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Abstract: Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role
in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner
with the proximal region being a common location. In this region, SMCs are derived embryonically
from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in
specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The
purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the
proximal thoracic aorta and their functions in TAAs.
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1. Introduction

Thoracic aortic aneurysms (TAAs) are life-threatening diseases defined as a dilatation
of the aortic wall in the thoracic region [1]. TAAs occur either sporadically or in associa-
tion with a genetic condition, including mutations in FBN1 (encoding fibrillin-1); ACTA2
(encoding α-smooth muscle actin); MYH11 (encoding myosin heavy chain 11); and genes
of transforming growth factor (TGF)-β and its receptors [2–8]. Despite the heterogeneous
causes, a common feature of TAAs is the regional specificity that aortic dilatations occur
predominantly in the proximal region: the aortic root and ascending aorta [9,10]. For
example, patients with Marfan syndrome (MFS) and Ehlers-Danlos syndrome exhibit TAA
formation preferentially in the aortic root [11–13], and TAAs in Loeys-Dietz syndrome
(LDS) and Turner syndrome occur in the aortic root and the ascending aorta [14–17]. An-
other example is that bicuspid aortic valve (BAV) leads to TAA formation in the ascending
aorta [18]. Multiple mouse models mimic these regional specificities of TAAs. MFS and
LDS mouse models have luminal dilatations in the proximal thoracic aorta [19–21]. TAAs
induced by chronic angiotensin II infusion, representing sporadic TAAs, are located mainly
in the ascending aorta [22,23]. Several mechanisms have been reported as a determinant of
the regional specificity of TAAs, such as hemodynamic effects due to the complex blood
flow [24], the nonuniformity of vascular components across the aorta [25], and embryonic
heterogeneity of SMCs [26,27].

SMCs are the most abundant cell type of the aortic wall [28]. Aortic SMCs are derived
embryonically from several origins: second heart field (SHF), cardiac neural crest (CNC),
somite, and splanchnic mesoderm [29,30]. In the disease-prone proximal thoracic aorta,
SMCs are derived from both the SHF and CNC [27,30–33]. In the past decade, multiple
studies have uncovered disparate biological functions of SMCs between their embryonic
origins and the pathophysiology of aortic diseases, including TAAs [32–40]. This review
highlights publications investigating the role of SMC origins and discusses functional
divergences of these origins in the development of TAAs.
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2. Distributions of CNC- and SHF-Derived SMCs

The CNC is composed of mesenchymal cells derived from the ectoderm [41], which
migrates into pharyngeal arches and the outflow tract. The SHF is derived from the
mesoderm that forms a part of the cardiac crescent and migrates into the heart tube [42,43].
SHF-derived cells in the heart tube constitute the right ventricle and the proximal thoracic
aorta. While selected cells of these origins are differentiated into endothelial cells and
fibroblasts, most CNC- and SHF-derived cells in the thoracic aorta are differentiated into
SMCs [30].

The distribution of CNC-derived SMCs in the proximal thoracic aorta was originally
determined by Jiang et al. [44]. A fate-mapping study using mice expressing Cre driven by
a Wnt1 promoter revealed that CNC-derived SMCs populate the thoracic aorta from the
ascending aorta and throughout the aortic arch (Figure 1A). This distinct distribution has
been validated by multiple studies [30,33,45–47], and Wnt1-Cre is now a common promoter
in studies of CNC-derived SMCs. As shown in cross sections of aortic tissue, CNC-derived
SMCs are distributed in the whole media of the posterior curvature of the ascending aorta,
but only in the inner media of the anterior curvature (Figure 1B) [30].
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Figure 1. Embryonic origins of SMCs in the ascending aorta. Representative images of X-gal-stained
aortic (A) tissues and (B) sections from Wnt1-Cre and Mef2c-Cre ROSA26RLacZ mice. Blue color
indicates the distribution of cells driven by either Cre. CNC indicates cardiac neural crest; SHF,
second heart field; IA, innominate artery; LCA, left common carotid artery; LSA, left subclavian
artery. Images are cited from [30,32] with permission from Wolters Kluwer Health (2022).

SHF-derived cells were initially mapped using avian systems [48]. A fluorescent
dye was microinjected into the SHF of chick embryos and the stained cells were tracked.
SHF-derived cells migrate into the myocardial outflow myocardium and the outflow
tract. These findings were confirmed by subsequent studies using fate mapping in mouse
models [30,33,34,49]. Several promoters are available for Cre to track SHF-derived cells in
mice: Nkx2.5, Mef2c, and Islet1. Despite some disparities of distributions in the myocardium,
these promoters demonstrate consistent distributions in the proximal thoracic aorta that
SHF-derived cells populate the aortic root and ascending aorta [30,33,34,49] (Figure 1A).
Unlike CNC-derived cells, SHF-derived cells do not extend to the aortic arch. SHF-derived
SMCs also have a unique distribution in the media [30]. SHF-derived SMCs are present
mainly in the outer media of the ascending aorta (Figure 1B). Thus, the proximal thoracic
aorta contains overlapping SMCs from both CNC and SHF origins, and these origins show
a spatially distinct distribution.

In humans, aortic medial pathologies, such as a loss of SMCs and collagen deposition,
exhibit a gradient across the media that increases from the luminal to the adventitial
aspects [23,32]. Aortic dissection occurs preferentially in the outer third of the aortic
media [50]. Multiple TAA mouse models also exhibit outer media-dominant pathologies,
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such as thickening and hemorrhage (Figure 1B) [32,51–53]. Thus, medial pathologies show
a gradient toward the outer medial aspect in human and mouse TAAs. The gradient of
medial pathologies in TAAs corresponds to the distribution of embryologic origins of SMCs
that has been shown in mouse studies, indicating that SMCs of different embryonic origins
have different functions in the pathophysiology of TAAs.

3. Functional Differences between Embryonic Origins of SMCs in Development
of TAAs

In the past decade, multiple studies have uncovered functional differences between CNC-
and SHF-derived SMCs in maintaining aortic structure and function (Tables 1 and 2) [32–38].

Table 1. Aortic phenotypes caused by genetic manipulations in either SHF- or CNC-derived cells in mice.

Gene Mouse Model
Aortic Phenotypes

Ref.
CNC SHF

Notch1 Fbn1C1041G/+ TAA↔ TAA ↑
(trend, p = 0.08) [37]

Fbn1 Fbn1C1041G/+ Chondrogenic Collagenic [39]

Tgfbr2 Spontaneous Persistent truncus
arteriosus

Outflow tract
dilatation [32,54]

Smad2 Tgfbr1M318R/+ TAA ↓ TAA↔ [33]

Agtr1a Tgfbr1M318R/+ N/D TAA ↓
(modestly) [40]

Lrp1 AngII infusion N/D TAA ↑ [32]

Eln Spontaneous Neointimal
hyperplasia

Neointimal
hyperplasia [34]

N/D indicates not determined; ↑, augmented;↔, not changed; ↓, suppressed.

Table 2. TGF-β-related phenotypes in SHF- and CNC-derived SMCs generated from human iPSCs.

Model Experiment
Phenotype

Ref.
CNC SHF

iPSCs generated
from MFS patients In vitro TGF-β1 ↑ TGF-β1↔ [36]

iPSCs generated
from LDS patients In vitro pSMAD3↔ pSMAD3 ↓ [38]

iPSCs with LoF mutations
on SMAD3 generated
from a healthy donor

In vitro pSMAD2 ↑ pSMAD2↔ [35]

LoF indicates loss of function; ↑, augmented;↔, not changed; ↓, suppressed.

3.1. Marfan Syndrome (MFS)

MFS is a multisystem disorder resulting from mutations in FBN1, encoding fibrillin-
1 [11]. TAAs are a devastating manifestation of this syndrome. There is evidence that aortic
TGF-β is upregulated in a mode that corresponds with luminal dilatations in MFS [15,55].
The impact of SMC origins on the dysregulation of TGF-β signaling has been investigated
using induced pluripotent stem cells (iPSCs) [36]. iPSCs were generated from either
patients with MFS or control subjects. Subsequently, iPSCs were differentiated into lateral
mesoderm-, paraxial mesoderm-, and neural crest-derived SMCs. Compared to control
subjects, the abundance of TGF-β ligands was increased in MFS-SMCs derived from the
neural crest, but not from other origins (Table 2). In addition, neural crest-derived MFS-
SMCs exhibited severe abnormal organization of extracellular microfibrils. These findings
suggest that neural crest-derived SMCs are more susceptible to FBN1 mutations than SMCs
from other origins.
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The NOTCH1 signaling pathway is important for cardiovascular development and aortic
integrity [56,57]. The heterozygous deletion of NOTCH1 in pan-SMCs augmented luminal
dilatations in the aortic sinus and disrupted the extracellular matrix in Fbn1 haploinsufficient
(Fbn1C1041G/+) mice [37]. Of note, the heterozygous deletion of NOTCH1 in SHF-, but not
CNC-, derived cells had a tendency to recapitulate these aortic pathologies (p = 0.08, Table 1).
In contrast to the human iPSC data, mouse models revealed a potential role of SHF-derived
cells in TAA formation of MFS mice through NOTCH1-mediated mechanisms.

Single-cell RNA sequencing (scRNAseq) using a fate-mapping strategy in mice en-
ables the precise and unbiased determination of biological differences of SMCs between
origins. A recent study by Pedroza et al. performed scRNAseq in the proximal thoracic
aorta of Fbn1 haploinsufficient mice with tdTomato reporter driven by Nkx2.5 [39]. Cells
were selected based on tdTomato signals in SHF-derived cells, and transcriptomes were
compared between origins. CNC-derived SMCs displayed a chondrogenic phenotype,
whereas SHF-derived SMCs had abundant multiple collagen genes (Table 2). In addition,
the transcriptional activity of TWIST1, a mediator of pathologic fibrosis, was enhanced in
SHF-derived SMCs compared to CNC-derived SMCs. In MFS, genetic mutations on Fbn1
lead to multiple functional alterations of SMCs in an embryonic origin-specific manner.
However, its impact on TAA formation is not fully understood. Further in vivo studies
with genetic manipulations in each origin would be helpful to understand the molecular
basis of embryonic differences in the pathophysiology of TAAs in MFS.

3.2. Loeys-Dietz Syndrome (LDS)

Patients with LDS have an aggressive TAA formation caused by mutations in genes
encoding either type 1 or 2 TGF-β receptors [14] and the downstream pathways. Although
TGF-β receptors are obligatory for TGF-β signaling, LDS exhibits characteristics that
have been interpreted as overactivated TGF-β pathways including increased SMAD2/3
phosphorylation in the aorta [21]. In vitro experiments using iPSCs from LDS patients with
gene mutations on TGFBR1 (TGFBR1A230T) revealed that TGFBR1 mutation downregulates
SMAD3 phosphorylation in SHF-derived SMCs, whereas it is not altered in CNC-derived
SMCs (Table 2) [38]. The same group also investigated the impact of lineage-specific
SMAD3 mutation on aortic TGF-β signaling activity [35]. Aortic SMAD2 phosphorylation
was not changed by SMAD3 mutations in SHF-derived SMCs, but SMAD3 mutations
increased SMAD2 phosphorylation in CNC-derived SMCs (Table 2). Collectively, CNC-
and SHF-derived SMCs demonstrate different responses to different mutations on TGF-β
signaling molecules in LDS.

Mice with heterozygous missense mutation on Tgrbr1 (Tgrbr1M318R/+) develop aortic
root aneurysms and medial disruptions that mimic many facets of aortic pathologies in
patients with LDS [21]. Distinct properties of CNC- and SHF-derived SMCs have also
been observed in this LDS mouse model [33]. In vitro experiments defined that SHF-
derived SMCs show impaired SMAD2/3 activation in response to TGF-β stimulation and
an increased abundance of TGF-β ligands. In contrast, CNC-derived SMCs preserve TGF-β
signaling potential without the alteration of TGF-β abundance. Of interest, aortic root
dilatations are ameliorated by SMAD2 deletion in cells derived from the CNC, but not
SHF in mice (Table 1). These findings indicate a critical role of CNC-derived SMCs in the
development of TAAs through TGF-β signaling.

The constitutive deletion of TGFBR2 in pan-SMCs causes cardiovascular defects and
embryonic lethality in mice [58]. Consistent with these phenotypes, TGFBR2 deletion in
either CNC- or SHF-derived cells also causes vascular malformation (Table 1) [32,54]. CNC-
specific TGFBR2 deficient mice die in the early postnatal phase with persistent truncus
arteiosus and craniofacial defects [54]. TGFBR2 deletion in SHF-derived cells induces
prenatal death around E11.5–12.5 with dilatation of the outflow tract and retroperitoneal
hemorrhage [32]. Thus, both CNC and SHF origins play an important role in aortic
development through TGFBR2.
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There is compelling evidence that the renin-angiotensin system exerts a pivotal role
in the development of TAAs [59]. Losartan, an angiotensin receptor blocker, ameliorates
aneurysm formation in multiple mouse models, including LDS [21,60,61]. In Tgrbr1M318R/+

LDS mice, mRNA abundance of Agtr1a encoding angiotensin II (AngII) type 1a receptor
is increased in SHF-derived SMCs, but not in CNC-derived cells [33]. In agreement,
in vitro experiments revealed that AngII stimulation upregulates Tgfb1 and Tgfb3 mRNA
in SHF-derived cells, which is suppressed by losartan. However, in vivo studies using
LDS mice demonstrated that Agtr1a deletion in SHF-derived cells results in only a modest
reduction in aortic dilatations (Table 1) [40]. Since TAA formation in LDS mice is attenuated
remarkably by either pharmacological inhibition of AT1 receptors or whole-body Agtr1a
genetic deficiency [21,40], it would be interesting to investigate the impact of Agtr1a in
other cell types, including CNC-derived SMCs, on AngII-mediated mechanisms of TAAs
in LDS.

TAAs are present in both MFS and LDS. However, the region prone to TAA formation
differs between the two syndromes. Aortic dilatations in MFS are located primarily in
the aortic root, whereas LDS displays aneurysm formation in both the aortic root and the
ascending aorta [11,12,14,15]. Of note, the population of SMC origins is different between
the aortic root and ascending aorta. The aortic root is predominantly populated with
SHF-derived SMCs, while the ascending aorta is composed of both CNC- and SHF-derived
SMCs [30]. SMCs show functional differences between origins (Tables 1 and 2). Thus, the
difference in SMC populations may contribute to the regional specificity of TAAs in MFS
and LDS.

3.3. Angiotensin II-Mediated TAAs

AngII infusion leads to aortopathies, including luminal dilatation and medial thicken-
ing, in the ascending aorta of mice [22,23,32,62,63]. SMC-specific deletion of low-density
lipoprotein receptor-related protein 1 (LRP1) that plays a critical role in extracellular matrix
maturation augments AngII-induced aortopathies [64,65]. Of note, SHF-specific LRP1
deletion recapitulates the ascending aortic pathologies in AngII-infused mice with LRP1
deletion in pan-SMCs (Table 1) [32]. These data suggest that SHF-derived cells exert a
critical role in AngII-induced TAA formation. scRNAseq using Mef2c-Cre ROSA26RmTmG

mice demonstrated that a short-interval of AngII infusion decreased mRNA abundance of
TGF-β receptors (Tgfbr1, Tgfbr2) in SHF-derived SMCs prior to TAA formation [32]. Thus,
AngII compromises the TGF-β signaling pathway in SHF-derived SMCs that is vital in
maintaining the aortic integrity. In contrast, there are no publications describing LRP1 in
CNC-derived cells. In addition, transcriptomic alteration in CNC-derived cells by AngII
infusion has not been determined. Further study, including scRNAseq, is desirable to
uncover the role of CNC-derived cells in AngII-mediated aortopathy formation.

AngII-induced medial thickening shows a transmedial gradient that is dominant in the
outer media. This pathological gradient is consistent with the distribution of SHF-derived
SMCs (Figure 1B) [27,32], suggesting the susceptibility of SHF-derived SMCs to AngII-
induced pathologies. Since the gradient of medial thickening is observed in other TAA
mouse models and human TAAs [23,32,51–53], SHF-derived SMCs may play an important
role in the pathophysiology of TAAs. It will be fascinating to investigate the molecular
mechanisms of how SHF-derived cells are involved in the transmedial gradient of medial
pathologies in TAAs.

3.4. Other Aortic Diseases

Elastin is the major extracellular component of the aorta and a key determinant factor
for aortic resilience [28]. Numerous studies have reported elastic fiber disruption as a
key structural alteration in TAAs [66]. Nevertheless, genetic deletion of elastin did not
cause TAA formation. Whole-body elastin deletion led to aortic stenosis by neointimal
hyperplasia of SMCs in the proximal thoracic aorta [31,67,68]. Of note, elastin deletion in
cells from either CNC- or SHF-derived cells also developed neointimal SMC hyperplasia
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(Table 1) [34]. Interestingly, the aortic neointima, despite being adjacent to the CNC-derived
cells, is predominantly composed of SHF-lineage cells.

CNC- and SHF-derived cells contribute to aortic valve development in addition to the
proximal thoracic aorta [69]. Lineage tracking studies using Wnt1 and Nkx2.5 promotors
revealed that right- and left-coronary leaflets are primarily composed of CNC-derived cells,
whereas the non-coronary leaflet is derived from the SHF. These origins are associated
with the pathophysiology of BAV [70]. CNC-specific Krox20 deletion leads to BAV with the
fusion of non- and right-coronary leaflets [71]. Although lesions of valve fusion and the
incidence of BAV vary by genes, SHF-specific deficiency of Gata6, Vangl2, Jag1, or Mib1 also
displays BAV in mice [72–74].

Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal dominant disorder caused
by genetic mutations in COL3A1 [75]. Similar to MFS and LDS, vEDS also shows the
regional specificity of TAAs that the proximal thoracic region is dominant for aneurysm
formation [13,76]. Although preclinical investigation of vEDS was restricted by the lack
of animal models, a recent study established a mouse model that mimics multiple facets
of vEDS [77]. Thus, it would be interesting to explore the contribution of SMC origins to
vEDS-induced TAAs.

4. Summary

CNC- and SHF-derived SMCs reside in distinct locations of the proximal thoracic aorta.
Multiple studies have uncovered embryonic origin-specific mechanisms in aortic diseases,
including TAAs. However, CNC- and SHF-derived cells demonstrate distinct properties in
different regions and diseases, which has painted a complex landscape for origin-specific
mechanisms in aortic diseases. Since TAAs are mediated by complex mechanisms, including
the alterations in the extracellular matrix, mechano-transduction, and SMC functions [78–81],
it is important to continue efforts to understand the divergent behaviors of embryonic origins
in the pathophysiology of TAAs.
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