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The metabolic network model of primed/
naive human embryonic stem cells underlines 
the importance of oxidation‑reduction 
potential and tryptophan metabolism in primed 
pluripotency
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Abstract 

Background:  Pluripotency is proposed to exist in two different stages: Naive and Primed. Conventional human 
pluripotent cells are essentially in the primed stage. In recent years, several protocols have claimed to generate naive 
human embryonic stem cells (hESCs). To the best of our knowledge, none of these protocols is currently recognized 
as the gold standard method. Furthermore, the consistency of the resulting cells from these diverse protocols at the 
molecular level is yet to be shown. Additionally, little is known about the principles that govern the metabolic differ‑
ences between naive and primed pluripotency. In this work, using a computational approach, we tried to shed light 
on these basic issues.

Results:  We showed that, after batch effect removal, the transcriptome data of eight different protocols which 
supposedly produce naive hESCs are clustered consistently when compared to the primed ones. Next, by integrat‑
ing transcriptomes of all hESCs obtained by these protocols, we reconstructed p-hESCNet and n-hESCNet, the first 
metabolic network models representing hESCs. By exploiting reporter metabolite analysis we showed that the status 
of NAD+ and the metabolites involved in the TCA cycle are significantly altered between naive and primed hESCs. 
Furthermore, using flux variability analysis (FVA), the models showed that the kynurenine-mediated metabolism of 
tryptophan is remarkably downregulated in naive human pluripotent cells.

Conclusion:  The aim of the present paper is twofold. Firstly, our findings confirm the applicability of all these pro‑
tocols for generating naive hESCs, due to their consistency at the transcriptome level. Secondly, we showed that in 
silico metabolic models of hESCs can be used to simulate the metabolic states of naive and primed pluripotency. 
Our models confirmed the OXPHOS activation in naive cells and showed that oxidation-reduction potential vary 
between naive and primed cells. Tryptophan metabolism is also outlined as a key pathway in primed pluripotency 
and the models suggest that decrements in the activity of this pathway might be an appropriate marker for naive 
pluripotency.

Keywords:  Systems biology, Human embryonic stem cells, Tryptophan metabolism, Kynurenine metabolism, 
Genome-scale metabolic networks
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Background
Naive and primed pluripotent stem cells
Pluripotent stem cells are characterized by their self-
renewal ability and their capacity to differentiate 
towards all three germ layers, namely ectoderm, mes-
oderm and endoderm [1]. Human pluripotent cells, 
whether isolated from blastocysts or reprogrammed 
from somatic cells, display distinguishable character-
istics in comparison to mouse embryonic stem cells 
(mESCs). That is, they form flattened colonies, depend 
on FGF2 signaling in their culture media and are sus-
ceptible to single-cell trypsin passages [2]. It has also 
been shown that at the molecular level, there are major 
distinctions between the two cells, such as the activity 
of OCT4 enhancers and the status of X-chromosome 
inactivation [3, 4]. After the discovery of mouse epi-
blast stem cells, or mEpiSCs, which are pluripotent cells 
from mouse epiblast with high similarity to hESCs, it 
became clear that there are two distinct stages in pluri-
potency [5]. More specifically, cells like mEpiSCs and 
hESCs were proposed to be in the “primed” stage of 
pluripotency, while mESCs were in an earlier stage of 
development called the “naive” state [6].

Derivation of a naive-like hESC was reported in 2010 
by Hanna et al. [7] for the first time. Since then, several 
groups have worked on developing more efficient pro-
tocols to produce cells which better resemble the naive 
state, both from embryonic stem cells and induced 
pluripotent stem cells (iPSCs) [8–12]. Whilst the initial 
protocols made efforts to convert conventional primed 
hESCs to naive cells, later attempts concentrated on 
deriving naive hESCs directly from blastocysts [13, 14] 
(Table  1). Recently, to compare the outcome of differ-
ent proposed protocols for converting primed to naive 
hESCs, Warrier et  al. [15] cultured the same cell lines 
under conditions suggested by three different proto-
cols and sequenced their transcriptomes. They showed 
that these naive-like cells are more similar to each other 
compared to their primed counterparts.

Metabolism in naive and primed pluripotency has been 
investigated in mice. It was shown that EpiSCs almost 
exclusively rely on glycolysis, while mESCs are biva-
lent in their energy production, as they use both glyco-
lysis and OXPHOS pathways [16]. Conventional primed 
hESCs and human iPSCs, like EpiSCs, have been shown 
to be essentially glycolytic [16, 17]. However, to the best 
of our knowledge, the metabolic states of human naive 
cells generated by each of the aforementioned protocols 
have not been studied comprehensively. Takashima et al. 
[12] investigated the metabolism of naive-like cells gen-
erated by their protocol. They showed that these cells, 
similar to mESCs, utilize OXPHOS along with glycolysis. 
They also showed that mitochondrial enzymes become 
activated in their naive-like cells. Later, Sperber et al. [18] 
showed that human naive cells also have greater oxygen 
consumption rate (OCR) than their primed counterpart. 
This shift in energy metabolism is suggested to affect the 
regulation of the epigenetic machinery, which in turn, is 
involved in the programming of the naive and primed 
pluripotency states [18, 19].

A systems biology approach to the metabolism of naive 
and primed stem cells
A genome-scale metabolic network model (GEM) is 
a network of metabolites that are linked by poten-
tial reactions of cellular metabolism. Such a model is 
shown to be able to accurately predict metabolic phe-
notypes in silico [20]. Since the emergence of GEMs in 
the early 2000s, constraint-based modeling of metabo-
lism using GEMs has been a powerful tool to study and 
predict cell metabolic behavior upon modifications 
and changes [21]. Using GEMs, one can quantitatively 
predict fluxes running through each reaction and path-
way of a cell [22], especially in unicellular organisms. 
The first human GEM, Recon 1, was reconstructed in 
2007, which included all known reactions and metabo-
lites over all human tissues [23]. Contrary to unicellular 
organisms, each cell type in the human body employs 

Table 1  A comparison of protocols proposed to produce naive hESC

Protocol Year Origin Growth factors Inhibitors Transgene expression

Hanna 2010 Primed hESC TGFβ - LIF, BMP4 MEKi, GSKi, JNKi, P38i, PKCi, ROCKi OCT4, SOX2, KLF4, KLF2

Gafni 2013 Primed hESC bFGF, TGFβ , LIF MEKi, GSKi, FGFi, JAKi, ALKi, ROCKi –

Ware 2014 Primed hESC bFGF MEKi, GSKi –

Theunissen 2014 ICM Activin, LIF MEKi, GSKi, ROCKi, BRAFi, SRCi KLF2, NANOG

Takashima 2014 Primed hESC bFGF, LIF MEKi, GSKi, PKCi –

Valamehr 2014 Fibroblast (iPSC) bFGF MEKi, GSKi, ROCKi, ALKi OCT4, SOX2

Duggal 2015 Primed hESC bFGF, LIF MEKi, GSKi, ROCKi –

Guo 2016 ICM bFGF, LIF MEKi, GSKi, ROCKi, PKCi –
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its own particular set of reactions. Context-specific 
metabolic networks are metabolic sub-models derived 
from the generic human metabolic network, which 
identify (potentially) active reactions based on ‘omics’-
scale data. Recently, Chandrasekaran et  al. generated 
the first metabolic network model representing pluri-
potency by analyzing time-series metabolomics data of 
naive and primed mouse pluripotent cells [24, 25].

None of the current protocols to generate naive hESC 
is globally recognized as the gold standard method. 
This problem could raise the question about the ration-
ality of generalizing the specific findings of one study 
using one particular protocol to all naive cells. Here, 
by comparing the transcriptomic profiles of eight dif-
ferent protocols generating naive hESCs, we show that 
the general expression patterns of the naive cells from 
these protocols are similar to each other and can be 
distinguished from their conventional primed counter-
parts. Then, we present “hESCNet”, the first metabolic 
network model specific for human embryonic stem 
cells. Using this model, we compared the overall meta-
bolic states of the primed and naive hESCs. We inves-
tigated the active metabolic pathways in primed and 
naive cells and we showed that OXPHOS and trypto-
phan (Trp) metabolism is crucial for naive and primed 
cells, respectively.

Results
Data collection, batch effect removal and heterogeneity 
analysis
To compare the expression patterns in naive and primed 
pluripotency, we obtained raw transcriptome data of 
Hanna et al. [7], Gafni et al. [9] (NHSM), Valamehr et al. 
[8], Theunissen et al. [13], and Takashima et al. [12]. We 
also included the data of Warrier et  al. [15] which has 
employed NHSM [9], NCM [11] and RT [10] protocols 
to generate naive cells. After the initial transcriptome 
data analysis and normalization, we performed princi-
pal components analysis (PCA) to gain insight about the 
status of naive vs. primed cell data. By plotting the first 
two components, we observed a clear batch effect in the 
data, as cells being clustered together by their experiment 
origin rather than their pluripotency status (Fig. 1). Nota-
bly, after removing batch effects using ComBat function, 
naive and primed cells from different studies were clus-
tered together (Fig. 2). This observation confirms that the 
overall expression profiles of different (supposed) naive 
cells are generally similar to each other at the transcrip-
tome level. To ensure that there is no major heterogene-
ity among our naive cells, after batch effect removal, we 
performed k-means clustering on the data. By enforcing 
all naive cells to cluster into two groups, no significant 
grouping was obtained, which shows that there was no 
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obvious heterogeneity in the data (Fig. 3). Therefore, this 
relative “homogeneity” paves the way to rely on all these 
protocols.

Evaluation of gene expression data after batch effect 
removal
In our dataset, we examined the expression patterns of 
the previously reported biomarkers of naive and primed 
pluripotency [26]. When samples from different stud-
ies with different expression ranges are considered, even 
a normalization step may adversely impact the quality 
of (and introduce biases in) the data, let alone the batch 
effect removal procedure. Therefore, one might expect 
some irrelevant genes to have significant p-values after 
differential gene expression analysis. Nevertheless, in 
our study, all those biomarkers which had a significant 
differential gene expression showed appropriate expres-
sion in the state they were representing (Fig. 4). Notably, 
DNMT3L which had one of the most significant differen-
tial expressions was reported to regulate naive cells epig-
enome profile [18]. 

For the set of differentially expressed genes, we then 
performed a KEGG Pathways enrichment analysis. Inter-
estingly, among down-regulated genes in naive cells, 
pathways related to cell adhesion such as “ECM recep-
tor interaction”, “cell adhesion molecules” and “tight 

junction”, appeared in the most significant enriched path-
ways (Table  2). This observation is consistent with pre-
vious studies investigating cell adhesion in mESCs [27]. 
The complete sets of enrichment analysis results are pro-
vided in Additional file 1: Tables S4 and S5.

Metabolic network model reconstruction
We used CORDA2 [28] to reconstruct the hESC-specific 
metabolic network based on the generic human meta-
bolic network model. This model, which will be referred 
to as (hESCNet), is ∼ 44% smaller than the generic model 
based on the number of reactions, which is accept-
able considering the non-parsimonious approach of the 
CORDA algorithm (Additional file  2: hESCNet_model). 
The main characteristics of hESCNet are shown in 
Table  3. To make model prepared for FVA, we added a 
biomass reaction [29] as the objective function to hESC-
Net. Details about biomass constituents and their coeffi-
cients are provided in Additional file 1: Table S3.

Reporter metabolite analysis
Reporter metabolite analysis algorithm aims to find 
those metabolites in a network around which the most 
significant transcriptional changes has occurred [30]. 
We integrated the p-values of differentially-expressed 
genes to hESCNet in order to obtain the list of reporter 
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metabolites (Additional file 1: Table S6). We then mapped 
the reporter metabolites with significant p-values to our 
metabolic network. Notably, metabolites associated with 
TCA cycle were mostly found to be among the reporter 
metabolites (Fig. 5). This observaion confirms the essen-
tiality of the “dual energy metabolism” in naive cells [16]. 
Nicotinamide adenine dinucleotide (NAD+ ) was also 
a reporter metabolite, which has a fundamental role in 

adjusting the oxidation-reduction potential of the cell. 
Although not extensively investigated, the NAD+/NADH 
redox state has been proposed to have a role in the state 
of cell pluripotency [31].

Flux variability analysis
To compare naive and primed metabolism quan-
titatively, we decided to have a separate metabolic 
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network for each pluripotency stage. Like previous 
studies [32, 33], highly-downregulated genes in naive 
cell were removed from hESCNet to acquire a naive 
model (n-hESCNet), highly-downregulated genes in 
primed cell were removed to acquire a primed one 
(p-hESCNet). Next, we performed flux variability anal-
ysis (FVA) on these models to compare fluxes running 
through each reaction in naive and primed models. 
To achieve more accurate results, we also constrained 
model exchange reactions according to the growth 
medium composition (Additional file 1: Table S9).

By comparing flux distributions in naive and primed 
models, six major possibilities can occur for a reac-
tion (Fig.  6, [32]). Reactions in statuses “A” and “C” 
were considered to be upregulated in naive cells, while 
reactions in statuses “B” and “D” were considered 
upregulated in primed cells. The complete list of reac-
tion statuses is provided in Additional file 1: Table S8. 
Genes associated with these upregulated and down-
regulated reactions were used for KEGG pathway 
enrichment analysis (see Table 4). Our results suggest 
that the most significantly downregulated metabolic 
pathway in naive pluripotent cells is the metabolism 
of tryptophan, an amino acid which is recognized for 
its pivotal role in cancer [34]. Among all the metabolic 
pathways associated with tryptophan, we observed 
that most of the genes involved in the kynurenine 
pathway are downregulated in naive cells. IDO1, which 
is the rate-limiting enzyme in this pathway, is also in 
this list. An overall diagram of the pathway is shown 
in (Fig. 7).

Discussion
For years, the state of stem cell metabolism was con-
sidered as a byproduct, rather than the cause of the cell 
pluripotency status . However, emerging studies empha-
size the importance of metabolism as a driver of regula-
tory mechanisms to control lineage commitments and 
self-renewal [18, 35, 36]. Naive pluripotent stem cells are 
no exception to this scenario. Relatively little attention 
was paid to a systematic evaluation of metabolic changes 
during naive-to-primed conversion [37], while the exist-
ence of multiple methods for generating naive hESCs has 
complicated these kinds of investigations.

In this work, using a meta-analysis approach, we dem-
onstrated that different naive cells generated by differ-
ent protocols and studied by different transcriptomic 
platforms exhibit similar molecular characteristics when 
it comes to metabolism. To this end, after batch effect 
removal of transcriptome data, we found a clear distinc-
tion between naive and primed hESCs. Moreover, one 
could observe that the samples which appeared in the 
border of naive-primed cell data belong to earlier proto-
cols (including Hanna et al. and Valamehr et al.). We also 
showed that despite different origins, naive cells obtained 
by different protocols do not display an apparent hetero-
geneity among themselves. This observation emphasizes 
that all the aforementioned protocols describe similar 
cells.

Tryptophan metabolism essentiality has been previ-
ously studied in pluripotency. One of the main trypto-
phan metabolic pathways goes through kynurenine, an 
aromatic non-proteinogenic amino acid, which eventu-
ally results in NAD+ production. Roles of kynurenine 
pathway in adult stem cells, including neural stem cells 
and hematopoetic stem cells, has been studied before 
[38]. However, the possible role of this pathway in pluri-
potency has remained unexplored. Using mass spec-
trometry, kynurenine levels has been reported to be 
significantly increased (by 27 folds) in primed human 
embryonic cells in comparison to embryonal carcinoma 
cells [39]. Interestingly, recent investigations on tumors, 
have reported kynurenine’s impact on signaling cascades 
such as Wnt, Notch and PI3K, which are fundamental 
signaling pathways for pluripotency as well [40, 41]. We 
also observed that IDO1, a key enzyme in tryptophan 
degradation through kynurenine, was downregulated in 
all the naive cells (Additional file 1: Table S2), which fur-
ther underlines the importance of kynurenine pathway in 
primed pluripotency. It has previously been shown that 
blockade of IDO1 would results in β-catenin stabilization 
in the cytoplasm which is critical in pluripotency [42]. 
IDO has also been reported to regulate mTOR pathway 
[43]. The outcome of our computational model is in con-
sistency with Sperber et al. study, indicating kynurenine 

Table 2  Results of  KEGG pathways enrichment analysis 
for down-regulated genes in naive hESCs

Only statistically significant pathways are shown here

KEGG pathway terms Size FDR q-value

Axon guidance 119 0.009

ECM receptor interaction 72 0.018

Cell adhesion molecules (CAMs) 95 0.020

Tight junction 110 0.032

Leukocyte transendothelial migration 96 0.033

Antigen processing and presentation 41 0.040

Table 3  The characteristics of hESCNet model

Recon 2.2 hESCNet

Metabolites 5324 2483

Reactions 7785 4414

Genes 1675 1420
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pathway as a markedly up-regulated pathway in primed 
hESCs. Based on the results of our metabolic network 
model of human pluripotency and previous studies, 
we suggest that there is a great potential in kynurenine 
catabolism pathway to be investigated in pluripotency. 
Furthermore, we propose that kynurenine metabolism 

could be an appropriate candidate marker of primed 
pluripotent cells against naive ones. we also showed that 
NAD+ is a reporter metabolite in naive human pluripo-
tency and considering that NAD+ is the final product 
of kynurenine pathway, we suggest that the oxidation-
reduction state and especially NAD+/NADH balance are 
proper candidates to be investigated in naive and primed 
pluripotency.

In this work, we utilized computational models of cell 
metabolism to study hESCs and naive/primed pluri-
potency. Although our results are consistent with the 
previous wet-lab reports, one should keep in mind the 
limitations of implementing computational models in 
cell biology research. Current metabolic models do not 
perfectly represent cell metabolism due to our inad-
equate knowledge of cell metabolism and its dynamism. 
Furthermore, the outcome of each analysis may depend 
on the chosen algorithms for reconstruction and analy-
sis of the context-specific models. Therefore, to further 
validate the roles of our proposed candidate pathways 
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Fig. 6  Major possibilities for each reaction after FVA: other possible distributions not included

Fig. 7  Schematic kyneurenine-mediated catabolism of tryptophan pathway

Table 4  KEGG pathways enrichment analysis using DAVID

a  The term “Metabolic pathways” is excluded from the table due to its triviality. 
Only pathways with significant p-values are shown

KEGG pathway termsa Size p-value Benjamini 
adjusted 
p-value

Tryptophan metabolism 6 3.02E−08 5.13E−07

Cysteine and methionine metabolism 4 1.00E−04 0.001136

Fatty acid degradation 4 1.36E−04 0.001152

Fatty acid metabolism 4 2.02E−04 0.001376

Valine, leucine and isoleucine degrada‑
tion

3 0.005821 0.032542
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in pluripotency, one should thoroughly investigate their 
roles in vitro [44, 45].

Conclusion
There are several protocols which have the claim to gen-
erate naive hESCs. Despite a few attempts on some of 
these naive cells, no comprehensive study has fully com-
pared cells generated by these diverse protocols. In this 
work, utilizing the transcriptome data of eight protocols 
producing naive human pluripotent cells, we showed 
that the general expression profiles of naive and primed 
hESCs are distinctive to each other and no apparent het-
erogeneity exist among these naive cells.

Besides the attempts that have taken place to com-
pare different naive cells so far (i.e., Warrier et  al.), in 
most of the papers which introduce such a new proto-
col, the resulting naive cells are also compared to those 
of the previous protocols. There also have been some 
studies comparing these protocols to human preimplan-
tation embryo cells [18, 46]. In our work, we compared 
active pathways in naive and primed cells. However, one 
may also think of applying a similar strategy to study the 
potential “among-protocol” differences at the systems 
level. We believe that with the available data, due to the 
heterogeneity of the data sources, this task might not be 
easily achievable. The best way to perform this task is 
to utilize an approach similar to Warrier’s study, where 
different protocols are imposed to the same naive cells 
in the same laboratory and the same platform is used 
to obtain omics data, and then, use these data to recon-
struct and analyze cell-specific metabolic network for 
each protocol [15].

Using the transcriptome data, we also reconstructed 
hESCNet, the first metabolic network model representing 
hESCs. This model confirmed the dual energy metabo-
lism of naive pluripotent cells and also proposed that 
NAD+/NADH balance is likely to have a role in naive 

pluripotency. By extracting p-hESCNet and n-hESCNet 
models for primed and naive cells respectively, we also 
showed that metabolic flux distribution of kynurenine-
mediated catabolism of tryptophan significantly differs 
between naive and primed state. This work, paves the 
way for future studies on naive pluripotency in human, 
and proposes that oxidation-reduction potential of cell 
and tryptophan metabolism are proper candidates to be 
further investigated in this context.

Methods
Transcriptome data collection and analysis
Expression profiles of studies used in this article were 
obtained from their repository web pages at GEO under 
accession numbers of GSE59435, GSE50868, GSE69200, 
GSE46872, GSE21222 and PRJNA356255, and ArrayEx-
press under accession numbers of E-MTAB-2857 and 
E-MTAB-4461. In case of RNA-seq data, Trimmomatic 
software was used to trim low quality reads [47]. Fur-
ther details about these data and samples are provided in 
(Table 5).

RNA-seq transcriptome data were aligned against 
human hg38 reference genome using HISAT2 [48]. The 
obtained SAM files were sorted using SAMtools and 
raw count tables were generated by HTSeq [49, 50]. 
Normalization and differential gene expression analysis 
were performed by DESeq2 and Limma packages in R 
[51–53]. Microarray transcriptome data were analyzed 
by Limma package. All gene expression profiles were 
merged and batch effects were removed, in an unsuper-
vised manner, by ComBat function of the SVA package 
in R [54]. Expression data table after batch effect removal 
is provided in (Additional file  1: Table  S1). Enrichment 
analysis for KEGG pathways were performed by Gene Set 
Enrichment Analysis (GSEA) v2.0 [55, 56]. Graphs were 
produced by ggplot2 package in R and Excel [57].

Table 5  Details about  the  transcriptome data used in  this work. Overall gene number is  the  number of  mutual genes 
between all the transcriptome data

a  Guo et al. used the primed hESC samples data from Takashima et al., a previous study by the same research group

Protocol Year Data accession Technique Naive samples Primed samples Genes

Hanna et al. 2010 GSE21222 Microarray 6 12 21754

Gafni et al. 2013 GSE46872 Microarray 9 3 20002

Valamehr et al. 2014 GSE50868 Microarray 9 8 21754

Theunissen et al. 2014 GSE59435 Microarray 5 2 20015

Takashima et al. 2014 E-MTAB-2857 RNA-seq 3 3 15950

Qin et al. 2016 GSE69200 Microarray 6 6 20756

Guo et al. 2016 E-MTAB-4461 RNA-seq 9 NAa 58726

Warrier et al. 2017 PRJNA356255 RNA-seq 27 9 23375

Overall 74 43 14352
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Metabolic network reconstruction
Human generic metabolic network model (Recon 2.2) 
was obtained from Swainston et  al. [58]. Several algo-
rithms had been developed to derive context-specific 
metabolic network models from the genome-scale ones 
[59–63]. CORDA2 algorithm was chosen to reconstruct 
the context specific network model in the COBRA tool-
box v3.0 in Matlab 2017b [28, 63, 64]. In order to recon-
struct the network, CORDA needs three reaction sets: 
(a) High confidence reactions (i.e., those reactions whose 
associated enzyme(s) are highly expressed); (b) Medium 
confidence reactions (i.e., those reactions whose associ-
ated enzyme(s) are moderately expressed); and (c) Nega-
tive confidence reactions (i.e., those reactions whose 
associated enzyme(s) are lowly expressed). Using map-
ExpressionToReactions function, we mapped our 
transcriptome data to Recon 2.2 reactions. Non-met-
abolic genes and genes not present in Recon 2.2 model 
were treated as “not expressed” as well. Top 10 percent 
of all reactions with the greatest expression levels were 
treated as High confidence based on the results of a sys-
tematic review on context specific metabolic network 
reconstruction [29]. Similarly, 10 percent of all reactions 
with the smallest expression levels were treated as Nega-
tive confidence reactions. In order to set exchange reac-
tions boundaries, composition of cell culture medium 
was determined based on Sigma-Aldrich website for Dul-
becco’s Modified Eagle’s Medium (DMEM) Additional 
file 1: Table S9.

Reporter metabolite analysis
Differentially expressed genes (DEGs) and their adjusted 
p-values were computed by DESeq2 package in R (Addi-
tional file  1: Table  S2). The reporter metabolite analysis 
was performed by the reporterMetabolites func-
tion in RAVEN toolbox. Metabolites with a significant 
adjusted p-value (< 0.05) were selected and transported 
to Escher online (https://escher.github.io) for illustration 
[65].

Flux variability analysis (FVA)
In order to generate distinct networks for primed and 
naive cells from hESCNet, we removed highly down-
regulated genes in each pluripotency stage to obtain 
two distinct models. To avoid the potential bias stem-
ming from sensitivity of FVA results to removal p-value 
thresholds, DEGs were selected by three different 
fold-change thresholds: (a) logFC > 1.00; (b) logFC 
> 0.85; and (c) logFC > 0.7 (with adjusted p-value < 
0.05 for all). By setting the lower- and upper-bounds 
of their associated reactions to zero, we practically 
removed these gene sets in hESCNet, resulting in three 
models representing naive hESC and three models 

representing primed hESC. Flux variability analysis 
(FVA) was performed using the fluxVariability 
function in COBRA toolbox. The resulting flux distibu-
tion sets computed for each reaction were compared 
between naive and primed cells. Genes associated with 
those selected active reactions were obtained using 
findGenesFromRxns function in COBRA toolbox. 
Pathway enrichment analysis were performed using the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v6.8 [66, 67].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1357​8-019-0334-7.

 Additional file 1: Table S1. Gene expression data. Table S2. Differen‑
tially expressed genes list. Table S3. Biomass reaction. Table S4. KEGG 
pathways down-regulated in naive cells. Table S5. KEGG pathways 
up-regulated in naive cells. Table S6. Reporter metabolites list. Table S7. 
List of reactions up/down-regulated in naive cells to be knocked-out in 
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