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Abstract: Carbohydrate recognition by proteins, such as lectins and other (bio)molecules,
can be essential for many biological functions. Recently, interest has arisen due to potential
protein and drug design and future bioengineering applications. A quantitative measurement
of carbohydrate-protein interaction is thus important for the full characterization of sugar
recognition. We focus on the aspect of utilizing computer simulations and biophysical
models to evaluate the strength and specificity of carbohydrate recognition in this review.
With increasing computational resources, better algorithms and refined modeling parameters,
using state-of-the-art supercomputers to calculate the strength of the interaction between
molecules has become increasingly mainstream. We review the current state of this technique
and its successful applications for studying protein-sugar interactions in recent years.
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1. Introduction

Carbohydrates are an important class of macromolecules that serve various roles in biological
systems [1,2]. Besides the commonly-known functions for metabolic energy (saccharides, such as
starch and glycogen, provide fuel for biological systems) and for mechanical support (saccharides,
such as cellulose, are the essential building block of cell walls), carbohydrates can play roles in
signal transduction, immune response, cell trafficking, cell adhesion and cell-cell interaction. Many
of these roles involve protein-carbohydrate interaction and selective protein recognition in the presence
of carbohydrates.

The nature of the structure and physical properties of carbohydrates presents unique challenges for
designing carbohydrate recognition sites. First of all, at the monosaccharide level, sugar residues are
largely similar. There exists a large set of common monosaccharides; many of them are isomers with
subtle differences, and they lack distinct chemical groups. Secondly, beyond the monomer level, the
potential connection of these monomers via glycosidic bonds is even more complex. Thirdly, glycomics
are not directly coded in genomics, unlike proteomics. Thus, the primary structures of sugars (sequence
information) are a lot more susceptible to the stochastic nature of chemical reaction events [3]. Such
randomness makes the sensing of the consensus of sugar structures difficult. This feature can even be
exploited by viruses to evade antibodies [4].

These features of carbohydrates also make the quantitative study of carbohydrate recognition
using many traditional methods difficult in several aspects. (1) Impurity: One can imagine that the
heterogeneity of primary structures makes purification difficult, which is the necessary first step of any
in vitro examination. (2) Specificity: The word “recognition” means more than a strong binding affinity
between a sugar and the corresponding sensing protein. Strong binding means little if the protein cannot
selectively target a specific sugar. Thus, the selectivity of a particular protein-carbohydrate interaction
can only be evaluated by examining that protein interaction with large sets of “background noise”
carbohydrates (sugars with similar structures to the target). (3) Cooperativity: Since the sugar-protein
interactions are largely weak, often multiple binding sites can get involved to enhance the signal.
Cooperative binding can be involved in sugar recognition. Cooperativity makes the binding affinity of
sites difficult to measure, as the properties of one site depend on the binding status of the others. We argue
that these difficulties can be circumvented using the computational study of sugar recognition [5–8].
Indeed, in the last three decades, there have been extensive applications of computer simulations of
biomolecular systems to characterize their biophysical features. Computational methods can be used
to directly model a desired sugar species and avoid the purification problem completely. Large-scale
parallel computing can also be used to scan a large set of sugar structures and binding scenarios with great
efficiency. Furthermore, perturbative binding affinity calculations can provide high-resolution results in
a cost-effective fashion. Moving forward, we will review the current progress made in the field of the
computational study of protein-sugar interactions, the successes achieved and the challenges faced. Since
there are many successful results achieved in this field, this work is not meant to be an extensive review
of the whole field. Rather, we focus on raising awareness that computational methods can be a powerful
tool in the field of sugar recognition.
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With a better understanding of nature’s design of proteins that recognize sugars through experimental
and computational studies, we may further enhance our ability to engineer drugs and proteins. For
example, oseltamivir and other drugs were designed to block the flu virus [9], while a set of novel
proteins block HIV [10]. We may also further design molecular sensors and even pathways involving
the desired carbohydrate-protein interactions. Beyond recognition by proteins, the specific interaction
between carbohydrates and RNA is another important area that can benefit from the study of sugar
recognition [11]. Likely, many of the computational methods developed for studying protein-sugar
interaction will also be applicable to the RNA-sugar interaction.

2. Structural Features of Carbohydrate-Recognizing Proteins

Obtaining the structural information of protein-carbohydrate complexes is often the first step for
evaluating the strength and specificity of carbohydrate recognition via computer simulations. Since
there is a variety of carbohydrates, there are many carbohydrate-binding proteins and carbohydrate-active
enzymes that target these sugar molecules. Thus, there are various ways of classifying these interactions.
One is to classify the interactions according to the size of the carbohydrate. Some proteins are
mono- and oligo-saccharide sensors, while others interact with oligosaccharides and polysaccharides.
Another classification is from the protein perspective, whether the protein is purely a binding protein
or contains a catalytic module (of the same polypeptide chain). The former group, those that only
bind specifically to carbohydrates, are called lectins, while the latter are carbohydrate-active enzymes
(CAZymes) that modify the sugars with which they interact. We will review the structural features
of the sugar recognition components of both lectins and CAZymes. Both CAZymes and lectins use
β-strands in their secondary structure to construct recognition motifs and to design the binding site in
general. Examples of sugar-interacting structures from a lectin and a CAZyme are shown in Figure 1. It
is interesting to point out that many lectins and CAZymes may share similar folds, such as the β-trefoil.

Lectins are a group of proteins known for their ability to recognize saccharides, but unlike CAZymes,
they usually lack enzymatic activity. While lectins have a relatively weak affinity for monosaccharides
due to the shallow nature of these binding pockets, they show an increased binding affinity for more
complex oligo- and poly-saccharides [12,13]. They are commonly observed as oligomer aggregates,
and each lectin monomer typically contains from one to three carbohydrate-recognition domains
(CRDs) [12,14]. This quality allows multivalent interaction with complex carbohydrates, contributing
to the specificity and the increasing binding strength [13,14]. Lectins can be classified according to
the primary and tertiary structural similarities of their CRDs into L-type, C-type, R-type and several
others [15,16]. The most common of these, C-type lectins, are characterized by their calcium dependence
and a fold, called the C-type lectin-like domain (CTLD) [17]. This motif consists of a double loop
joined by two disulfide bridges, with conserved hydrophobic and hydrophilic residues [18]. All CTLDs
of carbohydrate-interacting proteins include a calcium ion, which mediates substrate binding [18,19].
R-type lectins contain CRDs with structures similar to the fold of the ricin B chain, a structure called
a β-trefoil fold [2,20]. On the other hand, L-type lectin CRDs share a jelly-roll fold, a β-barrel structure
formed by multiple pairs of antiparallel β-sheets [2].
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Figure 1. (a) A three-dimensional representation of a binding pocket of a lectin (2γ
site of the ricin B chain). Only the sugar residues and amino acid residues involved in
ring-stacking and hydrogen bonding are shown. Hydrogen and backbone atoms are excluded
for clarity. (b) A three-dimensional representation of a lectin (ricin chain B, PDB Code
2AAI) with lactoses bound at sites 1α (lower-left) and 2γ (upper-right). (c) A depiction
of binding sites 1α and 2γ with possible hydrogen bond and ring stacking residues shown.
(d) A three-dimensional representation of the cellulose binding module (CBM) of a CAZyme
(Cel7A with cellulose modeled by M. Crowley’s group) (e) Residues of Cel7A’s CBM that
interact with cellulose. Cellulose chains are represented by gray stripes on the plane.

Carbohydrate-active enzymes are proteins that break down, construct or otherwise modify
carbohydrates [21,22]. In addition to a catalytic module, CAZymes contain carbohydrate-binding
modules (CBMs) responsible for substrate recognition. One role of CBMs is to maintain a high
concentration of enzyme near the substrate polysaccharide. Keeping the catalytic domain in proximity
to its substrate increases the efficiency of the enzyme. Some CBMs have been found to target not only
particular glycans, but particular segments of polysaccharide chains. Some CBMs can also serve to
disrupt carbohydrate surfaces [22]. Upon binding to a substrate surface, the crystalline organization
is disrupted and the surface area of the substrate is increased, making it more accessible to the
catalytic domain.

CBMs can be classified in multiple ways. Particularly, they may be classified into three “types”
from the carbohydrate perspective. Type A modules interact with insoluble glycan surfaces (such as the
surface of cellulose), Type B binds individual glycan chains, and Type C binds small sugars, mono-,
di- and tri-saccharides. CBMs can also be classified from the protein perspective in detail. While
CBMs show a huge amount of variation in amino acid sequence (70 families), their tertiary structures
can be described in terms of just seven “fold families” according to the similarities of their tertiary
structure [21,23]. While these fold families share structural motifs, due to varying sequences, it is not
always possible to predict specific sugar recognition based on the fold family alone.
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The most commonly-observed fold family is the so-called “β-sandwich”, composed of two β-sheets,
each with three to six antiparallel β-strands and always containing a metal ion [24]. The next most
common fold is the “β-trefoil” fold, which is consistent with that of the R-type of ricin. This fold
consists of three subunits with the resultant structure being a β-barrel capped by three hairpin turns,
capable of binding up to three carbohydrate molecules [21,24]. While the β-sandwich and β-trefoil fold
structures are adaptable to many different substrates, some fold families are more specific. For example,
the cellulose-binding and oligosaccharide/oligonucleotide-binding (OB) motifs appear to be specialized
for cellulose and chitin recognition. These are small planar CBMs, composed of a β-sheet and coil,
whose substrate specificity is mediated primarily by ring interactions with aromatic amino acid residues.
Another example is the hevein fold family, comprised of mostly a coil with two small β-sheets and
a short helical region and specific to chitin. A variation of the hevein fold with an additional β-sheet is
found in one CBM family and makes up another fold family [21].

All of these classifications of protein-sugar interactions come from the collections of the structural
information of the complexes. Databases exist to help classify carbohydrate-binding proteins.
These databases and associated tools also serve as the starting point of computer simulation and
modeling [25–29]. For example, the Glyco3D database is comprised of six databases containing
three-dimensional structures and other information for glycans and proteins that interact with them,
including lectins, glycosaminoglycan binding proteins, monoclonal antibodies with carbohydrate
ligands and glycosyltransferases [26]. The Carbohydrate-Active Enzymes database (CAZy) contains
present knowledge of experimentally-characterized CAZymes [23]. General algorithms exist to
classify three-dimensional carbohydrate structures in PDBs and to describe how they interact with
the protein environment [27]. These structural databases can provide valuable bioinformatics on
protein-carbohydrate interaction and can serve as the starting point of high-resolution computer
simulation study of carbohydrate recognition.

3. Physical Interactions at the Recognition Sites

The actual recognition by proteins is realized by the complicated, but direct physical interactions
between the protein and carbohydrate [30]. There are five types of physical interactions often involved
in recognition: (1) hydrogen bonding; (2) sugar ring-aromatic ring stacking; (3) salt bridge interaction of
charged carbohydrate moieties; (4) metal ion-mediated interaction; and (5) solvent-mediated interaction.

Hydrogen bonding is the most important interaction between carbohydrates and proteins. Each
carbohydrate residue generally has multiple hydroxyl groups and a ring oxygen. These chemical
groups act as hydrogen donors and/or acceptors. Often, the recognition site of the protein has either
the side chains of polar amino acid residues or protein backbone components that form hydrogen bonds
with the carbohydrate. Since most hydrogen bonds formed are of the type O-H. . .O or N-H. . .O, the
strength of the typical H-bond interaction involved in recognition is about 5–6 kcal/mol in a vacuum and
1.5–2 kcal/mol in aqueous solution [31,32].

Besides the well-studied hydrogen bonding, another important, but yet to be further explored,
interaction is the stacking interaction [30,33,34] between the pyranose ring of carbohydrates and
aromatic amino acids, Trp, Phe and Tyr. Having a similar nature to that of ring-ring stacking interactions
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(π−π bond) between the base pairs of DNA, this sugar ring-aromatic ring interaction (CH−π bond) has
been reported to be essential for the recognition of many monosaccharides. Through quantum chemistry
calculations, this ring-ring interaction has been reported to be about 3–6 kcal/mol in the gas phase [33].
However, the experimental estimation of this interaction in solution is much weaker, reported to be about
0.5–0.8 kcal /mol [34].

A third type of physical interaction is direct Coulombic interaction. Although most sugar
residues are neutral, a few important monosaccharides are negatively charged, such as the sialic acid
family [1,2,35]. In such cases, the electrostatic interactions might be crucial for recognition. For
example, positively-charged arginine is known to be essential for a group of sialic acid-recognizing
lectins [36–38]. Thus, the salt-bridge interactions were suspected to play an important role in the
recognition of certain sugars. However, since conservative mutation of Arg to Lys can abolish the binding
affinity of a subset of these lectins, this indicates that interactions other than electrostatic could be more
important for those specific cases [39].

Metal ions, such as calcium, can also play a role in protein-carbohydrate interaction [18]. There
is a class of ion-mediated carbohydrate-protein interactions. Besides stabilizing the recognition site
of the protein and, thus, indirectly enhancing the interaction, metal ions can form direct contacts with
both the protein and sugar [18,40]. Besides ions explicitly coordinating the interactions, the solvation
effect can also play a role in carbohydrate-protein binding. Although saccharides in general are largely
hydrophilic, one would believe that desolvation effects play a smaller role in carbohydrate-protein
interaction compared to that in protein-protein interaction [41]. Nevertheless, desolvation is important
for some carbohydrate-binding proteins and their target polysaccharides. One well-known example is
the interaction between the hydrophobic face of cellulose and the CBM of cellulase [42–44].

4. Computer Simulation of Protein-Carbohydrate Complexes

Computer simulation has become an important tool in molecular biology in general, since
most research subjects in this field are microscopic and sensitive to environmental perturbation,
which can make direct observation difficult [45]. The development of in silico methods [46] can
provide a complementary approach to traditional approaches, such as nuclear magnetic resonance,
crystallography and scattering techniques [47,48]. Atomistic simulation methods, after careful validation
by comparison to experiment, are unmatched in efficiently presenting detailed and direct quantitative
information with nanoscale resolution [49–51]. These simulation techniques directly track the
three-dimensional movement of all of the atoms of the molecular complex according to physical
laws and have been successfully applied to study the structure, dynamics and thermodynamics of
biomolecules [52]. Simulations require two types of input information: (1) the initial structure of the
system, which can be obtained from experimental data or modeling; and (2) the so-called “force field”,
empirical potential energy functions (derived from quantum chemistry calculations and/or fitted from
experimental observations) that determine how atoms interact. Based on this information, a computer
simulation can be performed for a complicated biomolecular system using supercomputers. The
evolution of structures of the systems are recorded as time-stamped snapshots (trajectories) for analysis.
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The early biological applications of atomistic molecular dynamics (MD) simulation focused on
proteins, with the first simulation performed on the protein BPTI [53] almost 40 years ago. Thus,
the force-fields of proteins are quite mature. Later, the application of simulations was expanded to
include other important biomolecules, such as nucleic acids, lipids and carbohydrates, and corresponding
force fields have been developed [54]. Particularly, carbohydrate force fields at all-atom resolutions,
such as CHARMM [55–57], GLYCAM [5,58], GROMOS [59] and OPLS [60], have been used to
study the behavior of polysaccharides [61,62]. MARTINI-based coarse-grained force fields, which
provide a useful methodology to study large systems on long time scales, have also been developed
for polysaccharides [63,64]. Besides the generic advanced methods used in sampling and free energy
calculation that we will discuss below, advanced simulation algorithms that target the features of
carbohydrate force fields have been developed, as well [51,65]. Indeed, the dramatic energy landscape
of torsional angles, unique puckered ring conformations of carbohydrates and many other factors make
the sampling of carbohydrates demanding [66]. These enhanced sampling methods ease the difficulty of
crossing over high energy states of carbohydrates.

There are still several challenges for carbohydrate force field development. Polysaccharides, with
their abundant hydroxyl groups, are known to form various intra- and inter-molecular hydrogen bonds.
For example, modeling of the highly directional hydrogen bonds of polysaccharides in a crystal
environment poses significant challenges and is hypothesized to lead to overestimation of carbohydrate
crystal volumes [57,67]. In contrast, proteins have a well-defined secondary structural arrangement of
hydrogen bonding, and nucleic acid hydrogen bonds can be easily tracked by base pairing. Furthermore,
sugar residues are flexible biomolecules that adopt multiple stereoisomers, and care must be taken to
optimize force fields that accurately treat their inherent conformational complexity [5,55]. For example,
six-membered pyranose rings are puckered and adopt stable chair or boat conformations. Furthermore,
when covalently linked to form polysaccharides, monosaccharides are linked with various types of
glycosidic linkages, each of which can exist in either an α or β anomer [56,68]. Accurately quantifying
the conformational properties of oligosaccharides based on the values of their glycosidic torsion angles
is essential when predicting carbohydrate-protein structures [68].

Another potential challenge is a classical description of biomolecules and ions. For one, the calcium
ions and metallic bonds in MD simulations [69] are traditionally difficult. Clearly, this may affect the
small class of metal ion-mediated protein-sugar interactions. This is a general issue of metal ions in
simulations and is not specific to our current topic. Furthermore, simulation of classic force fields
provides fast calculations by only tracking the motions of nuclei. However, there are certain effects that
cannot be described using such force fields. One well-known example is the cooperativity of hydrogen
bonds [70]. Indeed, polarizable force fields may be necessary to accurately describe carbohydrate
recognition and have been developed to incorporate such many-body interactions in carbohydrate
simulations [71–73].

A further technical challenge exists when combining atomistic carbohydrate and protein force fields,
which arises from inconsistency with the treatment of 1–4interactions. Empirical force fields normally
disregard the 1–2 (between two covalently bonded atoms) and 1–3 (between two atoms separated by
two covalent bonds) nonbonded interactions. However, 1–4 nonbonded interactions (atom separated
by three covalent bonds) are considered in addition to internal parameters (dihedral term) in the
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determination of conformational energies. A 1–4 scaling factor of the non-bonded term is used to avoid
potential exaggeration of short-range repulsion caused by the 6–12 Lennard–Jones interaction potential.
For example, the AMBER [74] force field for proteins has chosen the scaling factor to be 1/1.2, whereas
CHARMM force fields [75] do not scale this interaction, i.e., the scaling factor is 1.0. Most carbohydrate
force fields also do not scale the 1–4 interactions [5,59,75]. However, the OPLS carbohydrate force
field includes 1–5 and 1–6 interaction scaling to improve the agreement with experiments [60]. In
practical terms, in a simulation of a protein-carbohydrate non-covalent complex, one can simply keep
a different 1–4 scaling factor for the protein and for the carbohydrate. However, in a simulation of
a glycoprotein, in which a carbohydrate is covalently bonded to a protein, it is difficult to keep two
separate scaling factors [76]. Nevertheless, simulations of glycosylated proteins often provide insight
into the intramolecular interactions between amino acid and carbohydrate residues [77–80].

Despite these challenges, simulations of carbohydrates, glycoproteins and protein-carbohydrate
complexes are helping researchers understand the mechanisms of carbohydrate recognition in various
systems [8,66,81–84].

5. Free Energy Calculation of Protein-Carbohydrate Interactions

With the quantitative spatial data obtained by molecular dynamics simulations in hand, analytical
methods are required to reveal the binding mechanism between protein and carbohydrate. As stated
in the Introduction, ultimately, the recognition ability is measured as the selective and strong binding
between the recognition site and the target carbohydrate. Thus, an important quantitative property that
determines the strength of binding is free energy [85]. Although quantitative spatial data can be obtained
directly by molecular dynamics simulations, further analysis methods are often required to obtain the
thermodynamics of carbohydrate binding.

In general, the binding thermodynamics between two (bio)molecules in solution can be loosely
divided into four terms: (1) a direct enthalpic term of binding energy, which is described directly by
molecular mechanics (MM); (2) an entropic term due to the loss of overall translational and rotational
degrees of freedom (DOFs) upon binding [85]; (3) an entropic term due to the change of the internal
degrees of freedom [86]; and (4) a solvent term, including desolvation effects (such as the solvent
accessible (SA) method [87]) of the binding and the polar solvent effects (such as Poisson–Boltzmann
(PB) or generalized Born (GB) methods [88–90]). The overall rotational DOFs can be coupled with
internal DOFs, and the clear separation for large and flexible molecules is difficult.

There are a large number of methods that derive free energy changes (∆G = Gcplx−Gprotein−Gsugar)
based on information obtained directly from simulation results. In this work, we do not intend to provide
a comprehensive review on free energy calculation and the thermodynamics of binding in general.
Rather, we present an overview of this subject with the focus on applications to carbohydrate-protein
systems. Roughly speaking, two groups of free energy methods are commonly applied for studying
sugar recognition. One group of methods, including the widely applied MM-PBSA (“MM” + “PB”
+ “SA”) and MM-GBSA methods [41,87], focuses on the “end-point” calculations and can obtain the
relative binding free energy. They often ignore the effect of the concentrations of sugar and protein.
Thus, these methods do not provide the absolute binding free energy. However, they are demonstrated
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to be suitable for the calculation of binding free energy of relatively large carbohydrate systems (beyond
mono- and di-saccharides). On the other hand, the second group of methods, including the well-known
double decoupling method [91,92] and other free energy perturbation/thermodynamics integration
methods [52,93], applies rigorous statistical mechanics and can obtain the absolute binding free energy
or accurate free energy changes between different states. This group of “alchemical transformation”
methods is more suitable for the recognition of small sugars, as the “path” calculation for larger systems
can be more computationally intensive. Thus, the two groups of methods can complement one another.

As it stands, there is no universally efficient method for free energy calculation for all types of
systems; the suitable method depends on the nature of the question and the resolution of the answer
desired. Therefore, depending on the size of the sugar and whether the absolute binding strength or just
a relative binding free energy (specificity) is desired, different methods can be selected. For example,
Nyholm et al. successfully estimated the binding energies of hevein with a mono- and di-saccharide
using the double decoupling method [94]. Their simulations correctly predict the enthalpy-dominant
nature of the hevein-carbohydrate interactions and correctly estimate the binding free energy of
the hevein-GlcNAc complex as −2.0 kcal/mol (experimental value −2.0 kcal/mol); however, they
overestimated the hevein-(GlcNAc)2 as −5.2 kcal/mol (experimental value of −3.8 kcal/mol). On
the other hand, many studies did not provide the accurate absolute values of binding, but provide the
relative correct ranking. For example, Naismith et al. performed nanosecond-scale molecular dynamics
simulations followed by MM-PBSA analysis to explain why a pentasaccharide binds to concanavalin
a (lectin) with the same affinity as a trimannoside [95]. They found that MM-PBSA correctly ranks
the free energies of binding of a set of protein-carbohydrate complexes [95]. Liang et al. studied
the different binding free energies of mannose and glucose to the C-type lectin rat mannose binding
protein [96]. Their result was qualitatively accurate, but overestimated the experimentally-determined
relative binding free energy by a factor of two [96]. Obtaining a correct ranking order, but overestimating
the strength of the binding by about a couple fold seems to be a common occurrence in many simulation
studies. Pathiaseril and Woods modeled the binding free energies of several mono- and tri-saccharides
with monoclonal anti-Salmonella antibody Se155-4 relative to the affinity of the wild-type carbohydrate
ligand [7]. The simulations were shown to reasonably reproduce the known geometries of the ligands
and the ligand-protein complexes [7]. The predicted values agree closely with experimental values; the
difference is less than 1 kcal/mol in most cases. Typically, the error bars of measurement are about
0.2 to 1.0 kcal/mol for both simulation and experimental sides. Kuntz et al. explored how structurally
similar compounds yield vastly different affinities with neuraminidase [97]. They found that improved
positioning of ligand atoms in the active site due to polar and hydrophobic functionalities may be a major
factor for increasing ligand selectivity. They also found that more potent ligands make less use of
water-mediated interactions in the active site [97]. Though these studies have different focuses, they all
provided new insights on sugar recognition by proteins. There is a vast variety of potential applications
and carbohydrate recognition systems ready for researchers to perform computer simulation studies.
With more systems being studied, the methods used will be further calibrated and automated. They will
provide better simulation and calculation ability as carbohydrate, protein and solvent force fields are
refined and simulation and analysis algorithms are improved.
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6. Cross-Talk Between Recognition Sites

As stated, carbohydrate-interacting proteins, such as lectins, are known to have multiple recognition
sites. One can speculate the advantage of such designs, a simple answer is that multiple binding sites
increase the chances of binding and, thus, strengthen the interaction. Besides the simple additive effects
of having multiple binding sites, the concept of cooperative (allosteric) binding has been raised in various
sensing systems [98–101]. The so-called allosteric binding refers to the concept that the binding strength
of one binding site can be positively (or negatively) influenced by the binding status of another distant
binding site. Indeed, it is well known that such a cooperative effect can make the signal sharper, i.e., the
dosage-response curves show a sigmoidal shape and have a shorter transition area between the “on” and
“off” states. This is especially important for the sugar-lectin-type of interaction, as the binding affinity
is usually relatively weak at 2–4 kcal/mol [102].

Despite its importance in sensing and signaling systems, allostery has not been emphasized
by traditional methods. There are two potential challenges in detecting the level of allostery.
For one, researchers traditionally judge whether there is allostery by determining whether there are
two conformations, such as the R versus T states of proteins. However, capturing two or even more
different conformations can be difficult, as the structural changes that most allosteric effects involve are
quite subtle. Furthermore, the ensemble view of allosteric changes was only presented in recent years,
which emphasizes that fluctuation effects alone can induce allosteric changes without the need to alter the
ground state or mean structure level [103]. Another problem is model (parameter) fitting. For example,
for a simple two-binding site system, researchers often assume one of the two following scenarios to
be correct: (1) two binding sites have intrinsically identical binding properties, but have a (positive or
negative) cooperative binding between them; or (2) the two binding events are independent with respect
to each other, and one site is intrinsically stronger than the other. Both Model (1) and (2) require only
two parameters [104,105]. However, a more complete model is that two sites have intrinsically different
binding strengths, but also have a certain level of cooperativity. Thus, a total of four parameters are
required to fully characterize such situations. Often, traditional models opt to fit a simple model with
fewer parameters due to the limited availability of data, while computational methods can calculate the
binding free energy of various combinations of binding states [106].

Here, we use the binding between a lectin (the chain B of ricin) and lactose (the terminal disaccharide
of a cell-surface polysaccharide) as an example to illustrate how computer simulation is able to capture
the cooperativity between different binding sites. The ricin toxin B chain folds into two β-trefoil
structures and contains potentially six sugar recognition sites. Practically, only two of them, sites 1α and
2γ, have retained binding ability. There have been contradictory experimental observations regarding
the binding of these two sites, as summarized in our previous report [107]. Thus, we studied this
protein-carbohydrate complex through all-atom simulation. We calculated binding free energy between
the ricin B chain (RTB) and lactose using the MM-GBSA method and reported that specific residues
interact with the saccharide via hydrogen bonding [106]. However, beyond the standard free energy
calculation, we also found that there is a level of positive allosteric effect between these two binding
sites. Indeed, when both ligands are bound, the interactions between carbohydrates and RTB are stronger
than the case with only one ligand bound. To go beyond qualitatively reporting the allosteric binding
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and to reveal the actual allosteric interactions between the two binding sites, we have analyzed our
early simulation data with a new method called CAMERRA (computation of allosteric mechanism by
evaluating residue-residue associations), which we have previously applied to study another allosteric
system, the nuclear receptor complex of RXR:TR [107]. As displayed in Figure 2, we show the positive
cooperativity between the binding events of lactose to sites 1α and 2γ via CAMERRA. We displayed the
top two principal components, which can be viewed as a vibrational mode for residue-residue contacts.
Here, contact dynamics (breaking and forming of the interactions between amino acid residues) are
shown. A positive value indicates contact forming, while a negative value indicates breaking. One can
see that PC1 does not show much cross talk between the two binding sites, while PC2 shows overall
positive allostery between the contact events, i.e., when lactose increases contact with site 1α, the other
lactose increases the contact with site 2γ. Particularly, we found that the interaction between Gln199
and lactose at 2γ was correlated with stronger binding at site 1α by residues Arg27, Asn44, Gly26 and
Gly115. The network of residues involved in the crosstalk between the binding sites is visualized with
colored cylinders between amino acid residues. Future engineering and design of lectins with multiple
binding sites may explore such cross-talk features and enhance the ability of sugar recognition.
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explicitly displayed as colored cylinders. Elements in eigenvectors PC1 and PC2 that
contain the contact interaction between ligands and the protein complex are show in (c)
and (d), respectively.
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7. Conclusions

In this work, we reviewed the common schemes used by proteins for carbohydrate recognition and
the potential challenges faced in studying the recognition mechanism. We presented how computational
methods can assist in the quantification of sugar recognition and, especially, how those methods can
circumvent the traditional problems (purification, specificity, and cooperativity) faced. Furthermore,
different methods used to calculate the binding free energy between protein and carbohydrate were
compared. Successful examples of a binding study via computer simulation were given to demonstrate
that this has become a mature technique, despite the existing imperfections, which are being improved.
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