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The human ocular surface (front surface of the eye) is formed by two different types of epithelia: the corneal epithelium centrally
and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal
stem cells for the corneal epithelium and the conjunctival epithelial stem cells). In this review, we provide an update on our
understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the
location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the
treatment of debilitating ocular surface diseases.

1. Introduction

The front of the human eye is formed by the clear cornea
centrally and the white sclera peripherally (Figure 1). The
cornea and sclera are covered by the corneal and conjunctival
epithelia, respectively.These epithelia are nonkeratinized and
stratified structures. The corneal epithelium is 5–7 cell layers
thick whereas the conjunctival epithelium is 3–5 cell layers
thick. These two epithelial structures are bathed in a tear
film, and together these form the front surface of the eye (the
ocular surface) [1, 2]. An important function of the ocular
surface (cornea, conjunctiva, and the overlying tear film) is
to protect the eye from injury, infection, and desiccation
[2]. The cornea is a clear structure that is composed of
five main layers and its main function is to transmit and
focus light into the eye. The superficial layers of the cornea
(the stratified epithelium, Bowman’s layer, and the superficial
stroma) are continuous with the conjunctiva. The conjunc-
tiva is a thin loose transparent mucous layer covering the
anterior surface of the globe and the posterior surface of
the eyelids [2]. The conjunctiva is divided into three regions:
bulbar (covering the surface of the eye), palpebral (lining
the undersurface of the eyelids), and the forniceal region
in between. The conjunctival epithelium contains superficial

scattered goblet cells that produce important mucins for the
tear film. Physically separating the corneal epithelium and the
conjunctival epithelium is a narrowbandof limbal epithelium
that encircles the cornea. The limbal epithelium acts as a
barrier between the clear avascular cornea centrally and
the opaque vascularized conjunctiva peripherally. The limbal
epithelium also contains the stem cells (SCs) that renew the
corneal epithelium, the limbal SCs (LSCs) [3, 4].

Both corneal and conjunctival epithelia are susceptible
to a wide range of diseases from injuries such as chemical
burns to inflammatory diseases such as mucous membrane
pemphigoid and Stevens-Johnson syndrome.These can result
in significant visual impairment and ocular surface pain.
Different treatment modalities have already been presented
as a therapy for limbal SC deficiency (LSCD) with significant
clinical improvements [5, 6]. However, the approaches for
developing conjunctival epithelial constructs for scarring
conjunctival diseases are still very limited [7].

In the present review we provide a concise update on
ocular surface epithelial SCs: their location, distribution, and
the markers used to identify them. The clinical applications
of corneal and conjunctival epithelial and their SCs will also
be discussed.
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Figure 1: Cross-sectional illustrative view of the adult human eye.

2. Embryological Origins of
the Ocular Surface Epithelia

In order for us to understand ocular surface epithelial SCbiol-
ogy, it is important to understand the embryological origin of
the corneal epithelium and the conjunctival epithelium. It has
been shown that these two cell lineages arise simultaneously
from Pax6+ ectodermal cells that remain on the embryonic
ectodermal surface of the developing eye once the lens vesicle
has formed [8, 9]. The PAX6 gene encodes a transcription
factor critical for normal embryonic development.The PAX6
protein is expressed in the developing eye, multiple brain
regions, olfactory bulb, neural tube, gut, and pancreas [10].
In humans, insufficient PAX6 protein expression results in
severe congenital defects of the eye [11]. It is therefore
considered the master gene for oculogenesis.

The developing human corneal epithelium is first appar-
ent at 6 weeks after ovulation [12]. The primitive corneal
epithelium is initially composed of two cell layers (as com-
pared to the five to seven layers in the adult). This primitive
epithelium is also responsible for forming a prominent
primary acellular corneal stroma and Bowman’s layer [13].
Sometime between 8 weeks of gestation (when the eyelids
fuse together) and 26 weeks of gestation (when eyelids open),
the corneal epithelium stratifies to four to five cell layers thick.
Adhesion complexes only become detectable by 19 weeks
of gestation. The further development in utero leads to an
increase in the number of hemidesmosomes, an increase in
the fibril penetration into Bowman’s layer, and an increase
in Bowman’s layer thickness. Maturation of the corneal
epithelium is therefore related to eyelid development [12].

Despite their closeness, the corneal ECs and the con-
junctival ECs belong to distinct lineages [14, 15] arising from
different cell populations [16]. In vivo studies in rabbit have
shown that limbal and corneal EC derived cysts contained
only stratified squamous-type ECs. In contrast, conjunctival
EC derived cysts contained stratified columnar-type ECs
interspersed with periodic acid-Schiff (PAS) staining cells
(PAS is a mucin stain) with a goblet-like structure (the goblet
cells) [16]. This supports the hypothesis that corneal and

limbal ECs originate along a different embryonic lineage to
conjunctival ECs, and that the goblet cells originate from the
conjunctival compartment.

3. Conjunctival Epithelium and Its Stem Cells

3.1. Location of Conjunctival Stem Cells (CjSCs). Whilst it is
commonly regarded that the SCs for the corneal epithelium
(the LSCs) are located in the limbal epithelium, the location
of SCs for the conjunctival epithelium is more controversial.
The following regions of the conjunctiva have been proposed
as possible sites for the SCs: the fornix region [17], the limbus
[18], bulbar conjunctiva [19], palpebral conjunctiva [20], and
at the mucocutaneous junction on the eyelid margin [21].
Bromodeoxyuridine label retention (a property of quiescent
SCs) in GFP-labelled mice suggests that epithelial SCs in the
conjunctiva are uniformly distributed throughout the whole
surface [22]. Another important property of epithelial SCs
is their ability to initiate clonal growth in vitro and yield
colonies consisting of small cells that have a long survival time
(called holoclones). By analyzing epithelial colonies cultured
from different regions of the human conjunctiva, Pellegrini et
al. were the first to suggest that conjunctival epithelial SCs are
located uniformly in the bulbar conjunctiva and the fornices
[19].More recently, Stewart et al. using both clonogenic ability
and expression of putative SCs markers (ABCG2 and p63)
showed that the medial canthal and the inferior forniceal
areas are the preferred area for the human CjSCs. They
suggested that those areas provide greater physical protection
but more importantly are especially rich in goblet cells,
intraepithelial mucous crypts, blood vessels, melanocytes,
and immune cells, features shared with other SC niches [23].
In other studies, where the slow cell-cycling and the great
proliferative potential were analyzed it has been shown that
the forniceal region of the rabbit conjunctiva contains the
largest proportions of cells with high proliferative potential
and a higher percentage of slow cycling cells (14% of ECs)
than the bulbar (5%) and palpebral conjunctiva (1%) [15, 17].

Although there are no specificmarkers for CjSCs, ABCG2
positive cells have been found in clusters of human bulbar
conjunctival epithelial basal cells and these cells displaymany
features that are consistent with the epithelial SC phenotype,
slow cycling, clonogenic capacity, and resistance to phorbol-
induced differentiation [24].Other immunohistological stud-
ies also suggest the presence of p63 and ABCG2 positive
cells in the bulbar conjunctival epithelium [25]. Clinical
observations also indicate that the CjSCs are located in the
fornix and/or in the bulbar conjunctiva [26].

Despite the different observations, resulting from dif-
fering techniques and species used, all seem to point in
the higher amount of conjunctival SCs in the forniceal
area. The fornix may provide greater physical protection,
intraepithelial mucous crypts, vasculature, and immune cells,
features shared with other SCs niches [23].

3.2. Markers for Conjunctival Epithelium and Its SCs. The
identification of amarker that is expressed in the conjunctival
epitheliumbut not in the corneal epitheliumhas been a grow-
ing need. Because of their different patterns of expression,
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Table 1: A table showing the distribution of different keratins across the ocular surface epithelia (corneal, limbal, and conjunctival).

Cytokeratin Cornea Limbus Conjunctiva
CK1, 2, 10 + + ++

CK3
Periphery: basal and
intermediate cells +++
Centre: all cells ++

+++ ++

CK5 +++ +++ Basal cells +++, intermediate cells ++
CK14–18 +++ Basal and superficial cells +++ +++
CK1–8 and K5, 10, 11 +++ +++ +++
CK8, 18, 19 +++ Superficial and intermediate cells ++ +++

cytokeratins (CKs) have been widely used to distinguish the
different ECs of the ocular surface [27] (Table 1). CKs are
intermediate filament-forming proteins responsible for the
structural integrity and function of ECs [28]. Different CKs
have been suggested as specific markers for conjunctival ECs,
amongst those are CK4, CK13, CK19, and CK15.

CK4: In mouse conjunctiva, CK4 is expressed in all the
epithelial layers, but the expression in the basal layers seems
to be weaker and more focal. However, CK4 is also expressed
in mouse and rabbit superficial layers of the corneal epithe-
lium in vivo as well [29, 30].

CK13 and CK19: CK13 and CK19 are the most accepted
markers for conjunctival ECs with confounding results aris-
ing from different investigations. Ramirez-Miranda et al.
have shown that CK13 and CK19 expression is significantly
increased in the human conjunctiva in comparison to the
human cornea. They have shown that CK13 is expressed
only in the suprabasal limbal epithelium and in all layers of
the conjunctival epithelia and it is completely absent in the
cornea. On the other hand, CK19 is present at substantial
levels in the peripheral corneal epithelium and in all layers
of the limbus and conjunctiva epithelium [28, 31, 32]. They
showed that none of the CK12-positive cells expressed CK13
in the central cornea and the limbal ECs expressed either
CK12 or CK13 (CK12 is known to be a specific marker for
corneal EC; see Section 4.2). On other hand, CK12 and
CK19 positive cells were colocated throughout the limbus and
peripheral cornea suggesting a higher specificity of CK13 for
conjunctival ECs [28].

CK15: Other investigators have also studied the expression
pattern of CK15, a minor cytoskeletal component of stratified
tissue proposed to be a marker for progenitor cells [33]. All
studies revealed that CK15 is expressed in the basal layers
of the limbal and conjunctival epithelia but it is absent in
the corneal epithelium [34, 35]. Other in vitro studies have
also shown the expression of CK15 by conjunctival epithelial
progenitor cells but they suggest that more differentiated cells
may also express this marker [36].

Other markers for conjunctival epithelial cells are the
mucins. Epithelial MUCs are a heterogeneous group of
large glycosylated proteins, which form the viscous, gel-like

mucous layer of the tear film. BothMUC1 andMUC5AChave
been postulated as beingmarkers for conjunctival ECs and/or
goblet cells.

MUC1: The exclusivity of MUC1 to conjunctival ECs is
debated with some proposing it as a conjunctival epithe-
lial specific marker [37] and others suggesting expression
throughout the entire ocular surface in health [38, 39].

MUC5AC: MUC5AC, on the other hand, has long been
postulated as being specific to the conjunctival goblet cells
[40]. Although it is not detected in the ECs of the conjunctiva,
it is the best surrogatemarker for the presence of conjunctival
epitheliumby identifying the goblet cells that are absent in the
corneal epithelium in health. Anothermethod for identifying
goblet cells is by PAS staining of MUCs. This is indeed used
clinically in the investigation of corneal conjunctivalisation
by corneal impression cytology [40].

There are few studies looking at identifying markers
for CjSCs. The most commons are ATP-binding cassette
subfamily Gmember 2 (ABCG2) and the transcription factor
p63. ABCG2 is a cell surface transmembrane transporter that
is present in many adult SCs, including LSCs. Conceptually,
it may form a component of the molecular mechanisms
by which long-lived SCs reduce the potential for genomic
damage over their extended lives, and their expression has
been correlated with SC activity [41]. In human conjunctiva
its expression has been found in clusters of basal [24], medial
canthal and the inferior forniceal areas conjunctival ECs [23].
Those ABCG2 positive cells display many features that are
consistent with the epithelial SC phenotype, slow cycling,
clonogenic capacity, and resistance to phorbol-induced dif-
ferentiation. p63 is a transcription factor that is known to be
expressed by LSCs and early transient amplified cells [42–44].
Stewart et al. using cytochemistry analysis showed a preferred
location of this transcription factor in the inferior forniceal
and medial canthal. The cells in those areas exhibited the
higher clonogenic capacities which suggest a phenotype that
is consistent with SCs [23].

4. Limbal SCs

4.1. Location of Limbal SCs. In corneal epithelial homeostasis
the epithelium is constantly renewed to replace desquamating
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Figure 2: Limbal SCs for the corneal epithelium reside in the basal layer of the limbal epithelium. Transient amplifying cells divide and
migrate towards the central cornea to replace the terminal corneal ECs that get shed from the corneal surface. The stroma of the limbal SC
niche is populated by fibroblasts and nourished by blood vessels (BL: Bowman’s layer).

cells that are shed from the corneal surface (Figure 2).
This homeostasis is outlined in the XYZ hypothesis of
corneal epithelial maintenance [45]. In brief, this describes
the proliferation and motility of basal ECs at the periphery
of the cornea centripetally along the basement membrane
towards the center of the cornea (component X) and then
the movement of cells from the basal layers to the superficial
corneal epithelial layers (component Y) to replace the ECs
that are shed from the corneal surface (component Z).

It is widely accepted that the corneal epithelial equilib-
rium described above is maintained by the self-renewing
undifferentiated SCs located at the limbus. A consistent body
of evidence demonstrates the limbal location of corneal
epithelial SCs with the original studies dating back to the
late 1980s [46]. In brief, the evidence for this includes the
following: the presence of basal limbal ECs with a high
nucleus to cytoplasm ratio and putative protein expression

consistent with SCs [47, 48], using DNA-labelling and cell-
cycling studies, the presence of limbal ECs in a quiescent state
but with a high proliferative response in injury; and clinical
observations on limbal and corneal epithelial wound healing
in humans.

Recent studies in animal models however suggest that
there is also a reservoir of SCs within the corneal epithelium
itself in addition to the LSCs. Recent nonhuman studies have
shown corneal epithelial maintenance without limbal input
and survival and self-maintenance of SCs outside the limbal
SC niche [49]. Successful corneal epithelial regeneration by
sequential corneal epithelial transplantation in a murine
model was first proposed as evidence for this [50]. Recently,
again in a murine model, lineage-tracing experiments have
shown that although the limbus is the prime source for
corneal epithelial maintenance, there is also a reservoir of
clonogenic cells within the corneal epithelium itself [51]. In
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addition to these studies, 48-week follow-up rabbit stud-
ies have shown that although normal corneal epithelium
cannot initially be maintained following the removal of
limbal epithelium, there is evidence of corneal epithelial
normalization at 48 weeks [52]. Bringing together all the
evidence available, although corneal epithelial maintenance
relies upon SCs within the limbus, there is some evidence in
animal models that there may also be a pool of progenitor
cells within the corneal epithelium itself when homeostasis is
compromised [53]. Further research is required particularly
in human studies to provide strength and consistency to this
theory.

4.2. Markers for Limbal SCs. Despite decades of research, no
definitive marker for LSCs has been identified. Comprehen-
sive reviews of putative suggested LSC markers have been
published elsewhere [54, 55]. In brief, putative positive mark-
ers include the transcription factor ΔNp63𝛼 and the ABCG2;
whilst negativemarkers includeCK3 andCK12, the structural
proteins found in the corneal epithelium. More recently,
murine and human studies have shown that cells expressing
the ATP-binding cassette, subfamily B, member 5 (ABCB5)
are required for corneal epithelial homeostasis and repair
[56].They showed that ABCB5 expressing cells were localized
to the limbus and coexpressed ΔNp63𝛼 but not CK12.

5. The Clinical Applications of Corneal and
Conjunctival Epithelia and Their SCs

Diseases of the corneal and conjunctival epithelia result
in debilitating and blinding eye diseases that are often
chronically painful. These diseases result from injury such as
burns, inflammatory and immunemediated diseases (such as
mucousmembrane pemphigoid), and iatrogenic causes (such
as radiotherapy and chemotherapy). Our understanding of
corneal and conjunctival epithelial biology and increasing
knowledge of their SCs is critical to the clinical management
of these diseases.

Limbal SC failure results in an abnormally regenerating
corneal epithelium that then gets replaced by a more opaque
conjunctival epithelium and blood vessels. This results in
loss of vision. Transplanting healthy limbal tissue or cultured
limbal epithelium containing limbal SCs has been shown in
numerous studies to result in normalization of the corneal
epithelium [5, 6]. Using DNA fingerprinting methods in
allogeneic transplants, it has been shown that often the donor
cells do not survive on the corneal surface despite the corneal
epithelium regenerating normally [57]. This then begs the
question as to how the transplanted limbal epithelium and
limbal SCs contribute to normalization of the host corneal
epithelium.Many now believe that paracrine influences from
the transplanted ECs may result in host SC recovery or
certainly contribute to it. It is also interesting to note that
the success rate for cultured limbal epithelial transplants
is approximately equal for both allogeneic and autologous
transplants (about 75% success) [58]. This may suggest that
transplant failure is less likely to result from rejection and that

other factorsmaywell be at play (such as the number of limbal
SCs in the transplanted tissue).

As outlined above, although improved knowledge of
limbal SC biology has resulted in significant advances in
clinical benefit, it has been slower with regard to the
conjunctival epithelium. However, our understanding of
conjunctival epithelial SCs and their culture has improved.
Many groups are now working on developing conjuncti-
val epithelial constructs for scarring conjunctival diseases
with still very limited results [7]. Regarding conjunctival
epithelium, as our understanding of conjunctival epithe-
lial SCs improves, clinical applications of this biology will
bring considerable benefit. There are already several groups
working on developing conjunctival epithelial constructs for
scarring conjunctival diseases. It has even been suggested that
cultivated conjunctival epitheliummay be used as a treatment
for limbal SC and corneal epithelial failure [7].

6. Conclusion

Our knowledge of limbal SC and conjunctival epithelial SC
biology has progressed considerably in the last two decades
with significant clinical advances being made in limbal SC
transplantation. There however remain critical areas for fur-
ther work. These include more understanding of the cellular
biology of these SCs and in the process the identification
of further markers. This will enable the development of
nonsurgical approaches (drug and biological agents) to the
management of ocular surface epithelial diseases. In addition,
the location of these SCs is important to understand fully.
There are emerging concepts that are beginning to challenge
our conventional understanding of this.
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