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Abstract: Wearable assistive robotics is an emerging technology with the potential to assist humans
with sensorimotor impairments to perform daily activities. This assistance enables individuals
to be physically and socially active, perform activities independently, and recover quality of life.
These benefits to society have motivated the study of several robotic approaches, developing systems
ranging from rigid to soft robots with single and multimodal sensing, heuristics and machine learning
methods, and from manual to autonomous control for assistance of the upper and lower limbs. This
type of wearable robotic technology, being in direct contact and interaction with the body, needs to
comply with a variety of requirements to make the system and assistance efficient, safe and usable on
a daily basis by the individual. This paper presents a brief review of the progress achieved in recent
years, the current challenges and trends for the design and deployment of wearable assistive robotics
including the clinical and user need, material and sensing technology, machine learning methods for
perception and control, adaptability and acceptability, datasets and standards, and translation from
lab to the real world.

Keywords: wearable assistive robotics; wearable sensors; machine learning; human factors; standards

1. Introduction
1.1. Importance of Wearable Assistive Robotics

Wearable assistive robotics has emerged as a promising technology to assist humans
to enhance, supplement or replace limb motor functions, commonly affected after suf-
fering an injury, a stroke or as a result of natural aging [1,2]. This robotic assistance is
important to enable humans to perform physical and social activities of daily living (ADLs)
independently, contributing to both dignity and improved quality of life [3,4]. Wearable
robots can be found as exoskeletons, orthotics and prosthetics, capable of extending the
strength of human limbs, restoring lost or weak limb functions and substituting lost limbs,
respectively (Figure 1) [5–12]. These assistive devices are designed to be worn by humans
and closely interact with the human body. Therefore, wearable robots need to be safe,
reliable and intelligent, but also compliant, lightweight and comfortable to ensure the
correct assistance, the safety of the user, and acceptability and usability of the device [13,14].
These requirements can be achieved by making use of technological advances such as
multimodal wearable sensors, soft and hybrid materials, actuation systems, data fusion
and machine learning and robotic architectures.
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Sections 2–4 provide a description of the aspects involved in the design of wearable
assistive robots including: the user perspective, methods for data processing and decision-
making, actuators and materials for fabrication. Sections 5 and 6 describe the challenges
faced by current assistive technologies and forecast future trends in the field.

(A) (B) (C)
Figure 1. Wearable assistive robots such as (A) prosthetics [5] (Licensed under (CC BY 4.0)), (B) or-
thotics [6]) (Reproduced with permission from Elsevier) and (C) exoskeletons [8] (Licensed under
(CC BY 4.0)), can help users to restore weak limb functions and substitute lost limbs.

1.2. Clinical Need—Target User Groups

The world health organisation (WHO) estimates that 2 billion people will require
assistive devices by 2050, doubling the current estimate [15]. This increase is driven by
the growth of the aging population [16], people with upper and lower limb impairments,
noncommunicable diseases and mental health conditions [17–19]. Wearable assistive
robotic devices can enable their users to gradually recover the capability to perform
ADLs independetly and naturally, leading a healthier life. Despite the importance of
this technology, only 10% of those in the need of assistance have access to these robotic
devices [15]. This limited access represents an issue for a sustainable future for all, which
is one of the Sustainable Development Goals identified by the United Nations (UN) that
strive to “leave no-one behind” [20,21]. The Global Cooperation on Assistive Technology
(GATE) is another initiative created to improve global access to assistive devices [22],
including wearables such as fall detectors, hearing aids, lower-limb prostheses and talking
and touching watches [23].

The spread of smart and wearable technologies offers a strong set of tools to develop
wearable assistive robots [24] that can impact positively on physical and social aspects of
users [25]. Wearables also have an advantage over other forms of assistive technologies
(e.g., handheld devices, mobility aids and distributed systems [26]) in their continuous
close proximity to the user and compliance to the human body. These aspects enable the
systems to collect vital data to provide customised assistance highly valued by people with
different levels of physical, sensory and cognitive impairments [25,27].

2. Wearable Assistive Robots Technologies

Wearable assistive robots are designed with the goal to assist humans with physical
impairments, particularly, assisting lower and upper limbs, and joints on the human body.
These robots, which work in proximity with the human body, can be built using different
material technology usually composed of rigid, soft or hybrid materials.
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2.1. Rigid Materials in Wearable Robotics

Rigid and semi-rigid materials have been used traditionally for the development of
exoskeletons, widely employed for assistance in locomotion activities. The ReWalk robotic
system with a semi-rigid structure can assist the knee and hip of adults with partial and
complete mobility impairments [12], detecting and enhancing the user’s walking action.
Vanderbilt, REX and HAL are other examples of these type of assistive robots built with
rigid structures (Figure 2). They can assist humans to keep balance while walking but
also to accomplish daily activities including sitting, climbing stairs and kneeling [28–33].
Wearable robot hands can assist with daily activities such as buttoning, grasping, pouring
liquids, closing and opening zips and jars. HandSOME, HandeXos-Beta, HexoSYS, HES
Hand and Vanderbilt Hand are wearable hands with rigid structures that use, arrangements
of motors and tendons to provide the required assistance (Figure 2) [34–39]. These lower
and upper limb devices can be configured to respond quickly to the user movement
intention using data from electromyographic (EMG), inertial measurement unit (IMU) and
torque sensors. Unfortunately, these devices tend to be bulky, heavy (lower limb robots
weighing between 15 kg to 25 kg) and expensive. The rigid structure of these robots can
also make them uncomfortable and constraining the natural movement of human limbs in
certain orientations.

(A) (B) (C) (D)

(E) (F) (G)

Figure 2. Wearable assistive robots with rigid and semi-rigid structure. Lower limb assistive robots:
(A) ReWalk [12] (Reproduced with permission from Elsevier), (B) HAL [28] (Licensed under (CC
BY 2.0)), (C) REX [32] (Licensed under (CC BY 4.0)), (D) Vanderbilt exoskeleton [33] (Reproduced
with permission from Elsevier). Wearable assistive hands: (E) HandeXos-Beta [34] (Reproduced with
permission from Elsevier), (F) HexoSYS [35] (Reproduced with permission from Elsevier), (G) HES
Hand [36] (Reproduced with permission from Elsevier).

2.2. Soft Materials in Wearable Robotics

Soft materials are becoming popular in the area of assistive robotics with different
system developed in recent years to assist upper and lower limbs (Figure 3) [40,41]. As-
sistive robots with soft materials tend to be lighter and more comfortable compared to
robots built with rigid structures. Pneumatic artificial muscles, Boden cables, textiles and
shape memory alloys are the main material technologies that have been employed in a
variety of wearable soft robots. Soft wearable knee and ankle robots have been used to
assist contraction/extension leg movements and also with foot movements in dorsiflexion,
plantarflexion, inversion and eversion orientations [42,43]. Exosuits using textiles and
Boden cables are some of the most advanced and lightweight devices for assistance to
the hip, leg and ankle-foot while walking on flat surfaces [44–46]. This technology has
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been explored with soft gloves, wrist and elbows for reaching, grasping, holding and
manipulating objects, but also to potentially assist with buttoning and feeding (holding
cutlery) [47–50]. Modular and customisable systems capable of adapting to the users body
and required assistance have been investigated with designs based on tendons, shape mem-
ory alloys and pneumatic technology [51–53]. Soft materials offers a promising approach
for wearable assistive robots that are comfortable, lightweight and do not constrain the
movement of upper and lower limbs. However, soft assistive robots still require external
large gearboxes that affect the portability of the systems, and pumps that can slow down
the system response. Table 1 shows the comparison of the wearable assistive robot tech-
nologies presented in this section based on their applications, fabrication materials, degrees
of freedom (DoF), body segment assisted, actuation type and weight.

(A) (B) (C)

(D) (E) (F)

Figure 3. Wearable assistive robots with soft structure. Lower limb assistive robots: (A) soft-
inflatable knee exosuit for rehabilitation [42] (Licensed under (CC BY 4.0)), (B) soft exosuit for
hip assistance [44] (Reproduced with permission from Elsevier), (C) multi-articular hip and knee
exosuit [46] (Reproduced with permission from Elsevier). Upper limb assistive robots: (D) soft robotic
glove for assistance at home [47] (Reproduced with permission from Elsevier), (E) soft wearable wrist
for rehabilitation [48] (Licensed under (CC BY 4.0)), (F) soft robotic elbow sleeve for assistance [49]
(Licensed under (CC BY 4.0)).
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Table 1. Wearable robot technology for assistance to lower and upper limbs.

Assistive
System Application Material

Structure

Degrees
of Freedom

(DoF)

Assisted Body
Segments

Actuation
Type Weight

ReWalk [12]
Assistance to
stand upright

and walk

Rigid
materials 6 DoF Hip flexion/extension

Knee flextion/extension
Electric
motors 23 kg

HAL [28]

Human gait
rehabilitation,

strength,
augmentation

Rigid
materials 4 DoF Hip flexion/extension

Knee flextion/extension
Electric
motors 21 kg

REX [32]

Human locomotion
in forward and

backward directions,
turn and climb stairs.

Rigid
materials 10 DoF

Hip flexion/extension
Knee flexion/extension

Posture support

Electric
motors 38 kg

Vanderbuilt
exoskeleton [33]

Assistance for walking,
sitting, standing,
walking up and

down stairs

Rigid
materials 4 DoF Hip flexion/extension

Knee flexion/extension
Electric
motors 12 kg

HandeXos-
Beta [34]

Hand motion
rehabilitation

for multiple grip
configurations

Rigid
materials 5 DoF

Index finger flexion/extension
Thumb finger flexion/extension

and circumduction

Electric
motors 0.42 g

HexoSYS [35] Hand motion
rehabilitation

Rigid
materials 4 DoF All fingers flexion/extension

and abduction/adduction
Electric
motors 1 kg

HES Hand [36]
Hand motion

rehabilitation to recover
hand motor skills

Rigid
materials 5 DoF All fingers flexion/extension Electric

motors 1.5 kg

Soft-inflatable
knee exosuit [42]

Gait training for
stroke rehabilitation

Soft
pneumatic
materials

1 DoF Knee flexion

Pneumatic
system,

inflatable
actuators

0.16 kg

Soft hip
exosuit [44]

Assistance for
level-ground walking

Soft textile
materials 1 DoF Hip extension

Electric
motors,

fabric bands
0.17 kg

Multi-articular
hip and knee
exosuit [46]

Assistance to
gait impairments in

sit-to-stand
and stair ascent

Soft materials
and Bowen cables 1 DoF Hip and knee extension

Electrical
motors,
Bowden
cables

-

Soft robotic glove
for assistance
at home [47]

Assistance to hand
rehabilitation for

grasping movements

Soft elastomeric
chambers 3 DoF All fingers flexion/extension Pneumatic

system 0.5 kg

Soft wearable
wrist [48]

Assistance for
rehabilitation of
writs movement

Soft reverse
pneumatic

artificial muscles
2 DoF Wrist flexion/extension

and abduction/adduction
Pneumatic

system -

Soft robotic
elbow sleeve [49]

Assistance for
rehabilitation of elbow

movements

Elastomeric and
fabric-based pneumatic

actuators
2 DoF Elbow flexion and extension Pneumatic

system -

3. Wearable Sensing Technologies

Rapid progress in the development of flexible electronics and materials has enabled
the development of advanced wearable sensors for monitoring the state of the human
body and the assistive robot. Some of the state-of-the-art wearable sensors can be found as
e-textiles (e.g., smart garments) and e-patches (e.g., sensor patches) to monitor aspects such
position and orientation of human limbs, human motion and muscle activation [54–57],
heart function [58–61], brain activity, sleep apnea [62,63], Parkinson disease [64–68]; chemi-
cal and electrochemical sensors [69–71]. Examples of these sensors are shown in Figure 4.
Many sensors have been used in healthy people to monitor, for example, sport activities
as well as people affected by health conditions or for clinical tests to detect underlining
conditions that could become more serious providing powerful diagnosis tools. These
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wearable sensors have also been used in devices such as ankle-foot robot orthotics, exosuits,
soft wearable gloves and hand exoskeletons to assist humans to rehabilitate and perform
ADLs. Another interesting aspects of wearables is that many of these devices can be used
by care givers to monitor patients [72,73] to detect and manage treatments or conditions
at home [74,75], which have had a direct impact on quality of life and influence on the
care sector. Wireless communication technologies, lower power electronics, soft materi-
als and the internet of things (IoT) [76] have largely helped wearable sensors to become
smaller, lighter and less cumbersome (e.g., no/less wires), but also to make the sensor data
accessible remotely for online monitoring, processing and control.

(A) (B)

(C) (D)

Figure 4. Wearable sensors. (A) Zigbee to monitor physiological parameters [54] (Reproduced with
permission from Elsevier). (B) Optoelectronic wrist sensor for health monitoring [58] (Licensed under
(CC BY 4.0)). (C) Stretchable electrochemical sensor for glucose monitoring [69] (Reproduced with
permission from ACS). (D) On-shoe wearable sensor for gait analysis in Parkinson’s Disease [64]
(Licensed under (CC BY 4.0)).

4. Machine Learning in Wearable Assistive Robots

Machine Learning (ML) offers a promising approach, capable of perceiving and
making decisions, to develop intelligent wearable robots that can safely and accurately
assist humans. This section provides a brief description of ML methods and Deep Learning
(DL) based approaches for activity recognition with different wearable sensor platforms.

4.1. Traditional Machine Learning Methods

Traditional ML methods are generally well understood and can provide state-of-the-art
results primarily during training. This approach includes methods such as Support Vector
Machines (SVM), Random Forests (RF), Bayesian Inference, Decision Trees (DT), k-Nearest
Neighbour (kNN) and logistic regression. Recognition of hand gestures has been studied
using wearable sensors (bending and force sensors) and SVM, kNN and DT methods.
SVM achieved the highest recognition accuracy in real-time mode, although it required the
longest training and prediction time compared to kNN and DT methods [77]. SVM has also
outperformed kNN, logistic regression and RF methods for recognition of grip action from
an assistive tactile arm brace (TAB) worn on the forearm of participants [78]. However,
in human activity recognition (HAR) with IMU data, RF methods showed to perform
better compared to SVM, DT, NN, kNN and Naive Bayes methods [79]. RF methods have
also shown accurate results for HAR with datasets containing IMU, audio and skeletal
data [80]. Bayesian methods and sequential analysis have achieved accurate recognition
of sit-to-stand activities using a single wearable accelerometer [81]. The combination of
traditional machine learning methods and DL, such as Hidden Markov Models (HMM)



Sensors 2021, 21, 6751 7 of 19

and NN, has ensured reliable prediction of sequential gait stages [82]. Data-driven and
Fuzzy Logic approaches are model-free and make use of knowledge from experts, they
have been used for classification and system control [83,84], and recently in the recognition
of ADLs and control of wearable assistive and rehabilitation robots [85–87].

4.2. Deep Learning

Deep Learning methods are primarily focused on Neural Network (NN) based archi-
tectures, and have demonstrated their ability for accurate activity recognition with complex
datasets where other machine learning methods fail [88]. This section briefly presents three
DL architectures widely used: the Multilayer Perceptron (MLP), Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN).

Multilayer Perceptrons were applied to data from accelerometers, gyroscopes and
velocity sensors on the shank of users to predict the attitude angles of the thigh for walking
assistance [89]. MLPs can recognise activities with IMU data [90], however, CNN and RNN
methods have achieved higher accuracy for the recognition process. Surface electromyog-
raphy (sEMG) sensors alongside MLPs and Linear Discriminant Analysis (LDA) have been
used to recognise hand gestures and perform better than SVM [91]. CNNs have become
popular for feature extraction from complex datasets for classification and recognition
tasks. Image recognition and segmentation are key areas of CNNs applied to wearable
devices for assistance to people suffering from visual impairment. FuseNet and GoogLeNet
architectures are other examples of DL methods for semantic scene segmentation in human
auditory assistance to avoid obstacles [92]. CNN architectures and IMU data have shown
extensive use in HAR tasks and have achieved improved results when compared to other
traditional methods [93–97]. RNN methods are becoming widely used for tasks that require
the analysis of sequential data or events. Examples being the use of a Long Short Term
Memory (LSTM) backend on the DeepConvLSTM architecture [98,99] or InnoHAR, an in-
ception based CNN architecture followed by two Gated Recurrent Unit (GRU) layers [100].
Recent developments in the use of attention based models have shown their potential
for accurate labelling of multimodal wearable sensors data, such as data from HAR tasks
performed with upper and lower limbs [101,102]. Figure 5 shows examples of the use
of LSTM, ANN, HMM, DBN, RF and DT methods for activity recognition with different
wearable sensor platforms [81,82,89,103,104].

4.3. Sensor Fusion

Although sensor fusion is not an ML method, it is a process that can provide a better
representation of input data for the subsequent ML processes, and improve the certainty,
accuracy and completeness over the results when using a single sensor [105]. The fusion
process can be classified as competitive, cooperative or complementary. The competitive
fusion approach refers to multiple sensors to measure the same feature, while complemen-
tary fusion refers to measuring different aspects of the same phenomenon. Cooperative
fusion refers to sensors measuring different attributes, where all are required to form a
complete understanding of what is measured [106,107].

Various fusion methods have been studied with wearable sensor data and ML methods.
A stacked generalisation architecture using RF first learner and meta learner classifiers
was used for the fusion of audio and accelerometer data while performing ADLs [80].
A similar architecture using LSTM first learners on IMU data showed an RF meta learner
to outperform SVM and kNN methods, however, a soft voting approach provided higher
accuracy yet. The fusion of RF methods outperformed the use of a single RF method when
recognising heart disease with a variety of body worn sensors [108]. Fusing IMU and vision
as input data to a CNN first learners, and an LSTM fusion method, showed to outperform
a variety of methods for the recognition of upper limb actions for assembly tasks in an
industrial setting [109]. Fusion of acceleration and angular velocity data images with a
CNN ResNet fusion classifier achieved higher recognition accuracy over other methods
such as sum, average and maximum [110]. Gesture recognition was improved by the fusion
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of wearable pressure sensors and radar data from the finger movements with an SVM
method [111].

(A) (B) (C)

(D) (E)

Figure 5. Examples of wearable systems that exploit the use of machine learning methods for activity
recognition needed for assistive robots. (A) Multimodal sensor fusion with Long Short Term Memory
networks for recognition of walking, sitting, lying, standing, driving and eating [103] (Licensed
under (CC BY 4.0)). (B) Artificial Neural Networks for recognition of dynamic motion of human
limbs [89] (Licensed under (CC BY 4.0)). (C) Gait detection using multimodal sensors with Hidden
Markov Models and Artificial Neural Networks [82] (Reproduced with permission from Elsevier).
(D) Detection of sit-to-stand and stand-to-sit using IMU sensors and Dynamic Bayesian Networks [81]
(Reproduced with permission from Elsevier). (E) Prediction of elbow motion using multimodal
sensors with Random Forest and Decision Trees [104] (Licensed under (CC BY 4.0)).

5. Current Challenges in Wearable Assistive Robots

Wearable assistive robotics still faces various challenges to ensure that these systems
are reliable, functional in real environments and comply with the user needs. These
challenges, which include device adaptability, translation from the lab to the real world,
sensing technology and user acceptability, are discussed in this section.

5.1. Device Adaptability to the User (Personalised Robotics)

The need for personalised and adaptive assistive devices is widely recognised. Adap-
tivity refers to how devices adapt to changes within their operating environment, such
changes might include: user habits, situations, individual preferences and exogenous
changes. In practice adaptivity means changing the way of the assistive robot to respond
to specific user commands, detection of user intent, reacting to exogenous changes such as
sensor instability, or modification of the intervention modality [112]. These changes can
be split into two broad categories: user driven and exogenous, which require the use of
contextual information together with a model of the user or system to ensure the correct
adaption process. Adaptivity is often viewed as a machine learning problem, with much
work on Human Activity Recognition (HAR) making use of supervised learning tech-
niques to provide the vital contextual awareness [113]. Activities are often identified by
comparing sensor events over sliding time windows with templates that are fit to specific
ADLs, these templates can be iteratively developed but are generally fixed and are used
to drive an ontological model [114]. These model-based approaches lack the flexibility
required to allow wearable assistive robots to deal with the level of changes that might
be expected in outdoor environments and may not accurately capture the complexities or
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diversity of many use cases. Hybrid solutions exist, where data and knowledge (activity
recognition and model based) approaches are combined to form hybrid solutions [115].
Initial knowledge can be used to form templates that enable initial activity detection, while
newly discovered activities are recorded for later labelling, often with active participation
of the user. More recently, Smith et al. have proposed the Adaptivity as a Service (AaaS)
approach that encompasses all the dimensions of adaptation. AaaS addresses the three
types of long-term adaptation: contextual awareness, adaptation in intervention modality,
and rapid adaptation to new users [112]. Various works have proposed methods to address
the adaptivity of assistive systems, however, it remains a current challenge to ensure safe,
reliable and efficient robot assistance and device acceptability.

5.2. Translational Issues from the Lab to the Real World

Wearable assistive robots are usually designed and tested in labs under well-controlled
conditions and structured environment. The testing processes tend to follow protocols
designed for the lab only, where the user performs actions in a predefined order, controlled
setting and as indicated by the researcher. For instance, walking along a certain circuit
composed of flat surfaces, stairs and ramps, grasping objects and moving them from one
point to another [116,117]. In lab settings, these experiments involve the use of treadmills
with controlled speeds and inclinations, and objects specifically designed for manipulation.
This approach allows the systematic data analysis, monitoring and control of the assistive
device while responding to different user movements. However, this process still does
not reflect the situations than a person can experience in outdoor environments, such as
walking on different terrains and condition environment, changing the walking speed,
grasping and handling real objects for daily use [118]. This difference in testing settings
affects the robot performance for sensing, making decisions and controlling the assistance
required by the user. This translation of assistive robots from the lab to real environments
represents an important issue that needs to be addressed to have robots that can be accepted
and daily used by individuals. Computational methods are also generally designed and
trained assuming the availability of clean and accurate data from wearable sensors and the
robotic system [86]. This assumption works very well in simulation and well-controlled
laboratory environments, however, their performance is drastically affected when tested
in real environments. Furthermore, unexpected, different and continuous changing of
daily situations experienced by the person undoubtedly generate unseen complex and
unlabelled data decreasing the performance of the assistive robots and putting in risk
the safety of the user [119,120]. Therefore, it is important to have systems with methods
capable of learning continuously from the state of the human body, robot and environment
to adapt to daily and unexpected situations safely and accurately.

5.3. Wearable Sensing Technology

Even though sensor technology has advanced rapidly allowing multimodal moni-
toring capabilities in wearable assistive devices, there are elements such as low-weight,
low-power consumption, battery lifespan and calibration that remain a challenge. Having
sensing devices with low-power consumption can extend the monitoring time between
charges, help to reduce the weight needing smaller energy storage, but also it can open
opportunities to exploit emerging technology such as energy harvesting [121] directly from
the user and wearable robot e.g., while performing locomotion activities. Battery lifespan,
weight, and maintenance are major elements to be factored in the process of sensor design.
These aspects enable assistive robots to be used for longer periods without recharging the
battery but also without the need to calibrate the sensors or replace them. Currently, there
are also many elements not directly related to materials and new technologies that play
a major critical role in wearable technologies with major challenges. Some of these are
communication modules (e.g., WiFi, Bluetooth), data integrity and protection, difficulties
in precise localization using for example GPS and mobile-phones [122] and design of
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suitable interfaces to allow information extraction from users that could have disabilities
or difficulties to interact with digital systems.

These technical challenges need to be addressed for the design of wearable sensing
technology. However, there is a lack of robust, systematic and testing on large number
of patients with different requirements for monitoring and assistance that represent a
bottleneck for the use of wearable sensors in a wide range of monitoring and assistive
systems [123,124]. This process is usually limited or even ignored due to the time and cost
of recruiting patients, preparing and running the tests, and thus, limiting the design of
wearable sensors to academic and well-controlled environments only. The understanding
of this sensor-patient interface, by keeping patients in the loop, is essential to develop
wearable sensors that are clinically viable and approved to run under real conditions and
patients but also robust, reliable and comfortable for the user [125].

5.4. User Acceptability

Even with the technological advances in assistive technology, device abandonment
remains one of the main challenges. Upper-limb prostheses can be taken as an example
where up to 75% of the users reject their prosthesis [126], given that they find the de-
vice uncomfortable and insufficiently functional [127]. Acceptance studies show similar
trends across different assistive technologies [128], where the reasons behind device aban-
donment vary between users but tend to emphasise the mismatch between expectations
and reality [129,130]. These issues have motivated researchers to move towards a more
user-cantered design process. Co-creation is a design framework that has gained interest
recently [131–134]. It ensures the participation of different stakeholders to minimise the
mismatch between user needs and the developed product features and maximise impact.
Stakeholders included are the users, healthcare professionals as well as industrial rep-
resentatives and policy makers. Each of the stakeholders provide a special perspective.
The users are at the heart of the process enabling the designers to gain empathy and learn
from the users’ lived experience [135]. Healthcare professionals provide a more holistic
perspective of common concerns and issues that arise. Their involvement is particularly
important as they guide and support users during the decision making process of assistive
technology [136]. Investors and policy makers are key to ensure that the translation of
research does not end in what has been described as the “valley of death” that creates a gap
between the available technologies and commercial products [137]. Weight reduction of
the wearable assistive robot is another challenging aspect to make the system comfortable
and acceptable for the user. Weight and portability are affected by heavier power supply
systems, which are needed to provide longer autonomy as well as comply with activity-
dependant assistive forces requirements, e.g., walking, running, sit-to-stand [138,139].
Some works have proposed the use of a compact variable gravity compensation approach
to generate torque employing a cam and lever mechanism to improve the energy efficiency
of assistive systems, surgical and mobile robots [140]. Spring-based gravity compensation
mechanism and arrangement of springs have been used to improve energy efficiency for
the delivery of fixed torques [141,142]. The Mechanically Adjustable Compliance and
Controllable Equilibrium Position Actuation (MACCEPA) mechanism has shown to be
an energy efficient actuation system for ankle-foot assistive robots and gait rehabilita-
tion [143,144]. Recently, a design optimisation method, that uses mechanism parameters
and mechanism architecture, has been employed to obtain the optimal arrangement of
actuators to improve the energy efficiency of soft lower limb exoskeletons [138]. These
works have shown impressive progress for actuation systems to assist with specific activi-
ties. However, the development of simple and energy efficient actuation systems, which
would enable the use of small power supplies, remains a challenge in wearable robotics for
assistance to ADLs.

Other important aspects to consider for the acceptability of the device is the user’s
perception about the risk of using AI and IoT for data collection and sharing, and control
of the system. These aspects make the user aware of ethical, privacy and safety concerns,



Sensors 2021, 21, 6751 11 of 19

which are more common amongst younger people- the future users of assistive devices
currently being developed [145]. These concerns should be considered during the design
process of assistive robots to ensure that individuals are able to trust and use the devices.
Also, researchers need to be familiar with frameworks such as the Technology Acceptance
Model (TAM) and Transparency paradigm to ensure that the relevant acceptance factors
are included in the robot and to minimise the perceived risks of safety and privacy from AI
and IoT [146–149].

6. Forecasting Future Trends on Wearable Assistive Robots

Undoubtedly, the field of wearable assistive robotics has seen impressive achievements
given the advances in elements such as sensor technology, fabrication materials, machine
learning and control methods, and computational power. However, to reach the aim of
having smart and comfortable wearable systems that can assist humans to perform daily
activities independently in a natural way, safely and efficiently, there are still aspects such
as materials and sensing, learning and adaptability, datasets and standards that need to be
considered and improved for the future development of wearable assistive robotics.

6.1. Hybrid Wearable Assistive Systems

Currently, most of the assistive robots are built using rigid or soft materials. Rigid
materials have been widely used for the development of systems that can help humans
to perform daily activities, but also to enhance the human strength to carried out tasks
in industry. Soft materials has been gaining more attention in recent years for the de-
velopment of wearable robots given that these materials are lightweight, compliant and
do not constrain the natural movement of the human body, which usually occurs with
rigid materials. Despite these characteristic they cannot provide the required torque to
assist the human, for example lifting the legs for locomotion activities. Hybrid approaches,
composed of rigid and soft elements, can offer a better trade-off for the design of assistive
robots [150,151]. This approach can make the robot structure lightweight and capable of
adapting to the human body, while still delivering the required torque safely [152]. This
type of robot design enhances the sensing modalities and technology that can be integrated
within the hybrid structure [153,154]. This can provide richer and larger datasets that have
the potential to increase the repertoire of opportunities for research on novel machine
learning and control methods for learning and adapting the level and type of required assis-
tance [155,156]. Hybrid approaches, embedded with a large variety of sensing technologies,
is a key aspect that we expect to see in the development of wearable assistive robots.

6.2. Learning and Adaptability to the User

Two key components required for the development of robots that can safely and effi-
ciently assist humans are the capability to learn and adapt to the user over time [157,158].
Current wearable assistive robots are designed to support users under specific and con-
trolled conditions, for example, assisting to walk and sit-to-stand or reach and grasp an
object in well-controlled laboratory settings. These systems tend to fail when they are
tested in outdoor environments or even when there are slightly changes in the test settings.
For this reason, it is important to research and develop methods that allow the design
of robots capable of learning and adapting to the user and changes in the surrounding
environment. Advanced intelligent robot architectures, for data processing at different
levels of abstraction, offer an approach to develop safe and reliable assistive systems, as has
been seen in other robotic applications [159–161]. Usually, these architectures include
modules such as sensing, data fusion, perception, decision-making and control, but also
memory modules and reactive and adaptive layers for continuous learning and adaptive
processes [162,163]. This approach can be implemented in wearable assistive robot archi-
tectures, together with novel machine learning and control methods, for example to allow
the robot to identify the activity performed by the human, and thus deliver the required
assistance. Another key aspect to achieve adaptability in the design of future assistive
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systems is the context of the task or activity [164,165]. Having wearable robots that for
example know whether the person is at home or at work allow the system to identify the
most likely actions that the person would perform, and thus, increase the reliability of
decisions and assistive actions made the by robot [166]. This approach offers the potential
to have smart wearable assistive robots that can safely react to unseen or unexpected events
or data, but also to adapt to different and changing surrounding environments.

6.3. Datasets and Standards

Significant progress achieved in recent decades in robotics can offer huge societal
benefits, however, they must be appropriately regulated and ethically developed. Datasets
and standards are two key pillars in the ethical development of new robots. At present,
significant research is undertaken purely because of dataset availability, rather than on a
strong unmet clinical need (there is often poor correlation between clinical need and dataset
availability). There are several publicly available datasets for ADL [167,168], however, they
are usually collected and prepared using different protocols complicating analysis and
replication. It is critical to have standards for robust and reliable collection and preparation
of datasets correlating to the clinical needs, but also enabling researchers to replicate the
data collection and analysis. Likewise, it is important that the emerging ethics are strongly
linked to the development of standards and the implementation of regulations [169]. Cur-
rent ethical frameworks include the EPSRC Principles of Robotics [170] and the 2006
EURON Roboethics Roadmap [171], and recent standards include ISO 13482 (Safety re-
quirements for personal care robots) [172] and BS 8611:2016 (Robots and robotic devices in
general) [173]. The IEEE has set forth on an ambitious programme of standards under the
banner of the IEEE P7000 series, including standards on Data Privacy Processes (P7002),
Ontological Standard for Ethically driven Robotics and Automation Systems (P7007) and
IEEE Recommended Practice for Assessing the Impact of Autonomous and Intelligent
Systems on Human Well-Being (Std 7010-2020) [174].

The combination of human factors with machine learning, sensors, materials and
clinical feedback is crucial for the development of smart, efficient and comfortable wearable
assistive robotics for daily usage by patients. The future development of this type of robot
looks promising with great achievements and benefits for society in the coming years.

7. Conclusions

Wearable assistive robots have the potential to offer new alternative platforms and
ways to deliver assistance, rehabilitation and care to users. This perspective paper has
presented a list of design requirements to develop reliable, efficient, safe and comfortable
assistive devices that can be used on a daily basis by patients. It has been shown that
low-weight, portable and easy to put on and take off robots are key aspects to make
robots comfortable for users. Soft robots tend to be lighter and more comfortable than
rigid structures, however they still cannot deliver the required assistive forces, which
suggests that the optimal approach is a hybrid approach with energy efficient actuation and
control systems. Sensing technologies and computational methods have shown impressive
progress for multimodal data collection and recognition of ADLs under well-controlled
environments and for specific group of activities. Computational methods still have the
challenge to perform reliably in daily life environments and respond safely to unseen data
and unexpected body motions. This suggests that assistive systems need to be designed
with the capability to learn continuously and adapt to the user and terrains autonomously.
These aspects of autonomy and learning will require appropriate regulations for robust
collection of datasets, privacy in data sharing and ethical design of assistive robots, but this
will also require the direct involvement of clinicians and patients in the design process. All
these aspects will ensure the development of reliable, safe and comfortable assistive robots,
that are transparent in the decisions made and assistive actions performed, and thus, make
the user trust the robot and accept it for daily usage.
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