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Radiation-induced pulmonary fibrosis (RIPF) is a chronic and progressive

respiratory tract disease characterized by collagen deposition. The

pathogenesis of RIPF is still unclear. Type 2 alveolar epithelial cells (AT2), the

essential cells that maintain the structure and function of lung tissue, are crucial

for developing pulmonary fibrosis. Recent studies indicate the critical role of

AT2 cell senescence during the onset and progression of RIPF. In addition,

clearance of senescent AT2 cells and treatment with senolytic drugs efficiently

improve lung function and radiation-induced pulmonary fibrosis symptoms.

These findings indicate that AT2 cell senescence has the potential to contribute

significantly to the innovative treatment of fibrotic lung disorders. This review

summarizes the current knowledge from basic and clinical research about the

mechanism and functions of AT2 cell senescence in RIPF and points to the

prospects for clinical treatment by targeting senescent AT2 cells.
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1 Introduction

Radiation-induced pulmonary fibrosis (RIPF) is the most common complication in

patients with thoracic tumor radiotherapy (Turrisi et al., 1999; Chang et al., 2015).

Previous studies suggest that lung fibrosis (PF) is caused by chronic inflammation

(Johnston et al., 1997). However, its pathogenesis has not yet been fully elucidated.

Lung fibrosis can damage lung tissue and produce fibers, eventually causing fibrotic

scarring (Noble et al., 2012). The predominant pathological characteristics of RIPF

include abnormal interstitial inflammation and fibrosis, loss of function of alveolar

epithelial cells, and activation of mesenchymal cells. These characteristics destroy the

structure of lung tissue, cause pulmonary fibrosis, respiratory failure, and ultimately death

(Marks et al., 2003; Tsoutsou and Koukourakis 2006; Graves et al., 2010; Marks et al.,

2010; Zanoni et al., 2019). Lung transplantation was the only plausible approach to

treating RIPF until the advent of antifibrotic therapy (Ebert et al., 2015). Alveolar type
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2 epithelial cells (AT2) are the main target cells that respond to

ionizing radiation (IR) (Desai et al., 2014). They secrete surface-

active substances and participate in the immune response and

stem cell differentiation (Tesei et al., 2009; Beers and Moodley

2017). They also play an important role in lung development and

injury recovery.

Cellular senescence is a state in which the cell cycle is at an

irreversible standstill (Ogryzko et al., 1996; Wada et al., 2004;

Herranz and Gil 2018). Cellular senescence could increase the

expression of a senescence-associated secretory phenotype

(SASP), which is involved in cell proliferation, inflammation,

and induction of epithelial-mesenchymal transition (EMT) and

promotion of fibrosis (Kaarniranta et al., 2022). Progressive

telomere attrition, DNA damage, reactive oxygen species

(ROS), and metabolism are considered the leading causes of

cellular senescence. IR can also induce these changes (Araya

et al., 2019).

This review summarizes the current knowledge about the

mechanism and roles of AT2 cell senescence in RIPF

(Figure 1). Recent publications on effective therapeutic

strategies targeting senescent AT2 cells in RIPF are also

generalized.

2 Biological role and the pathological
response of alveolar epithelial type
2 cell

2.1 AT2 cells act as “tissue stem cells” in the
normal lung tissue

In normal lung tissue, regional stem and progenitor cells

contribute to maintaining the balance of lung homeostasis and

repair (Hayes et al., 2011; Alysandratos et al., 2021). In fact,

alveolar epithelial cells are divided into alveolar type 1 epithelial

(AT1) and AT2 cells; the AT2 cells act as “tissue stem cells”.

Lineage tracing experiment showed that AT2 cells are defined by

their expressions of surfactant protein C (SFTPC). These cells

have a longer-term capacity for self-renewal and the potential to

differentiate into AT1 cells, which are mature tissue stem cells

(Liu Q. et al., 2019). The analysis suggests that AT2 cells showed

greater clonogenic potential and functional heterogeneity in vivo.

The AT2 cells, which can differentiate into AT1, are only a subset

of the AT2 cells (Rackley and Stripp 2012; Sun et al., 2021). The

functional heterogeneity of AT2 cells could be closely related to

the microenvironment in lung tissues; for example, WNT

signaling leads to microenvironmental changes in the lung

that allow AT2 cells to perform stem cell functions; as in the

microenvironment of lung fibrosis, various types of AT2 cells

perform different functions (Stegemann-Koniszewski et al., 2016;

Nabhan et al., 2018; Yao et al., 2019). AT2 cells are the source of

alveolar surfactant (Griese 1999). AT2 cells are the alveolar

defense wall that inhibits microbial growth by secreting

surface-active substances and recruiting effector immune cells

and secreting antimicrobial peptides (Hiemstra et al., 2015).

AT2 cells are also responsible for regenerating and

replenishing lung epithelial cells. Consequently, AT2 cells

have the potential to contribute to repair following a lung injury.

2.2 Pathological response of the AT2 cell
in RIPF

AT2 cells are the critical target cells for lung injury caused by

IR. Their dysfunction is a vital effector process of lung injury (De

Ruysscher et al., 2019). In response to IR induction, AT2 cells

suffer apoptosis due to DNA damage. The onset of AT2 apoptosis

leads to stem cell depletion, failure of structural repair of lung

tissue, and is a precursor to fibrosis formation (Liang et al., 2016).

Under IR stimulation, AT1 cells lose the ability to maintain

normal alveolar structure and gas exchange. After the initial

direct and indirect radiation damage, the damage leads to the

production of reactive oxygen species (ROS) (Khan et al., 2003).

ROS can release damage-associated molecular patterns (DAMP)

through AT2 cells and vascular endothelial cell injury, recruiting

inflammatory cells such as monocytes and neutrophils that have

pattern recognition receptors on their surfaces (Feldman et al.,

2015). Numerous cytokines and chemokines from AT2 cells and

other lung cells are active in irradiated lung tissue and have been

implicated as drivers of RIPF, such as TGF-β activity stimulates

fibroblast differentiation to myofibroblasts (Rube et al., 2000).

Endoplasmic reticulum (ER) stress and mitochondrial

dysfunction following IR stimulation are also factors in

developing functional abnormalities in AT2 and triggering

fibrosis. Our previous studies documented that the epithelial-

mesenchymal transition (EMT) of AT2 cells upon irradiation

plays an important role in the development of RIPF (Liu Z. et al.,

2019; Liang et al., 2021; Wang et al., 2021; Yan et al., 2022). Our

research supports an idea that AT2 cells produce early effects

after irradiation and acts as an initiating event in the

pathogenesis of RIPF. AT2 cells are also involved in crucial

immune responses (Bissonnette et al., 2020). Furthermore,

AT2 cells transport immunoglobulins and produce

components of the complement system (Fehrenbach 2001;

Datta et al., 2020). It has been shown that when AT2 cells are

subjected to chronic and persistent microstimulation, PF can be

triggered (Kinoshita and Goto 2019). In many investigations of

PF, it is suggested that a decrease in the number of AT2 cells, as

well as a targeted stimulation of AT2 cells to make them

impaired, promotes PF development (Sisson et al., 2010).

Many studies indicate AT2 cell senescence as a persistently

stained form of IR-induced injury (Hernandez-Segura et al.,

2018; Baselet et al., 2019). Furthermore, senescent AT2 cells

lose the ability to proliferate and differentiate into AT1 cells due

to their stromal epithelial transformation effect. They transform

into fibroblasts (Naikawadi et al., 2016; Chen et al., 2019),
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preventing effective reconstruction of the structure of lung tissue.

The injury gradually aggravates with IR stimulation, leading to

lung function disorder and induction of RIPF. Substantial

evidence suggests that the loss and dysfunction of AT2 cells

play a central role in fiber proliferation (Parimon et al., 2020).

Thus, AT2 cells serve as drivers of lung fibrosis in RIPF.

3 The pathogenesis role of AT2 cell
senescence in RIPF

3.1 Senescence of the AT2 cell is a critical
driver event of RIPF

RIPF is believed to be the end point of a continuous

progression of radiation-induced lung injury (RILI). Electron

microscopy showed damaged lung epithelial cells, thickened

secretions of goblet cells mucus, swelling of the basement

membrane, and changes in endothelial cells (Hanania et al.,

2019). When the alveolar epithelium is continuously damaged,

AT2 cells undergo distinctive biochemical and morphological

changes and become dysfunctional and senescent. These

processes are followed by senescence and activation of

fibroblasts through paracrine effects, the initial pathological

state of RIPF (Okunieff and Vidyasagar 2013; Chung et al.,

2021). Activated fibroblasts differentiate into myofibroblasts,

which exhibit contractile function and produce ECM

components essential for the formation of PF (Chanda et al.,

2019). In isolated lung tissues of RIPF patients, the expression of

p16INK4a and p21CIP1 increased in AT2 cells, indicating a positive

correlation between the degree of senescence of AT2 cells and the

progression of pulmonary fibrosis disease (Beausejour 2003;

Soysouvanh et al., 2020; Jiang et al., 2017). So far, studies in

mouse models with a bleomycin-induced fibrosis-like phenotype

(a chemotherapeutic drug) support the hypothesis that

senescence contributes to fibrosis (Li et al., 2021). Growing

evidence suggests that cell senescence is a causative factor in

RIPF (He et al., 2019). Therefore, cellular senescence is a critical

physiological process that should be targeted to explore an

effective treatment for RIPF.

Cellular senescence was first described more than 50 years

ago followed the Hayflick Limit’ concept. This concept observed

that normal human fibroblasts underwent a finite number of

divisions before ceasing to proliferate when grown in the culture

(Macieira-Coelho 1995; Shay and Wright 2000). Cellular

senescence is a complex process and is usually accompanied

by the activation of the DNA damage response (DDR) after IR.

DDR is operated by activating the tumor suppressor protein

p53 and upregulating the cyclin-dependent kinase inhibitors

(CDKIs) p21CIP1 and p16INK4a (Huang and Zhou 2021;

Shmulevich and Krizhanovsky 2021). Furthermore, unlike

proliferating cells, senescent cells are normally characterized

FIGURE 1
The relationship and pathogenesis associated with AT2 cell senescence and the development of fibrosis in RIPF.
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by changes in cell size and morphology and exhibit senescence-

associated heterochromatin foci formation, lipofuscin

deposition, DNA damage foci, and Lamin B1 deletion.

Senescence causes the secretion of high levels of factors,

including growth factors, cytokines, chemokines, and

proteases, known as the senescence-associated secretory

phenotype (SASP).

AT2 cells are stem cells that are extraordinarily sensitive to

senescence, and AT2 cell senescence leads to stem cell exhaustion

and failure of repair mechanisms (Barnes et al., 2019). Compared to

young AT2 cells, old AT2 cells showed decreased expression of the

AT2 cell marker Surfactant Protein C along with increased

expression of the AT1 cell marker Hopx, accompanied by

increased WNT/β-catenin activity. These results suggest that

chronic WNT/β-catenin activity in PF contributes to increased

AT2 cell senescence and reprogramming (Lehmann et al., 2020).

Dysfunctional alveolar epithelial cells are associated with senescence

and play a key role in the remodeling process of abnormal lung

injury. AT2 cell senescence is a prominent pathological

manifestation of RIPF (Morgan et al., 1995; Schafer et al., 2017;

Habermann et al., 2020). AT2 cell senescence can cause tissue repair,

regeneration failure, and loss of alveolar epithelial integrity

(Hernandez-Gonzalez et al., 2021). Furthermore, AT2 cell

senescence probably affects cell-to-cell communication with

fibroblasts and immune cells and are more susceptible to

alterations in senescence such as telomere shortening and

mitochondrial dysfunction compared to normal cells (Alder

et al., 2015; Bueno et al., 2015). However, in myofibroblasts,

telomere shortening does not occur (Álvarez et al., 2017). Single-

cell RNA sequencing research indicates that senescent AT2 cells

increase in lung tissue from PF patients compared to normal human

lung tissue and that they can activate myofibroblasts through

multiple pathways (Reyfman et al., 2019).

Senescent lung fibroblasts can induce myofibroblast

differentiation in a paracrine manner, suggesting that they

express profibrotic protein. In mouse model of pulmonary

fibrosis treated with bleomycin, persistent fibrosis is attributed

to the aggregation of senescent and antiapoptotic myofibroblasts

(Hecker et al., 2014). Alveolar macrophages are cells that inhabit

the lung for the long term. Their numbers and changes associated

with senescence can be regulated by changes associated with the

alveolar microenvironment, independent of circulating signals.

Normal macrophages originally functioned to remove harmful

cells, but senescent macrophages cannot clear aggregated

senescent cells. In the microenvironment of persistent

immune senescence, it facilitates the transition to a profibrotic

state. Likewise, aberrant signals from senescent inflammatory

cells and fibroblasts may activate the expression of genes

associated with inflammation and fibrosis in epithelial cells of

PF (Chakraborty et al., 2022). In summary, the occurrence of cell

damage and senescence in the lung contributes to pulmonary

fibrosis, but the senescence of alveolar epithelial cells may be a

central driver in RIPF rather than the senescence of other cells.

3.2 SASP offers a scaffold for the
senescence of AT2 cells

Senescent AT2 cells secrete several inflammatory proteins

called SASP (senescent-associated secretory phenotype). SASP

comprises a series of cytokines such as pro-inflammatory

cytokines (IL-6, IL-1α, IL-18, etc.), growth factors (TGF-β),
chemokines (CXCL10, CXCL12), and matrix remodeling

enzymes (MMPs, matrix metalloproteinases). Furthermore,

they serve as a new mechanism for the cellular senescence

effect (Coppé et al., 2008; Freund et al., 2010; Aird et al.,

2016; Yin et al., 2021). Senescence is an inflammatory state in

AT2 cells. These proteins cause low-grade chronic inflammation

and diseases in the organization and accelerate the aging process

of senescent AT2 cells and their neighboring cells through

paracrine action (Evangelou et al., 2022). SASP develops

gradually, triggering chronic inflammation and loss of tissue

function, culminating in AT2 cell senescence and lung fibrosis

(Kuilman et al., 2010; Kang and Elledge 2016; Liu et al., 2021).

Significantly, senescent AT2 cell clearance reduces the expression

of SASP factors such as IL-6, TGF-β, and MMP12, which play a

decisive role in the regulation of pulmonary fibrosis and lung

function (Jeon et al., 2017; Schafer et al., 2017; Prata et al., 2018).

Thus, SASP is an essential mediator of AT2 cells in the pathology

of pulmonary fibrosis.

Recently, sufficient evidence suggests that extracellular

vesicles (EVs) secreted from senescent AT2 cells modulate the

phenotype of recipient cells, for example, by accelerating

senescence. This process results in inflammation and stem cell

(such as AT2 cells) dysfunction, similar to SASP factors (Raposo

et al., 1996; Fujita et al., 2015). EVs transport proteins secreted

explicitly from senescent cells to promote the occurrence of

fibrosis in RIPF (Fujita et al., 2016; Takahashi et al., 2017;

Kadota et al., 2020). In particular, TGF-β, a component of

SASP with enormously high content, is a crucial promoter of

EMT in AT2 cells (Zhou et al., 2012). It promotes mesenchymal

cell protein expression and subsequent EMT, allowing for further

pulmonary fibrosis (Xu et al., 2009; Bai et al., 2017; Lee et al.,

2021). In summary, SASP is a marker of AT2 cell senescence. It

acts with other cells in the lung through paracrine action and

other factors to induce widespread cellular senescence,

promoting pulmonary fibrosis.

3.3 Activation of fibroblasts and alteration
of the extracellular matrix induced by
AT2 senescence

Remodelling after lung tissue injury is critical for normal

lung homeostasis and function (Vaughan et al., 2015). Senescent

AT2 cells express SASP, inducing massive proliferation and

activation of lung fibroblasts and myofibroblasts to repair the

injury. When the repair is out of control, the basement
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membrane (BM) disrupts, and the extracellular matrix (ECM) is

excessively produced, ultimately leading to RIPF (Demaria et al.,

2014; De Biasi et al., 2020; Zhang et al., 2020; Marquez-Exposito

et al., 2021; Zhang Y. et al., 2022). The ECM was initially thought

to be a simple scaffold that supported the anatomy of the lung,

providing structural support to the airways. However, ECM

components were subsequently found to respond strictly to

changes in the functional signals of its surrounding cells, like

AT2 cells (Theocharis et al., 2016). ECM includes collagen,

hyaluronic acid, connexin, and other components. It is

integral to normal tissue healing and pathological processes

(Rowley et al., 2019). When IR causes AT2 cell senescence,

SASP can promote the EMT of AT2 cells to generate

fibroblasts and myofibroblasts; On the other hand, SASP

activates and multiplies fibroblasts; SASP also acts on

myofibroblasts to induce senescence and aggravate

inflammatory responses; these lead to excessive proliferation

and abnormal activation of myofibroblasts, producing a large

number of components of the ECM such as collagen and finally

inducing RIPF (Laberge et al., 2012; Xu et al., 2015; Haydont

et al., 2019; Jin et al., 2020).

4 Regulatory pathways in radiation-
induced AT2 cell senescence

4.1 Telomeres and telomerase linked to
AT2 cell senescence

Previous studies found that telomere shortening results in

AT2 cell senescence. Telomere shortening after each mitosis was

observed as early as 1960 (Hayflick and Moorhead 1961).

However, they trigger sustained DDR if they are too short.

This phenomenon is true for some nonfunctional telomeres,

where DDR recognizes DNA damage and repairs it to arrest the

cell cycle (Allsopp et al., 1992). Studies have shown that senescent

AT2 cells can have cell cycle arrest due to the shortening of the

telomere (Fernandez et al., 2022). The telomerase complex

protects the telomeres from DNA damage and maintains the

telomere intact. (Schratz et al., 2021). The minimum length

ensures the successful binding of telomere protection proteins

to telomeres (Li et al., 2017). If the protective protein or

telomerase activity is altered, telomere uncapping causes DNA

damage and poor repair, triggering AT2 cell senescence (Zhang

et al., 2016).

Studies on AT2 cells from patients with pulmonary fibrosis

have found a shorter telomeric length (Duckworth et al., 2021).

IR is a critical pathological factor that contributes to telomere

attrition (Aubert and Lansdorp 2008). On one hand, IR causes a

sustained DDR; on the other hand, it leads to telomeric damage

and dysfunction, both of which can induce AT2 cell senescence.

In TRF1-deficient AT2 cells, activation of the DNA damage

response exacerbates pulmonary fibrosis (Hsu et al., 2007). In

radiation-induced lung injury (RILI), increased cell division

during radiation-induced pneumonia increases telomeric wear

and tear. Telomeres are susceptible to oxidative stress induced by

chronic inflammation and IR, thus accelerating AT2 cell

senescence (von Zglinicki, 2002; Wu et al., 2019; Huang and

Zhou 2020; Wang et al., 2020; Wang et al., 2020). Furthermore,

IR promotes AT2 cell senescence by inducing

TPP1 ubiquitination and degradation that uncaps the

telomeres (Zemp and Lingner 2014; Smith et al., 2020).

Telomere dysfunction stimulates sustained DDR signaling,

vital for AT2 cell senescence and its phenotype. For example,

sustained DDR signaling releases IL-6, a key cytokine of SASP

(Ghosh et al., 2012).

In addition, telomerase regulates NF-κB, COX-2, and other

pathways that enhance inflammatory effects. It also exacerbates

cellular senescence through autocrine or paracrine secretions

(Chung et al., 2006; Lagnado et al., 2021). Telomere-associated

inflammation limits tissue regeneration capacity and accelerates

the senescence process by impairing stem cell differentiation and

division of AT2 cells (Alder et al., 2015). To conclude, telomeres

and telomerase play a crucial role in AT2 cell senescence and, by

extension, in RIPF exacerbated by cell senescence.

4.2 Cell cycle arrest in AT2 cell senescence

In RIPF, cell cycle arrest was observed in senescent AT2 cells.

The mechanisms of AT2 cell senescence leading to RIPF are not

fully elucidated. There seems to be a link between the tumor

suppressor genes p53 and AT2 cell senescence. Once IR damages

DNA, p53 is stably overexpressed by DDR signaling for DNA

repair (Lowe et al., 1993; Pitolli et al., 2019). Under irreparable

DNA damage, p53 induces cellular senescence, arresting the cell

cycle (Engeland 2018). Furthermore, increased p53 activity in

AT2 cells reduces their ability to proliferate and differentiate,

thus promoting the progression of the senescent phenotype

(Chen et al., 2020). Simultaneously, p53 also mediates the cell

cycle-dependent kinase inhibitor p21CIP1, which causes cell cycle

arrest and DNA damage-induced cellular senescence in the G1/S

transition (Deng et al., 1995; Kim et al., 2017).

Many studies have shown that IR activates p53 and stabilizes

its activity (Chen et al., 2021). Previous studies have detected

persistently higher expression of p53 in IR-induced senescent

AT2 cells (Mathew et al., 2011; Beach et al., 2018). RNA and

protein levels of p53 were increased in a mouse model of

pulmonary fibrosis, similar to the expression of RIPF in the

lung tissue (Nam et al., 2021). However, when a senolytic drug

was used to improve the state of pulmonary fibrosis and remove

senescent AT2 cells in mice, the p53 content was visibly reduced

(Yao et al., 2021). Additionally, the senescent phenotype of

AT2 cells is alleviated when the p53-deficiency is present

(Zhang et al., 2021). Fanconi anemia (FA) is extremely

sensitive to oxidative stress (ROS), which is DNA damage,
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and p53 deletion can alleviate the symptoms of HSPCs.

Activation of p53 at high ROS levels leads to increased cell

cycle arrest, senescence, and apoptosis of HSPCs (Joenje et al.,

1981; Abbas et al., 2010; Brosh et al., 2017). Analogically,

p53 promotes IR-induced cellular senescence through FA-like

regulatory effects since IR-induced DNA damage is

predominantly mediated by ROS generation. In conclusion, in

senescent AT2 cells, p53 expression was steadily increased, and

cell cycle arrest exhibited a senescent phenotype.

p21CIP1 is a cell cycle regulator, a senescence-inducing

factor, and a tumor suppressor (Morris-Hanon et al., 2017). It

plays a pivotal role in apoptosis, differentiation, induction of

pluripotent stem cells, DNA repair, transcription, and cell

migration (Avelar et al., 2020). Overexpression of p21CIP1

induces cell differentiation in various normal and tumor

cells, including AT2 cells (Cheng et al., 2000; Warfel and

El-Deiry 2013). In the RIPF mouse model and senescent

AT2 cells, the level of p21CIP1 increased significantly

(Citrin et al., 2013; Yosef et al., 2017; Sainz de Aja et al.,

2021). RIPF p21CIP1 and p16INK4a levels were reduced by

senolytic drug treatment (He et al., 2019). Furthermore,

inhibition of the PI3K/Akt pathway removes p21CIP1 from

the cytoplasm and attenuates RIPF (Beeser et al., 2005; Thillai

et al., 2017). In conclusion, increased p21CIP1 expression

affects the state of AT2 cells and induces senescence by

regulating the cell cycle.

p16INK4a is a senescence marker and induces AT2 cell

senescence (He and Sharpless 2017; Zysman et al., 2020). Past

studies found an association between the effect of reactive oxygen

species (ROS) on p16INK4a and the β-catenin/Wnt signaling

pathway in senescence in AT2 cells (Lehmann et al., 2020). In

lung tissue from RIPF patients and a mouse model of pulmonary

fibrosis treated with bleomycin, the content of p16INK4a increased

with senescent cells, suggesting the correlation between p16INK4a

levels and the severity of fibrosis (Liggett and Sidransky 1998;

Carraro et al., 2020). In earlier studies, BubR1 was associated with

p16INK4a expression and senescence phenotype, which paved the

way for future studies on the relationship between p16INK4a and

AT2 cells with stem cell functions. Excessive expression of

p16INK4a under various stimuli such as DDR, telomere erosion,

and ROS by IR causes irreversible cell cycle arrest (Kang et al.,

2015; Bernard et al., 2020).

4.3 Senescence of AT2 cells triggered by
the cGAS-STING pathway

In many studies on cell senescence, new mechanisms and

pathways have been revealed. The latest research reveals the

physiological importance of this ancient, but non-canonical

cGAS-STING pathway in damage-triggered AT2 cell

senescence and fibrotic diseases in the lung (Zhang D. et al.,

2022) cGMP-AMP synthase (cGAS) is a cytoplasmic DNA

sensor of the trigger-type interferon pathway. It is a new

immune signaling mechanism activated by binding to double-

stranded DNA such as microbial and self-DNA (Sun et al., 2013).

cGAS produces a second messenger, cGAMP, that binds and

activates STING (STImulator of IFN genes) (Wu et al., 2013).

STING activates IFN regulatory factor 3 (IRF3) and NF-κB,
producing interferons and inflammation-associated cytokines

(Kato et al., 2017). Interestingly, cGAS is associated with

chromatin during mitosis, indicating its other probable role in

the regulation of the cell cycle. The deletion of cGAS abolishes the

expression of the SASP gene and other markers of cell

senescence, such as p21CIP1 (Yang et al., 2017). Drug-

dependent pro-senescence cGAS-STING signaling drives the

production of inflammatory SASP components (Constanzo

et al., 2021).

When IR induces lesions, damaged DNA accumulates

abnormally and substantially in the cytoplasm containing

cGAS, triggering cell cycle changes and causing cellular

senescence. Moreover, the cytoplasmic chromatin fragment

(CCF) colocalizes with cGAS to form bright light spots, which

appear in several cases of primary cellular senescence. CCF

activates the cGAS-STING pathway in cellular senescence

(Dou et al., 2017). Thus, the cGAS-promoting function of

pulmonary fibrosis is also a focus of future attention.

5 Treatment and prospects

5.1 Current treatments

Currently, complete curative treatment is not available for

RIPF, and the use of anti-inflammatory drugs does not achieve

satisfactory therapeutic results. There are no established

standardized guidelines for the treatment of RIPF. In previous

clinical treatment, glucocorticoids and other anti-inflammatory

drugs were commonly used, but in patients with pulmonary

fibrosis, treatment was not effective or even risked exacerbation

(Abratt et al., 2004; Canestaro et al., 2016). Recently, the multi-

kinase inhibitor Nintedanib, which targets vascular endothelial

growth factors among other growth factors, could reduce the

incidence of lung fibrosis, and preclinical results have been

promising; however, phase II trials are ongoing (De Ruysscher

et al., 2017). Pirfenidone is another novel drug that

downregulates collagens and growth factors and is worthy of a

larger, well-controlled trial (Simone et al., 2007). Corticosteroids

cannot be given at a fixed dosage, while inhaled steroids have

shown efficacy for RIPF (Henkenberens et al., 2016). Amifostine

is a radioprotector that functions as a free radical scavenging

agent and reduces the risk of RIPF. Angiotensin-converting

enzyme inhibitors (ACE inhibitors) have a significant

antifibrotic effect and prevent the deposition of collagen fibers

(Ghosh et al., 2009). Currently, however, drug prevention and

treatment for RIPF are extremely limited, and the promotion of
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TABLE 1 Anti-senescence therapy with mechanism and effect in pulmonary fibrosis.

Treatment Proposed mechanism(s) Effect References

Dasatinib + Quercetin Senolytic (Bcl-xL inhibitor, ↓p16, ↓p21, ↑apoptosis) ↓Fibrosis in mice Xu et al. (2018)

↓Senescence cells

Navitoclax (ABT-263) ↓Bcl-2 ↓Fibrosis in mice Pan et al. (2017)

↓Senescence cells

GKT37831 Antioxidant ↑Fibroblast apoptosis Hecker et al. (2014)

↑p53-dependent apoptosis
↓Replicative
↓Fibrosis in mice

SkQ1 Antioxidant ↓Senescence biomarkers Kolosova et al. (2012)

PAI1 inhibitor (TM5275) ↑p53, ↑apoptosis ↓Fibrosis in mice Huang et al. (2012)

Protected AT2 cells from senescence Rana et al. (2020)

Metformin ↓NF-κB, ↓p16, ↓p21 ↓SASP Rangarajan et al. (2018)

↓mTOR ↓Senescence cells

Rapamycin ↓mTOR ↓SASP Mullard (2018)

↓Fibrosis in mice Platé et al. (2020)

Everolimus ↓mTOR ↓SASP Platé et al. (2020)

FIGURE 2
The anti-senescence therapy to prevent disease and extend healthy life span in RIPF.
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targeted precision therapy, in particular, may help improve the

quality of life of patients with RIPF.

5.2 Anti-senescence therapy of AT2 cells

Cellular senescence is one of the main etiologies of RIPF.

Therefore, most investigators believe that cellular anti-

senescence therapy may be successful in the future treatment

of patients with RIPF (Lagoumtzi and Chondrogianni, 2021).

This section summarizes current treatments for radiation-

induced pulmonary fibrosis in the field of senescent cell-based

therapy (Table 1) (Figure 2).

5.2.1 Targeting senescent cells
Senolytic drug treatment is prominent in research on

senescent cell apoptosis. These drugs have been used to treat

many cancers (Childs et al., 2017). One is a combination of

dasatinib (D), a complex kinase inhibitor, and quercetin (Q), a

flavonoid and inhibitor. Treatment with D + Q is highly effective

in reversing pulmonary fibrosis by negatively regulating p21CIP1

and p16INK4a and promoting apoptosis in numerous mouse

models of pulmonary fibrosis (Schafer et al., 2017; Xu et al.,

2018). Depletion of senescent AT2 cells by senolytic drugs

decreases fibrotic markers and increases epithelial cell marker

expression (Lehmann et al., 2017). More interestingly, this

treatment was beneficial to recovery in mice, and the effect

was similar to the reduced fibrosis status observed in mice.

Clearance of senescent AT2 cells improves pulmonary

fibrosis status in bleomycin-treated or IR-induced mouse

models of pulmonary fibrosis. The number of AT2 cells that

were senescent decreased and a trend towards reduced

pulmonary fibrosis was observed after administering the ABT-

263 drug navitoclax (Pan et al., 2017). It is an inhibitor of the

BCL-2 family that removes senescent AT2 cells. Furthermore, it

effectively decreases the viability of senescent human lung

fibroblasts and murine embryonic fibroblasts (Lagares et al.,

2017).

Oxidative stress is one of the factors that stimulate cellular

senescence. Therefore, the use of antioxidant drugs is effective in

cellular senescence and pulmonary fibrosis (Tse et al., 2008;

Chang et al., 2016). Novel antioxidants such as the NADPH

oxidase (NOX) inhibitor, GKT37831, inhibit lung fibrosis in

agingmice, can cause injury to AT2 cells and fibroblast apoptosis,

and interfere with the regulation of p53-dependent apoptosis and

replicative senescence (Auten et al., 2009; Hecker et al., 2014;

Sharma et al., 2014). At the same time, numerous studies have

shown that mitochondria are involved in the process of oxidative

stress. Hence, antioxidant drugs targeting mitochondria have

extraordinary prospects in the treatment of pulmonary fibrosis.

Sirtuin 1 (SIRT1) is an anti-senescence molecule involved in

response to chronic inflammation and oxidative stress. Its

activator SRT2104 protects against AT2 senescence in rats

(Gu et al., 2020). SkQ1 is an antioxidant and reduces

senescence biomarkers in aging mice (Kolosova et al., 2012).

Furthermore, PAI-1 depletion blocks TGF-β1-induced
senescence as well as a senescence-associated secretory

phenotype in AT2 cells, and the PAI1 inhibitor (TM5275)

blocked bleomycin-induced pulmonary fibrosis in mice and

protected AT2 cells from further senescence by targeting the

p53 pathway (Huang et al., 2012; Rana et al., 2020; Rana et al.,

2020). These results suggest that targeting senescent AT2 cell

clearance has significant therapeutic implications for pulmonary

fibrosis.

5.2.2 Targeting key pathways during senescence
P16INK4a knockout mice had no physiological defects after

growth, indicating that p16 is unnecessary for survival and organ

development (Baker et al., 2011; Grosse et al., 2020) and their

colleagues demonstrated that gene elimination in p16INK4a

positive senescent cells during accelerated and physiological

aging causes age-related pathologies that extend the lifespan.

Silencing p16 improves AT2 cell senescence and secretion of

profibrotic mediators (Rana et al., 2020). Therefore, identifying

inhibitors targeting senescence-associated pathways in AT2 cells

may provide good ideas for the prevention and therapy of RIPF.

The NF-κB signaling pathway is also involved in IR-induced

AT2 cell senescence. Targeted inhibition of its expression or

activity will also effectively alleviate ROS and IR-induced

inflammatory responses. Agents such as IKK inhibitors,

proteasome inhibitors, and p65 phosphorylation translocation

inhibitors effectively alleviate the inflammatory response

(Pordanjani and Hosseinimehr 2016). However, due to

crosstalk between NF-κB and p53, the application of targeted

NF-κB pathway inhibitors requires more in vitro and in vivo

experiments.

5.2.3 Targeting SASP
A better therapeutic route for RIPF could involve the

intervention of SASP expression. The genetic and

pharmacological removal of senescent cells causes a

simultaneous decrease in commonly described SASP factors,

such as IL-6, TNF-α, IL-1α, and MCP-1, in tissues that show

functional improvements in fibrosis pathologies (Wiegman et al.,

2015). Inhibition of TGF-βalleviates lung fibrosis in AT2 cells

(Yao et al., 2021). The mTOR pathway is essential in diseases

associated with pulmonary fibrosis, and its inhibition prolongs

the lifespan of animal models and reduces age-related

pathological features (Liu and Sabatini 2020). Everolimus and

Rapamycin are both mTOR inhibitors. However, the application

of Everolimus in clinical studies has indicated a poor prognosis or

even deterioration in patients (Mullard 2018). Rapamycin has

recently been promising in reversing fibrosis in a mouse model of

pulmonary fibrosis, primarily affecting ECM, cell metabolism,

apoptosis, autophagy, and senescence (Platé et al., 2020).

Rapamycin’s in vivo effects are attributed to its role as a SASP
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repressor since it inhibits IL-1 translation and reduces the

stability of SASP factor mRNA transcripts (Wang et al., 2017).

New applications are now possible for existing drugs. Metformin,

which inhibits mTOR and prolongs lifespan in mice, inhibits and

reverses fibrosis in the bleomycin mouse model and reduces

fibrosis in PF (Rangarajan et al., 2018). Overall, targeting SASP

could be a potential treatment for RIPF.

5.3 The advantage and limitations of anti-
senescence therapy

According to the current patients status study, pulmonary

fibrosis is a chronic and irreversible condition for which the only

available treatment is symptomatic relief for collagen and

inflammation (Hanania et al., 2019). However, early-stage of

pulmonary fibrosis can sometimes be treated, and research on

anti-senescence therapies for organ fibrosis is also focused on the

prevention and treatment of fibrosis. The other benefit of anti-

senescence therapy is targeted more precision therapy,

specifically the removal or treatment of senescent cells, which

may be less harmful to patients than current non-targeted

treatments (Spagnolo et al., 2021). Although these anti-

senescence drugs have shown excellent efficacy in animal

studies, there is a lack of data to support their clinical

application. Last but not least, anti-senescence therapy has a

tremendous positive impact on the treatment of organ fibrosis in

animal research at the experimental stage, but it still needs more

clinical trials before it can be considered to have any significant

effects (Parimon et al., 2021). However, there is a need for further

studies, as currently, anti-senescence therapies can only target

various senescence cells, making perfect, precise therapy

impossible. As mentioned previously, the removal of p16INK4a

effectively mitigates the onset of senescence. Patients with

pulmonary fibrosis cannot be treated using gene editing

techniques such as gene knockouts, and these aspects greatly

limit the application of targeted AT2-senescence therapy for

RIPF. Therefore, more basic and clinical experiments are

needed to demonstrate the feasibility of targeting aging

AT2 cells for RIPF treatment.

6 Conclusion

Several reports indicate the pathogenic role of cellular

senescence in the development of pulmonary fibrosis.

Although AT2 cells play a crucial role in RIPF as effectors

and stem cells of IR, they are the cells that undergo early

manifestations of senescence after IR and can activate

fibroblasts and alter the microenvironment in lung tissue, and

their secreted SASP cause senescence of the immune

environment in lung tissue and also affects other vital cells in

the lung that occur in senescence. The new therapeutic strategy

has shed the first light on RIPF patients. Cellular senescence, a

pathogenic pathway, has innovative curative potential, and

therapeutic approaches targeting cellular senescence will

improve patient survival and quality of life shortly. Since

AT2 cell senescence drives RIPF, embarking on anti-

senescence therapy targeting AT2 cells in treatment may

enable prevention or early intervention therapy for detecting

RIPF after IR.

In addition, the lack of reliable evaluation metrics to assess

the effectiveness of anti-senescence therapy in patients with

pulmonary fibrosis is a serious challenge. Perhaps the

application of senolytic drug therapy and old drugs that play

new roles simultaneously and affect several pathways is a valuable

option to overcome the treatment barriers of pulmonary fibrosis.
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