p6Cc4 and R103 model-based
simulation profiles, respectively. Since the main application scenario
of VeChat is to correct long-read sequencing data from multiple gen-
omes, such as polyploid genomes and metagenomes, we simulated
various datasets for both cases.

We constructed pseudo diploid (ploidy =2, ANI: 98%), triploid
(ploidy =3, ANI: 96-98%) and tetraploid (ploidy=4, ANI: 96-99%)
genomes by mixing strains of Escherichia coli (E. coli) bacteria; note
that Average Nucleotide Identity (ANI) is defined to measure the
genome sequence similarity, which can be reported by FastANI*, for
example. All genome sequences of E. coli were downloaded from the
NCBI database (see Supplementary Data 1 for the details of reference
genomes). Reads were simulated from the haplotypes (i.e. strains)
independently and upon generation mixed together to form the cor-
responding polyploid genome datasets (ploidy = 2,3,4). We simulated
both PacBio CLR and Nanopore reads for these datasets, at average
sequencing coverage of 30x per haplotype and average sequencing
error rate of 10%.

Additionally, we used CAMISIM* to simulate two metagenomic
datasets (PacBio CLR reads) of different levels of complexity. Here, we
used PBSIM2 to simulate PacBio CLR reads instead of the built-in
simulator in CAMISIM. The low-complexity dataset consists of 10 spe-
cies (20 strains), whereas the high complexity dataset consists of
30 species (100 strains). The genomes used in both datasets are
derived from" (see Supplementary Data 1 for the details). For both
datasets, the average sequencing coverage of strains is about 30x and
the average sequencing error rate is 10%. The relative abundances of
strains range from 1.9% to 10.6% and from 0.28% to 3.3%, respectively.
The corresponding sequencing coverages over different strains range

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

from 12.6x to 68.0x and from 11.0x to 126.9%, respectively; see Sup-
plementary Data 2 for information on coverage of the individual
strains.

We constructed a pseudo-diploid genome by mixing two yeast
strains (N44, CBS432) of ANI 98.4%, which are derived from Yeast
Population Reference Panel (see Supplementary Data 3). The corre-
sponding real PacBio CLR reads were downloaded from European
Nucleotide Archive (ENA) under project PRJEB7245, and we sub-
sampled long reads to match a sequencing coverage of 30x per strain
for further analyses. This dataset we refer to as “Yeast pseudo-diploid
genome”.

We downloaded two real metagenomic datasets (PacBio CLR
reads) derived from natural whey starter cultures (NWCs)** and mixed
both together (see Supplementary Data 3), and then subsampled 20%
reads such that we obtained a low-complexity metagenomic dataset,
which contains 3 species (6 strains). This dataset we refer to “NWC
metagenome”.

We downloaded raw long-read sequencing data and the corre-
sponding reference genomes from a 10-plex multiplexed dataset
which was sequenced by PacBio Sequel System, Chemistry v3.0. Then,
we randomly subsampled 10% reads such that we obtained a mock
metagenomic dataset with an average sequencing coverage about
40x, which contains 7 species (9 strains in all, ANI < 98.5%, see Sup-
plementary Data 3). This dataset we refer to “Microbial 10-plex
metagenome”.

We downloaded the real whole genome sequencing data (Nano-
pore PromethION) of the human individual HGOO2 (diploid genome).
Subsequently, we performed quality control using fastp*® and ran-
domly subsampled 50% of the reads for further error correction. The
average sequencing coverage per haplotype is about 8x.

We downloaded Nanopore reads of a real human gut microbiome
sample from SRA database (accession number: SRR8427258) that was
presented in the previous study**. The corresponding Illumina reads of
the same sample (accession number: SRR6807561, SRR6788327) were
also provided in another study*. Therefore, we could use Illlumina
reads to evaluate correction performance without knowing the refer-
ence genomes (see below).

Step 1: Read overlap calculation

Step 1 refers to computation of all-vs-all overlaps for the input reads
(first cycle: raw reads, second cycle: pre-corrected reads) using the
(widely popular) minimizer based, long-read overlap computation tool
Minimap2®. During the first cycle, only a seed-chain procedure is
performed, while during the second cycle a base-level alignment is
added. Because this is very fast, it can manage the large amount of read
pairs we need to process easily. Subsequently, bad overlaps are filtered
by reasonable, additional criteria, which includes removing overlaps
that do not exceed 500 bp in length, self-overlaps, or internal matches.
In this, we follow Algorithm 5 in ref. 46 and its implementation in*.
Additionally, overlaps that have a high error rate, that is
[1 —min(L,,L,)/ max(L,L,)| 2 e, where L; and L, are the lengths of the
mapping in the query and the target reads, respectively, and e is the
maximum error-rate threshold, are also filtered out®.

While during the second cycle, the similar procedures(overlap
computation and filtration) are also performed but for pre-corrected
reads. Unlike in the first cycle, we compute pre-corrected read over-
laps with base-level alignment such that the sequence identity of
overlaps (overlap identity) can be determined, and then filter overlaps
with one more criterion, minimum overlap identity (denoted as 6,
6=0.99 for simulated sequencing data and §=0.98 for real sequen-
cing data). Notably, because most of sequencing errors have been
corrected in the first cycle, the sequence identity distribution referring
to read overlaps with reads from the same haplotype clearly differs
from the sequence identity distribution on read overlaps where the
two reads stem from different haplotypes. Therefore, it is

straightforward to filter overlaps that refer to reads from different
haplotypes: we filter out read overlaps of sequence identity < §, where
the threshold 6 is a parameter determined based on observations for
the error rate of corrected reads after the first cycle. For example, we
see that the error rate of corrected reads after the first cycle is basically
less than 0.5% for simulated data. Therefore, we could say the error
rate of read overlaps (assume two reads are from the same haplotype)
is less than 0.5% x 2 =1%, that is the overlap identity >6=1-1%=0.99.

Step 2: Read alignment pile generation

Our workflow then selects a target read r and, based on the overlaps
computed in step 1, collects reads that overlap r. The target read r
serves as a backbone, and for each overlap between read r and another
read, a fast edit-distance-based alignment*®*’ is then performed, which
generates a read alignment pile. The edit-distance-based alignment is
only needed to split the read alignment pile into small windows in step
3. Dangling ends of reads that overlap the target read r, indicated by
horizontal dotted lines in the original read alignment pile in Fig. 1, are
removed from further consideration in the following. See® for more
details.

Step 3: Window segmentation

The read alignment pile is then divided into several small non-
overlapping windows of identical length, with the target read serving
as a reference: each such window covers 500 bp of the target read.
Obviously, segmenting the read alignment pile reflects a straightfor-
ward procedure, because of the pairwise alignments of the target read
with its overlapping reads served as the basis for read alignment pile
construction, see Step 2°. The part of the target read r corresponding
with one particular window is further referred to as a ‘target subread’.
This implies in particular that target subreads are 500 bp in length,
apart from the rightmost window, where target subreads can be
shorter.

The reason for segmenting the alignment piles into windows of
small length is the great reduction in terms of computational burden in
the following: the next step 4, as the technical core of our approach
being concerned with variation graphs, greatly profits from this seg-
mentation, both in terms of downsizing the original problem as well as
in terms of enabling parallelization.

Step 4: Error correction for target subreads

Step 4 reflects the methodical novelty of VeChat. Step 4 differs when
comparing the first with the second cycle, see Fig. 2 for the first and
Fig. 3 for the second cycle. Step 4 of the first cycle is considerably more
involved, because it reflects the crucial statistical considerations
through which to identify sequencing errors. The core idea that
underlies these crucial statistical considerations is that true variants
are significantly likely to co-occur across different reads, whereas
occurrence of errors is random. Correspondingly, the following argu-
ments make sense.

Thanks to dividing reads into subreads, the corresponding com-
putations, such as variation graph construction and statistical evalua-
tion of edges relative to read coverage, can be parallelized across
subreads, which speeds up computations substantially.

Variation graph construction. The subsequences in a window we refer
to as subreads, are subsequently used to construct a variation graph
G=(V,E, P). This variation graph is a directed acyclic graph (DAG),
where vertices v € Vrepresent nucleotides (A, T, C, G), edges (v, v)) € E
indicate that the nucleotides represented by nodes v; and v; have
appeared as a two-letter subsequence in one of the reads from which
the graph was constructed, relative to that particular position with
respect to the read alignment pile. So, for example, if v; and v; corre-
spond to A and G, respectively, exactly the reads that relative to the
coordinates implied by the target read show AG at that particular

Nature Communications | (2022)13:6657

https://yjx1217.github.io/Yeast_PacBio_2016/data/
https://yjx1217.github.io/Yeast_PacBio_2016/data/
https://www.ebi.ac.uk/ena/browser/view/PRJEB7245
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8427258

Article

https://doi.org/10.1038/s41467-022-34381-8

position induce an edge (v;, v). Correspondingly, reads can be identi-
fied as certain paths P= (v, ..., v) in the variation graph. For variation
graph construction, we use the partial order alignment (POA)
algorithm®® and its faster version, enhanced by SIMD vectorization, as
described in®.

Pruning: Principle. In the following, we will use the notation v € V to
also indicate the letter from the alphabet {4, C, G, T} a particular node v
refers to, recalling that each node corresponds to exactly one
nucleotide in the variation graphs we work with in the following.

The high error rate affecting TGS reads and the possible bias
introduced by constructing the graph (because, for example, the order
relative to which reads are considered has an influence), the variation
graph constructed in the first cycle contains many spurious vertices
and edges. For pruning the graph from mistaken edges and/or nodes
(vertices), we adopt techniques from frequent itemset mining. The
basic idea is to identify edges with itemsets, and to prune edges from
the graph if the corresponding itemsets do not appear to be suffi-
ciently frequent. After removal of edges, reads are realigned against
the resulting graph, such that itemset counts have to be re-computed.
This may render more edges to correspond to itemsets that are not
sufficiently frequent. The cycle of identifying edges as infrequent
itemsets, removing them, and re-aligning reads is repeated until con-
vergence, that is, until no further edges are identified as spurious. In
practice, we determined 3 as an appropriate number of iterations for
our experiments. Note that for re-aligning reads against the modified
graph, we make use of the POA algorithm, without, however, re-
modifying the graph anymore.

The model that underlies the mining of frequent itemsets is the
“market-basket model”. Baskets correspond to sets of items, and fre-
quent itemsets correspond to subsets of items that appear in suffi-
ciently many baskets, or, vice versa, infrequent itemsets correspond to
subsets of items that do not appear in sufficiently many baskets.

Following this model, the basic set of items agrees with the set of
nodes V in the variation graph. Baskets then correspond to reads,
which are modeled as paths P= (v, ..., 1)), and the items they contain
correspond to the nodes v, ...,v;€ V the reads cover. Further, the
itemsets we are interested in correspond to edges e = (v, w), as pairs of
items v, w. If two nodes v, w that are connected by an edge e = (v, w), as
particular subsets of items, do not appear in sufficiently many baskets,
that is, the corresponding edge e = (v, w) is not contained in sufficiently
many read induced paths P, the corresponding edge is removed from
the graph.

For appropriately quantifying “sufficiently many baskets”, we
make further use of Support and Confidence as two standard defini-
tions from frequent itemset mining. “Support” just corresponds to the
number of baskets a particular subset of items is contained in. Here,
Support just agrees with the number of reads by which a particular
edge e=(v,w) is covered. “Confidence”, on the other hand, corre-
sponds to measuring whether appearance of items in a basket is cor-
related with other items appearing in that basket. Here, Confidence
corresponds to the amount of reads that cover the edge (v, w) in
relation to how many reads cover v, on the one hand, and in relation to
how many reads cover w, on the other hand. If neither sufficiently
many reads that cover v also cover (v, w), nor sufficiently many reads
that cover w also cover (v, w), we “loose confidence” in e= (v, w),
because the edge (v, w) could reflect sequencing error noise.

Pruning: definitions. To make the ideas from above explicit, let R(v) be
all reads that cover node v. For r€ R(v), let further p,, reflect the
probability that v reflects an error in r. When dealing with FASTQ files,
the probability p,, is derived from the Phred profile of r. In case of
FASTA files, p,, is taken as zero.

We now would like to determine w(v), as a weight for node v that
reflects the expected number of reads that cover it. Note that for

, vk € P(vj)

w(vg, vj)

Vi € S(UZ')

Fig. 4 | A schematic diagram for explaining the calculation of Support and
Confidence for edge (v;, v). w(v; v)) is the approximation for the expected amount
of reads that cover edge (v;, v)). S(v;) and P(v)) denote the vertices that succeed v;
and precede v;, respectively. In this directed graph, v;,v;, are the successors of v;,
whereas v;, vy are the predecessors of v;.

FASTA files, w(v) just agrees with the number of reads that cover v. For
FASTQ files, w(v) corresponds to summing up 1-p,, across all reads
r € R(v), as the sum of the probabilities that the reads r € R(v) indeed
reflect the letter associated with v. In terms of formulas, we obtain

> rerwyl for FASTA files
w): =

for FASTQ files @

erR(u)1 - pr,u
For an edge e=(v; v), let R(v;,) be all reads that cover edge e.
We further determine

1
we)=ww,v) : =5 > ww) +ww))

reR(vi,vj)

as an approximation for the expected amount of reads that cover
e= (v, v). Note that w(e) corresponds to exactly the amount of reads
that cover e for FASTA files. For FASTQ files, the expected amount of
reads that cover (v; v)) virtually corresponds to the sum of products
(1 - pr,u[)(]- - pr,uj) =1- pr,u; - pr,vj +pr,v,-pr,uj (*) across r & R(Ui) n R(l{l)'
Here, for speeding up computations, we opt for approximating (*) by
1= 3Pry, = 3Pry,» Which reflects (2). Since this agrees with (*) in terms
of orders of magnitude, this introduces only negligible deviations from
the true values; experiments of ours confirmed that the gain in speed
offset the loss in precision on that account.

Based on these weights, we now define the two metrics Support
and Confidence. See also Fig. 4 for an illustration of the relevant defi-
nitions. In formal detail, let e= (v;, v)) be an edge. Let then Support of e
be defined as

Support(e) : =w(e) 3)

that is, just as the weight of e. Further, note that Confidence is an
asymmetrical measure: the probability to observe v; in a read that
contains v; may disagree with the probability to observe v; in a read
that contains v;. We take this into account by defining

w;,v;
Confidence (v;,v;) : = Confidence (v; — {v;v;}) : = %
Vg €S(v;) Yk
4)
on the one hand, and
_ _ w;,v;)
Confidence (v;,v;) : = Confidence (v; — {v;,v;}) : = NI
vkePw))]
5)

on the other hand, where S(v;) and P(v;) denote the vertices that suc-
ceed v; and precede v;, respectively (and where v;> {v;, v} and v;~>{

Nature Communications | (2022)13:6657

Article

https://doi.org/10.1038/s41467-022-34381-8

v;, v} agree with standard notation from association rule mining). We
eventually declare

Confidence (e) : = max{Confidence (v;,1;), Confidence (v;,0;)} (6)

as the overall Confidence in e= (v; v)).

It remains to determine appropriate thresholds s and ¢, such that
edges e for which either Support(e) < s or Confidence(e) < c are pruned
from the graph. Note that by its definition, Confidence reflects the
probability that a read that covers v; also covers v;, or vice versa. We
determined c = 0.2 as an appropriate threshold in experiments; see the
Supplementary Figure 1 for the corresponding outcome.

Support, however, does not reflect a probability. Depending on
the overall amount of reads in a subwindow, and the length of a sub-
window—that is virtually depending on the average read coverage of a
subwindow—the Support needs to be appropriately scaled. Therefore,
consider that C:= Y, w(v)/L is the average coverage of a position in
the subwindow. Accordingly, we determine s:=0.2 x C as a threshold
that takes subwindow specific coverage into appropriate account.

Note eventually that both Support and Confidence are required
for effective pruning of the graph, see Supplementary Figure 2 for the
correlation between the two quantities.

Optimal alignment path extraction. Upon convergence of the prun-
ing algorithm, the target subread that corresponds to a small window
is realigned against the fully pruned variation graph that results from
the last iteration of the pruning algorithm. The path in the graph that
corresponds to the optimal alignment of the target subread is then
taken as the pre-corrected target subread; see the orange elements in
Fig. 2 for an illustration.

Step 5: Concatenation

In this step, pre-corrected target subreads are concatenated to a
whole, pre-corrected target read, which corresponds to the obvious,
straightforward idea of “patching together” pre-corrected target sub-
reads; see “5. Concatenation” in Fig. 1 for an illustration.

Step 6: Merging corrected target reads

Steps 2-5 are repeated until all reads have been corrected. Step 6 then
reflects a simple operation: the overall set of pre-corrected reads that
result from the repeated execution of steps 2-5 steps are merged and
taken as input for the second cycle.

Second cycle: Modifications Step 1 and 4

Note that the pre-corrected reads generated by way of cycle 1 still
contain a small, but yet non-negligible amount of random errors (see
Supplementary Table 14). Cycle 2 addresses to correct these remaining
errors. To do so, steps 1-6 are repeated with, however, some crucial
modifications in steps 1 and 4. See the blue elements in Fig. 1 for the
workflow that reflects the procedures of cycle 2. To be specific, the
modification of step 1 consists in not only computing all-vs-all overlaps
based on minimizers, but also base-level alignments® for the pre-
corrected reads. This considerably facilitates to filter reads overlaps
according to which they stem from identical haplotypes, based on
sequence identity related thresholds. We use §=0.99 for sequencing
error rates of 5-10% and 6 = 0.98 for a sequencing error rate of 15% in
our experiments, which we also generally recommend.

The modification of step 4 then relates to generating a single
sequence from each variation graph, instead of performing iterative
graph pruning and sequence-to-graph re-alignment. For that,
the dynamic programming algorithm referred to as “heaviest bundle
algorithm” in ref. 31, as indicated in Fig. 3 is used. Note that generating
a single sequence from each of the local variation graphs is reasonable
in the second cycle, because the overlapping reads used to correct the
target read can already be assumed to stem from the same haplotype.

Finally, we obtain fully error-corrected reads as the output of the
second cycle; see “All final corrected reads (cycle2)” in Fig. 1.

Benchmarking: alternative approaches

To enable a fair and meaningful comparison, we considered all popular
state-of-the-art tools that perform TGS read self-correction. Namely,
this selection includes Racon (v1.4.13)", CONSENT (v2.2.2)*°, Canu
(v2.1.1)"* and Daccord (v0.0.18). We ran all tools using their default
parameters (command details are provided in the Supplementary
Methods).

Apart from just evaluating error correction, we were also inter-
ested in the effects when using the corrected reads for genome
assembly, as the prior, canonical area of application for corrected
reads. Therefore, we considered Canu (v2.1.1) and (meta)Flye (v2.8.2),
which can perform haplotype-aware assembly or metagenome
assembly, as well-known assemblers, with or without prior error cor-
rection by VeChat. Also, because the corrected reads have error rates
of less than 1%, one can run HiCanu (Canu in HiFi mode, which applies
for the given error rates) on the reads, which we included into our
considerations.

Metrics for evaluation

We evaluated genome assembly performance by means of several
commonly used metrics, as reported by QUAST V5.1.0°. See below for
specific explanations, and see http://quast.sourceforge.net/docs/
manual.htmlifor full details. Note that the principled qualities of
error-corrected long reads are covered by standard QUAST criteria as
well; for example, low haplotype coverage reflects that true variants
were mistakenly identified as errors, while error rates and mis-
assembilies reflect that the correction procedure overlooked errors, or
even confounded reads in terms of their origin through mistaken
correction. As usual, corrected reads and contigs of length less than
500 bp were filtered from the output before evaluation. Note that we
ran QUAST with the option —ambiguity-usage one, which appro-
priately takes into account that our datasets reflect mixed samples
(such as polyploid genomes or metagenomes). In addition, for evalu-
ating the real human genome (HG002) and human gut microbiome
data, there is no ground truth of the reference genomes. Hence, we
applied Merqury* to evaluate results based on auxiliary Illumina
sequencing reads, in a reference-free manner.

Error rate (ER). The error rate is equal to the sum of mismatch rate
and indel rate when mapping the obtained corrected reads or contigs
to the reference haplotype sequences. When reference genomes are
unknown, consensus quality value (QV) and switch error rate reported
from Merqury are used as alternative metrics of approved
usefulness***2, Note that the QV metric mainly reflects the base
quality but does not consider long-range switch errors because it relies
on short k-mer strategies (k = 21 by default).

Haplotype coverage (HC). Haplotype coverage is the percentage
of aligned bases in the ground truth haplotypes covered by corrected
reads or contigs, which is used to measure the completeness of the
assembled contigs or the corrected reads. The k-mer completeness
from Merqury is also used as an alternative metric when performing
reference-free evaluation.

N50 and NGAS0. N50 is defined as the length for which the col-
lection of all corrected reads/contigs of that length or longer covers at
least half the given sequences. NGA50 is similar to N50 but can only be
calculated when the reference genome is provided. NGAS5O0 only con-
siders the aligned blocks (after breaking reads/contigs at misassembly
events and trimming all unaligned nucleotides), which is defined as the
length for which the overall size of all aligned blocks of this length or
longer equals at least half of the reference haplotypes. Both N50 and
NGAS50 are used to assess the length distribution of corrected reads
and the contiguity of the assemblies. Note that this may be of relatively
little interest for corrected reads. We nevertheless display

Nature Communications | (2022)13:6657

10

http://quast.sourceforge.net/docs/manual.html
http://quast.sourceforge.net/docs/manual.html

Article

https://doi.org/10.1038/s41467-022-34381-8

corresponding results because error correction does have an influence
on these statistics.

Number of misassemblies (#Misassemblies). The misassembly
event in corrected reads or assemblies indicates that left and right
flanking sequences align to the true haplotypes with a gap or overlap of
more than 1kbp, or align to different strands, or even align to different
haplotypes or strains. Here, we report the total number of mis-
assemblies in the given sequence data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The authors declare that all of the datasets used in this paper are
publicly available. The simulated and real (including Yeast pseudo-
diploid genome and NWC metagenome data) long-read raw sequen-
cing data used for benchmarking experiments are publicly available in
Zenodo under 10.5281/zenodo.5501454 (https://doi.org/10.5281/
zenodo.5501455). The real sequencing data of Microbial 10-plex
metagenome was downloaded from https://downloads.pacbcloud.
com/public/dataset/microbial multiplex_dataset_release SMRT _Link_
v6.0.0_with_Express_2.0/. The real whole genome sequencing data of
human individual HGOO2 (diploid genome) was downloaded from
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_
UCSC_panel/HG002/hpp_HG002_NA24385_son_vl/nanopore/
downsampled/standard_unsheared/HG002_ucsc_Jan 2019 _Guppy _3.4.
4.fastq.gz. The Nanopore reads* of the real human gut microbiome
sample were downloaded from SRA database under accession number:
SRR8427258 (https://www.ncbi.nlm.nih.gov/sra/?term=SRR8427258),
and the corresponding Illumina reads of the same sample* were from
accession numbers (https://www.ncbi.nlm.nih.gov/sra/SRX3765823):
SRR6807561, SRR6788327. Genome descriptions of simulated
sequencing datasets are shown in Supplementary Data 1. Sequencing
coverage information is shown in Supplementary Data 2. Genome
descriptions of real sequencing datasets are shown in Supplementary
Data 3. Raw data for drawing Supplementary Fig. 1 and 2 are provided
with this paper and are available in Zenodo under 10.5281/
zenodo.7239028 (https://doi.org/10.5281/zenodo.7239028).

Code availability

The source code of VeChat is GPL-3.0 licensed, and publicly available
at https://github.com/HaploKit/vechat. The results presented in this
study can be reproduced from Code Ocean under DOI: 10.24433/
C0.2329278.v2 (https://codeocean.com/capsule/7010505/tree/v2)*.

References

1. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human
genome sequencing and its applications. Nat. Rev. Genet. 21,
597-614 (2020).

2. Schrinner, S. D. et al. Haplotype threading: accurate polyploid
phasing from long reads. Genome Biol. 21, 1-22 (2020).

3. Jain, M. et al. Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nat. Biotechnol. 36, 338-345
(2018).

4. Ruan, J. &Li, H. Fast and accurate long-read assembly with wtdbg2.
Nat. Methods 17, 155-158 (2020).

5. Shafin, K. et al. Nanopore sequencing and the shasta toolkit enable
efficient de novo assembly of eleven human genomes. Nat. Bio-
technol. 38, 1044-1053 (2020).

6. Kolmogorov, M. et al. metaflye: scalable long-read metagenome
assembly using repeat graphs. Nat. Methods 17, 1103-1110 (2020).

7. Miga, K. H. et al. Telomere-to-telomere assembly of a complete
human x chromosome. Nature 585, 79-84 (2020).

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Edge, P. & Bansal, V. Longshot enables accurate variant calling in
diploid genomes from single-molecule long read sequencing. Nat.
Commun. 10, 1-10 (2019).

Thibodeau, M. L. et al. Improved structural variant interpretation for
hereditary cancer susceptibility using long-read sequencing.
Genetics Med. 22, 1892-1897 (2020).

Fujimoto, A. et al. Whole-genome sequencing with long reads
reveals complex structure and origin of structural variation in
human genetic variations and somatic mutations in cancer. Gen-
ome Med. 13, 1-15 (2021).

Hackl, T., Hedrich, R., Schultz, J. & Forster, F. proovread: large-scale
high-accuracy pacbio correction through iterative short read con-
sensus. Bioinformatics 30, 3004-3011 (2014).

Salmela, L. & Rivals, E. Lordec: accurate and efficient long read
error correction. Bioinformatics 30, 3506-3514 (2014).

Firtina, C., Bar-Joseph, Z., Alkan, C. & Cicek, A. E. Hercules: a profile
hmm-based hybrid error correction algorithm for long reads.
Nucleic Acids Res. 46, €125-e125 (2018).

Morisse, P., Lecroqg, T. & Lefebvre, A. Hybrid correction of highly
noisy long reads using a variable-order de bruijn graph. Bioinfor-
matics 34, 4213-4222 (2018).

Vaser, R., Sovi¢, ., Nagarajan, N. & Siki¢, M. Fast and accurate de
novo genome assembly from long uncorrected reads. Genome Res.
27, 737-746 (2017).

Koren, S. et al. Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation. Genome Res. 27,
722-736 (2017).

Bao, E., Xie, F., Song, C. & Song, D. Flas: fast and high-throughput
algorithm for pacbio long-read self-correction. Bioinformatics 35,
3953-3960 (2019).

Tischler, G. & Myers, E. W. Non hybrid long read consensus using
local de bruijn graph assembly. Preprint at bioRxiv https://doi.org/
10.1101/106252 (2017).

Salmela, L., Walve, R., Rivals, E. & Ukkonen, E. Accurate self-
correction of errors in long reads using de bruijn graphs. Bioinfor-
matics 33, 799-806 (2017).

Morisse, P., Marchet, C., Limasset, A., Lecroq, T. & Lefebvre, A.
Scalable long read self-correction and assembly polishing with
multiple sequence alignment. Scientific reports 11, 1-13 (2021).
Luo, X., Kang, X. & Schénhuth, A. phasebook: haplotype-aware de
novo assembly of diploid genomes from long reads. Genome Biol.
22, 299 (2021).

Paten, B., Novak, A. M., Eizenga, J. M. & Garrison, E. Genome graphs
and the evolution of genome inference. Genome Res. 217,
665-676 (2017).

Garrison, E. et al. Variation graph toolkit improves read mapping by
representing genetic variation in the reference. Nat. Biotechnol. 36,
875-879 (2018).

Martiniano, R., Garrison, E., Jones, E. R., Manica, A. & Durbin, R.
Removing reference bias and improving indel calling in ancient dna
data analysis by mapping to a sequence variation graph. Genome
Biol. 21, 1-18 (2020).

Sirén, J. et al. Pangenomics enables genotyping of known structural
variants in 5202 diverse genomes. Science 374, abg8871 (2021).
Rosen, Y., Eizenga, J. & Paten, B. Modelling haplotypes with respect
to reference cohort variation graphs. Bioinformatics 33,

i118-i123 (2017).

Baaijens, J. A., Van der Roest, B., Koster, J., Stougie, L. & Schonhuth,
A. Full-length de novo viral quasispecies assembly through varia-
tion graph construction. Bioinformatics 35, 5086-5094 (2019).
Baaijens, J. A., Stougie, L. & Schonhuth, A. Strain-aware assembly of
genomes from mixed samples using flow variation graphs. In Proc
International Conference on Research in Computational Molecular
Biology, 221-222 (Springer, 2020).

Nature Communications | (2022)13:6657

https://doi.org/10.5281/zenodo.5501455
https://doi.org/10.5281/zenodo.5501455
https://downloads.pacbcloud.com/public/dataset/microbial_multiplex_dataset_release_SMRT_Link_v6.0.0_with_Express_2.0/
https://downloads.pacbcloud.com/public/dataset/microbial_multiplex_dataset_release_SMRT_Link_v6.0.0_with_Express_2.0/
https://downloads.pacbcloud.com/public/dataset/microbial_multiplex_dataset_release_SMRT_Link_v6.0.0_with_Express_2.0/
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/HG002_ucsc_Jan_2019_Guppy_3.4.4.fastq.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/HG002_ucsc_Jan_2019_Guppy_3.4.4.fastq.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/HG002_ucsc_Jan_2019_Guppy_3.4.4.fastq.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/HG002_ucsc_Jan_2019_Guppy_3.4.4.fastq.gz
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8427258
https://www.ncbi.nlm.nih.gov/sra/SRX3765823
https://doi.org/10.5281/zenodo.7239028
https://github.com/HaploKit/vechat
https://codeocean.com/capsule/7010505/tree/v2
https://doi.org/10.1101/106252
https://doi.org/10.1101/106252

Article

https://doi.org/10.1038/s41467-022-34381-8

29. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094-3100 (2018).

30. Lee, C., Grasso, C. & Sharlow, M. F. Multiple sequence alignment
using partial order graphs. Bioinformatics 18, 452-464 (2002).

31. Lee, C. Generating consensus sequences from partial order multi-
ple sequence alignment graphs. Bioinformatics 19,

999-1008 (2003).

32. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury:
reference-free quality, completeness, and phasing assessment for
genome assemblies. Genome Biol. 21, 1-27 (2020).

33. Giallonardo, F. D. et al. Full-length haplotype reconstruction to infer
the structure of heterogeneous virus populations. Nucleic Acids
Res. 42, e115-€115 (2014).

34. Baaijens, J. A., El Aabidine, A. Z., Rivals, E. & Schonhuth, A. De novo
assembly of viral quasispecies using overlap graphs. Genome Res.
27, 835-848 (2017).

35. Luo, X., Kang, X. & Schonhuth, A. Strainline: full-length de novo viral
haplotype reconstruction from noisy long reads. Genome Biol. 23,
1-27 (2022).

36. Nurk, S. et al. Hicanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads. Genome
Res. 30, 1291-1305 (2020).

37. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long,
error-prone reads using repeat graphs. Nat. Biotechnol. 37,
540-546 (2019).

38. Ono, Y., Asai, K. & Hamada, M. Pbsim2: a simulator for long-read
sequencers with a novel generative model of quality scores.
Bioinformatics 37, 589-595 (2021).

39. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. &
Aluru, S. High throughput ani analysis of 90k prokaryotic genomes
reveals clear species boundaries. Nat. Commun. 9, 1-8 (2018).

40. Fritz, A. et al. Camisim: simulating metagenomes and microbial
communities. Microbiome 7, 1-12 (2019).

41. Quince, C. et al. Desman: a new tool for de novo extraction of strains
from metagenomes. Genome Biol. 18, 1-22 (2017).

42. Somerville, V. et al. Long-read based de novo assembly of low-
complexity metagenome samples results in finished genomes and
reveals insights into strain diversity and an active phage system.
BMC Microbiol. 19, 1-18 (2019).

43. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one
fastq preprocessor. Bioinformatics 34, i884-i890 (2018).

44. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial
genomes from microbiomes using nanopore sequencing. Nat.
Biotechnol. 38, 701-707 (2020).

45. Bishara, A. et al. High-quality genome sequences of uncultured
microbes by assembly of read clouds. Nat. Biotechnol. 36,
1067-1075 (2018).

46. Li, H. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 32, 2103-2110 (2016).

47. Marijon, P., Chikhi, R. & Varré, J.-S. yacrd and fpa: upstream tools for
long-read genome assembly. Bioinformatics 36,

3894-3896 (2020).

48. Myers, G. A fast bit-vector algorithm for approximate string
matching based on dynamic programming. J. ACM 46,

395-415 (1999).

49. Sosié, M. & Siki¢, M. Edlib: a c/c++ library for fast, exact sequence
alignment using edit distance. Bioinformatics 33, 1394-1395
(2017).

50. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A.
Versatile genome assembly evaluation with quast-lg. Bioinformatics
34, i142-i150 (2018).

51. Rhie, A. et al. Towards complete and error-free genome assemblies
of all vertebrate species. Nature 592, 737-746 (2021).

52. Luo, X., Kang, X. & Schoénhuth, A. Enhancing long-read-based
strain-aware metagenome assembly. Front. Genet. 13
868280 (2022).

53. Luo, X., Kang, X. & Schonhuth, A. Raw sequencing data used in
benchmarking result. Zenodo. https://doi.org/10.5281/zenodo.
5501455 (2021).

54. Luo, X., Kang, X. & Schonhuth, A. Code and environment for
reproducing results. Code Ocean. https://doi.org/10.24433/CO.
2329278.v2 (2021).

Acknowledgements

X.L. and X.K. were supported by the Chinese Scholarship Council. A.S.
was supported by the Dutch Scientific Organization, through Vidi grant
639.072.309 during the early stages of the project, and from the Eur-
opean Union’s Horizon 2020 research and innovation program under
Marie Sktodowska-Curie grant agreements No 956229 (ALPACA) and No
872539 (PANGAIA).

Author contributions
X.L.and A.S. developed the method. X.L. implemented the software and
conducted the data analysis. X.K. simulated the metagenomic datasets.
X.L. and A.S. wrote the manuscript. All authors read and approved the
final version of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34381-8.

Correspondence and requests for materials should be addressed to
Alexander Schoénhuth.

Peer review information Nature Communications thanks Erik Garrison
and Leena Salmela for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Nature Communications | (2022)13:6657

12

https://doi.org/10.5281/zenodo.5501455
https://doi.org/10.5281/zenodo.5501455
https://doi.org/10.24433/CO.2329278.v2
https://doi.org/10.24433/CO.2329278.v2
https://doi.org/10.1038/s41467-022-34381-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	VeChat: correcting errors in long reads using variation graphs
	Results
	Workflow
	Benchmarking results
	Varying read coverage
	Varying sequencing error rates
	Improving genome assembly
	Runtime and memory usage evaluation

	Discussion
	Methods
	Datasets
	Step 1: Read overlap calculation
	Step 2: Read alignment pile generation
	Step 3: Window segmentation
	Step 4: Error correction for target subreads
	Variation graph construction
	Pruning: Principle
	Pruning: definitions
	Optimal alignment path extraction
	Step 5: Concatenation
	Step 6: Merging corrected target reads
	Second cycle: Modifications Step 1 and 4
	Benchmarking: alternative approaches
	Metrics for evaluation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

