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Abstract: Although plastics have benefited our lives in terms of cost and convenience, the disposal
of end-of-life plastics poses environmental problems, such as microplastics (MPs). Although the
separation (e.g., filtration) and staining of MPs with fluorescent dye/solvent are generally accepted
steps to observe MPs in an environmental matrix, in this study, an in situ selective fluorescent
illumination of the MPs in water was attempted with the aid of surfactant. Nonpolar fluorescent
dye in combination with surfactant affords nanometer-sized dye particles in water, which adsorb on
MPs and penetrate the polymer matrix for effective staining and stable fluorescent behaviors. The
effects of different staining parameters, including different dyes, surfactants, staining temperatures,
staining times, dye/surfactant ratios, dye/MP ratios, and MP concentrations in aqueous solutions
were investigated to better understand staining conditions. More interestingly, non-adsorbed free
dye molecules in the staining solution were almost completely fluorescence-quenched by introducing
the quenching agent, aniline, while the fluorescence intensity of the stained MP was maintained.
By staining MPs with a dye/surfactant combination and subsequently quenching with aniline, in
situ selective fluorescent illumination of the MPs in water was successfully achieved, which may
eliminate the tedious separation/filtration procedure of MPs to accomplish the quick detection or
monitoring of MPs.

Keywords: microplastic; staining; fluorescent dye; surfactant; quenching

1. Introduction

Plastic materials are extremely versatile due to their low density, low thermal/electrical
conductivity, and resistance to corrosion, which allows them to be used in a wide range of
applications, from food packaging to cutting edge devices [1,2]. The global production of
plastics currently exceeds 320 million tons per year, over 40% of which is used as single-use
packaging and results in waste [2,3]. Although plastics have benefited our lives in terms of
cost and convenience, the disposal of end-of-life plastics poses environmental problems,
since plastics progressively degrade and fragment into smaller pieces commonly known as
microplastics (MPs) [2–6].

The Joint Group of Experts on the Scientific Aspects of Marine Environmental Protec-
tion defines MPs as plastic particles less than 5 mm in diameter [7]. Recently, Hartmann et al.
proposed the size category of MPs of 1~1000 µm [8]. The characteristics of MPs enable them
to persist in the environment, be transported over vast distances, bioaccumulate in the food
web, and endanger the health of exposed organisms, including humans [3,9–12]. Over the
last decade, MPs have emerged as novel pollutants that negatively affect terrestrial and
especially aquatic environments [5,13–15].

Endeavors to observe/detect MPs in the environmental matrix are probably a first step
to handle such a threat. The detection procedure of MP generally consists of separation
(e.g., filtration), size categorization (e.g., sieving), purification (i.e., removal of organic

Polymers 2022, 14, 3084. https://doi.org/10.3390/polym14153084 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14153084
https://doi.org/10.3390/polym14153084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-0961-7245
https://doi.org/10.3390/polym14153084
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14153084?type=check_update&version=2


Polymers 2022, 14, 3084 2 of 14

residues), identification, and quantification [16–21]. For example, filtration is a common
step to separate MPs from aqueous samples such as surface water, groundwater, marine
water, and wastewater [17,18,22–24]. After the organic residues are removed, typically by
oxidative methodology [18], MPs can be identified and quantified through spectroscopic
observations, including optical observation, Fourier transform infrared spectroscopy, and
Raman spectroscopy [4,25–32].

For these observations, staining MPs using fluorescent dyes is an essential step to visualize
and identify MPs (Table S1, see Supplementary Materials) [33–35]. To facilitate incorporation into
a nonpolar polymer matrix, lipophilic nonpolar dyes are generally employed. Nile red, which is
an organic, hydrophobic, and photochemically stable heterocyclic compound, has been the most
popular choice for this purpose (Table S1, see Supplementary Materials) [25,28–32]. Nile red is
soluble in nonpolar media and exhibits good fluorescence intensity with high quantum yield.

Due to the low solubility of nonpolar dyes in water, researchers have generally used
organic solvents to prepare staining solutions. Therefore, MPs must be separated from
water and often dried before the staining procedures [31,32,36]. Acetone, chloroform,
dimethyl sulfoxide, hexane, methanol, ethanol, and isopropyl alcohol are common solvents
used to prepare the staining solutions (Table S1, see Supplementary Materials).

However, the use of organic solvents to stain MPs has distinct drawbacks, including
the possibility of damaging MPs or filter materials, which may change the original char-
acteristics of MPs. For example, because acetone is a solvent of polystyrene (PS), the size,
shape, and perhaps number of recovered PS MPs may be changed by using acetone. In
addition, the boiling temperature of the solvent is generally not so high (e.g., 56 ◦C for
acetone), which may limit the upper staining temperature. More importantly, in recent
years, there has been research interest regarding the real-time monitoring of MPs [37–39].
Dye staining procedures must also be adjusted to on-the-spot detection systems, where
multi-step and time-consuming solvent-based staining methods are difficult to apply.

Herein, using surfactant, an in situ staining procedure of MPs in aqueous media is
proposed. Surfactants are amphiphilic organic compounds composed of a hydrophobic tail
and a hydrophilic head group [40]. With a certain amount of the selected surfactant, the
nonpolar dye can be stabilized and solubilized by surfactant molecules in water [40–42].
The micelles from the surfactants are generally submicron in size, which may alleviate a
concern of confusion with MPs (1~1000 µm, as defined by Hartmann et al.) [8,43]. The small
size of the micelle also indicates its high surface area, which facilitates the adsorption of
the dye in the micelle to the MP surface via the van der Waals interactions with additional
dipole interactions to increase the staining efficiency (Scheme 1) [25,44]. At elevated
temperatures, the polymer chain matrix becomes loosened, which enables the adsorbed
dye to penetrate the polymer matrix [25,34]. The dye molecules become encapsulated in
the polymer matrix by reducing the temperature to room temperature, which improves the
fluorescent stability of the trapped dye in MPs even under subsequent harsh conditions,
e.g., fluorescence quenching of free dye molecules (Scheme 1) [34]. To the best of these
authors’ knowledge, there have been no examples of the direct staining of MPs in aqueous
media using surfactants (Table S1, see Supplementary Materials).
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crushed into microsized pieces using a blender (UNIX, UNB-A9100, Seoul, Korea). The 
crushed MPs are separated by size with testing sieves (Chunggye sieve; Gunpo-si, Korea). 
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Scheme 1. Schematic representation of the staining procedure of MPs in water with nonpolar dye
and surfactant.

2. Experimental
2.1. Materials

2,5-Bis(5-tert-butyl-2-benzoxazolyl)thiophene (S-FN, 99.0%, Yedam Chemical, Gimpo-si,
South Korea) and Nile red (98.0%, Sigma–Aldrich, St. Louis, MO, USA) were employed as dyes
and used without purification. Three representative commercially available nonionic surfac-
tants, i.e., Tween 20 (Samchun, Seoul, South Korea), Triton X-100 (ForBioKorea, Seoul, South
Korea), and Tergitol MIN FOAM 1x (Sigma–Aldrich, St. Louis, MO, USA), were purchased from
the indicated suppliers. The chemical structures of the dyes and surfactants in this study are
presented in Figure 1. Solvents including acetone (99.5%, Samchun, Seoul, South Korea), ethanol
(94.5%, Samchun, Seoul, South Korea), and 1,4-dioxane (99.5%, Samchun, Seoul, South Korea)
were used without purification. PS [weight average molecular weight (Mw) = 35,000 g/mol],
polypropylene (PP, Mw = 12,000 g/mol), and polyethylene (PE, Mw = 4000 g/mol) were pur-
chased from Sigma–Aldrich (St. Louis, MO, USA). Polyethylene terephthalate (PET, granule
size 3~5 mm) was purchased from Goodfellow (Coraopolis, PA, USA).
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Figure 1. Chemical structures of dyes and surfactants in this study.

2.2. Preparation of Different MPs

A typical procedure to prepare MP samples is as follows: PS, PP, PE, and PET are
crushed into microsized pieces using a blender (UNIX, UNB-A9100, Seoul, Korea). The
crushed MPs are separated by size with testing sieves (Chunggye sieve; Gunpo-si, Korea).
The sizes of the collected MPs are confirmed using an optical microscope (IF.2253-PLF,
Euromex, The Netherlands), and the images are investigated with the ImageJ software
program (National Institutes of Health, version 1.8.0_172). Unless noted, after sieving and
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size confirmation, MPs with sizes of 106~212 µm were used in subsequent experiments in
this study.

2.3. MP Staining Procedures

A typical staining procedure of MPs is as follows: dye stock solution (typically,
dye/surfactant = 1 g/L) is prepared by mixing 1.161 × 10−5 mole of dye (e.g., 5 × 10−3 g
of S-FN) with 4.481 × 10−3 mole of surfactant (e.g., 5.5 g or 5 × 10−3 L of Tween 20) and
stirred at 50 ◦C for 15 min. Separately, MP (~10 mg) is added to 10 mL of deionized wa-
ter/ethanol mixed solution. Because the density values of the most common composition
of MPs, i.e., PP, PE, and PS, are approximately 0.92, 0.93, and 1.09 g/cm3 (Table S2, see
Supplementary Materials), respectively [2,36], the density of the aqueous staining solution
is adjusted to approach the average density of the MP components (weighted by their
approximated production proportion; ~35% for PP, ~56% for PE, and ~9% for PS) [5],
~0.95 g/cm3, by controlling the water/ethanol ratio (7.63/2.37 v/v) to better float MPs
under occasional stirring. Then, a predetermined amount of dye/surfactant stock solution
(e.g., 0.25 mL) is added to the MP solution for staining, followed by heating at 80 ◦C for
60 min by using an HS-R200 heating block (Humas Co., Ltd., Daejeon, South Korea).

2.4. Characterization

The size of the dye particles in water was observed by the dynamic light scattering
method using a particle size analyzer (SZ-100, Horiba, Kyoto, Japan) at a scattering angle
of 90◦ and a laser wavelength of 532 nm. For these experiments, the dye stock solution
(dye/surfactant = 1 g/L) was diluted with 10 mL of water and stirred at 50 ◦C for 15 min
to simulate the staining conditions. To take optical photographs of stained MPs, MPs
were collected through filtration with F1002 grade Chmlab filter paper, repeatedly rinsed
with deionized water, and illuminated with a UV Hand Lamp (VL-6LC, Vilber Lourmat,
Collégien, France) at 254 nm for Nile red and 365 nm for S-FN. Fluorescence photographs
of the stained MPs were collected by using a digital upright fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) at an excitation wavelength (325~375 nm)/emission
wavelength (435~485 nm) for S-FN and an excitation wavelength (541~551 nm)/emission
wavelength (565~605 nm) for Nile red. Fluorescence spectroscopy (FS-2, Scinco, Seoul,
South Korea) was used to investigate the fluorescent emission spectra and relative fluores-
cence intensities of the stained MPs at their maximum absorption wavelengths (374 nm
for S-FN and 520 nm for Nile red). For a rational comparison between the samples, a fixed
quantity of stained MPs (150 mg) was employed for each fluorescence spectroscopy obser-
vation. At least three tests were repeated for each sample to determine the fluorescence
intensity values with error bars.

3. Results and Discussion

Most MPs are nonpolar materials with aliphatic chemical characteristics, which are
generally difficult to stain in an aqueous solution due to their crystallinity, stereoregularity,
and insolubility in water. Typical fluorescent dyes are also nonpolar unsaturated organic
substances that absorb part of UV light and emit visible light to exhibit color. Although
they have an affinity to MPs due to their hydrophobic nature, they are also insoluble in
water, which limits the accessibility of the dye molecules to the polymer matrix in aqueous
environments. For example, Nile red and S-FN are soluble in acetone and 1,4-dioxane,
respectively, to form homogeneous solutions. Although acetone is miscible with water,
Nile red/acetone added into water is no longer stable in a thermodynamic sense due to
the nonpolar nature of Nile red and forms agglomerated/precipitated micrometer-sized
dye particles (Nile red/acetone in Figure 2). At 5 vol% Nile red/acetone in water, the dye
particles are too large to be detected by the particle size analyzer (out of the detection limit
of the analyzer). This large dye particle size is obviously not acceptable for the staining
procedure of MPs, since the agglomerated dye particles can be confused with MPs and
result in the overcounting of MPs. The staining of MPs can also be ineffective due to
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poor adsorption of the large dye particles on MPs, which limits the access of Nile red
molecules to MPs for staining. Similarly, although 1,4-dioxane is miscible with water,
S-FN/1,4-dioxane provided dye particles with sizes of 100~150 nm (inset of Figure 2).
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In contrast, the introduction of a surfactant, i.e., Tween 20, dramatically reduced the
dye particle sizes in water. For Nile red, the size of the dye particles was reduced to
~3 µm at 2.5 vol% Nile red/Tween 20 in water (Figure 2). For S-FN, the size of the dye
particle was smaller than 10 nm in the presence of Tween 20, which likely suggests the
formation of micelles. Because the critical micelle concentration (CMC) of Tween 20 in
water is 5.5 × 10−3 vol% [45], all dye solution concentrations of the samples in Figure 2
were well above the CMC, which suggests the solubilization of S-FN through the formation
of dye solubilized micelles of Tween 20 [40]. Since sizes > 1 µm are generally targeted
during the MP detection, the results well support the advantages of using surfactants
(i.e., Tween 20 in this case). In addition, the results suggest that S-FN is preferred over Nile
red in terms of the solubilization of the dyes in water.

Compared with Nile red, the improved solubilization of S-FN in the presence of Tween
20 also resulted in better fluorescent behavior of the resulting stained MPs. As shown
in Figure S1 (see Supplementary Materials), MPs stained with S-FN/Tween 20 (set this
fluorescent intensity of MP as a reference value, 1) had the highest relative fluorescence
intensity among the fluorescence intensity values of MPs from other dye/solvent or sur-
factant combinations. The MPs stained with Nile red/acetone had the lowest relative
fluorescent intensity among the MPs, likely due to the poor solubilization of Nile red
to form dye agglomerates (Figure 2). In any case, compared with the usage of solvents
(e.g., 1,4-dioxane for S-FN and acetone for Nile red), the incorporation of Tween 20 im-
proved the staining efficiency, which suggests the advantages of surfactant to solubilize
dyes and effectively stain MPs.

The effect of different amounts of S-FN on the size of the dye particle is shown in
Figure S2 (see Supplementary Materials). Increasing the amount of S-FN to 2 g/L of S-
FN/Tween 20 resulted in slightly larger particles than that with 1 g/L of S-FN/Tween



Polymers 2022, 14, 3084 6 of 14

20. For the 4 g/L S-FN/Tween 20 solution, large dye agglomerates with sizes of 2~6 µm
were observed, naturally due to the excessive amount of S-FN. Based on these obser-
vations, 1 g/L of dye/surfactant at 2.5 vol% in water was adopted as a standard com-
position of dye solution for subsequent staining experiments. No specific differences
in the particle sizes of S-FN with different surfactants were observed (Figure S3, see
Supplementary Materials). Figure 3 demonstrates successful staining of various MPs by
using S-FN/Tween 20 (Figure 3a) or Nile red/Tween 20 (Figure 3b) under the indicated
staining conditions, which exhibits clear fluorescence emission of the stained MPs.
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Figure 4 shows the emission fluorescence spectra of MPs stained with S-FN and Nile
red in the presence of Tween 20. MPs stained with S-FN exhibited fluorescence spectra
with maximum emission wavelengths of 429~437 nm, depending on the MP compositions.
The emission wavelength values of S-FN were quite consistent and similar, which suggests
the orthochromatic characteristics of S-FN. Regardless of the MP compositions and staining
temperatures, the constant fluorescent emission behaviors of S-FN are also observed as
blue MPs in optical photographs in Figure S4 (under 365 nm illumination with UV Hand
Lamp, see Supplementary Materials).

In contrast, the maximum emission wavelengths of MPs stained with Nile red were
quite diversified according to the compositions of MPs (567~612 nm, Figure 4b). For
example, the maximum emission wavelength of Nile red in stained PE was 567 nm, while
those of Nile red in PP, PS, and PET were 571 nm, 593 nm, and 612 nm, respectively
(Figure 4b). The fluorescence emission behaviors also resulted in yellow, orange, and red
colors of PP, PE, and PS MPs, respectively, in optical observations (Nile red in Figure S4,
under 254 nm illumination with UV Hand Lamp, see Supplementary Materials). The
results suggest the solvatochromic characteristics of Nile red in different types of MPs,
as also reported in other literature [25,46–49]. The solvatochromic properties of Nile red
indicate different staining colors with different microenvironmental polarities. With other
surfactants, e.g., Tergitol MIN FOAM 1x, similar behaviors were observed (Figure S5, see
Supplementary Materials), which suggests no significant effect of different surfactants on
the emission characteristics of the dyes. For the simple and efficient detection of MPs at a
fixed wavelength, in this study, the orthochromatic characteristics of S-FN were preferred.
In addition, as shown in Table S3 (see Supplementary Materials), S-FN was considerably
cheaper than Nile red and other renowned dyes due to its wide application as a fluorescent
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brightening agent in industry, which enabled us to adopt S-FN as a main dye to stain MPs
in subsequent studies.
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To confirm the fluorescence stability of the stained MPs, the staining solution was
removed by filtration after the staining of MPs, and the resulting stained MPs were redis-
persed in water/ethanol aqueous solution (7.63/2.37 v/v, density ~ 0.95 g/cm3). As shown
in Figure S6 (see Supplementary Materials), the stained MPs with S-FN exhibited clear
blue fluorescence color in aqueous solution under illumination with UV Hand Lamp at
365 nm, which supports the successful incorporation of S-FN into the polymer matrix of
MPs for their staining. Even after 10 days, a clear blue fluorescence color was still observed
(Figure S6, see Supplementary Materials), which supports the successful trapping and
stabilization of S-FN in the polymer matrix of MPs.

The effects of different surfactants and dye/surfactant ratios were investigated by
observing the relative fluorescence intensity of PP MPs stained with S-FN (Figure 5). In the
dye/surfactant range of 0~1 g/L, relatively higher fluorescent intensities were observed
with a higher dye/surfactant ratio, which was attributed to the increased amount of free
dye available to access the MPs [50]. Conversely, further increased dye/surfactant ratios
above 1 g/L resulted in slightly lower fluorescent intensities of MPs, likely due to an
inefficient solubilization of dye with a reduced amount of surfactant (Figure 5) [50]. Unlike
Triton X-100, the fluorescent intensities of S-FN-stained MPs with Tween 20 and Tergitol
MIN FOAM 1x were relatively consistent regardless of the amount of surfactant, which
suggests the stable and superior solubilization capability of Tween 20 and Tergitol MIN
FOAM 1x for S-FN. Considering the results from Figure 5 and Figure S3, Tween 20 was
selected as a preferred surfactant for S-FN for reliable experiments.

The effects of different parameters, such as the temperature, time, dye/MP ratios,
and MP/aqueous solution ratios on the staining characteristics of MPs with S-FN/Tween
20 were investigated. Heating the aqueous MP staining mixture can increase the dye’s
affinity for MPs [34]. As shown in Figure 6a, higher relative fluorescence intensities
of MPs were observed with higher staining temperatures. At higher temperatures, the
polymer chains of MPs likely became loosened, which enabled S-FN to penetrate the
polymer matrix more easily. As a result, more S-FN was encapsulated in MPs, so they
exhibited higher fluorescent intensities [25]. However, as shown in Figure S4 and Table S2
(see Supplementary Materials), MPs may agglomerate with each other due to the fusion
above individual glass transition temperatures or melting temperatures, which should
be avoided to rationally detect MPs. For example, above the generally accepted melting
temperature of PE (120 ◦C, Table S2, see Supplementary Materials), agglomerations of PE
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MPs were observed (Figure S4, see Supplementary Materials). The average glass transition
temperature of polystyrene is ~100 ◦C (Table S2, see Supplementary Materials), so PS MPs
agglomerated above the staining temperature of 100 ◦C. Therefore, in this study, the upper
limit of the staining temperature was set to 90 ◦C to avoid the MP fusion.
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Due to similar reasons, i.e., penetration of more S-FN into the polymer matrix, a longer
staining time resulted in higher fluorescent intensities of MPs at a fixed staining temperature
(80 ◦C, Figure 6b). However, the relative fluorescent intensities of MPs levelled off after
10 min of staining. The results indicate that a short staining time (~10 min) was sufficient
to ensure a high fluorescent intensity of the stained MPs. The results likely stemmed
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from the limited penetration of S-FN mainly into the surface layer of PP MP. Because the
representative melting temperature of PP is 156 ◦C (Table S2, see Supplementary Materials),
the staining temperature (80 ◦C) was far below the melting temperature, and the diffusion
of S-FN was limited to the surface layer of PP MPs.

At a fixed dye/surfactant ratio of 1 g/L, the addition of more dye to MP naturally
increased the relative fluorescent intensities of stained MPs due to higher staining probabil-
ities in the presence of more dye (Figure 7a). However, above 10 wt% dye/MP, the relative
fluorescent intensities of the stained MPs did not further increase, likely due to the limited
solubility of the dye (at a fixed dye/surfactant ratio) or the self-quenching phenomena of
the dye [51]. In the presence of excess dye, the emitted radiation may be reabsorbed by
the adjacent dye or transmitted to the surrounding polymer matrix as thermal vibration
energy, which may limit the overall fluorescent intensities [52].
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Figure 7. Relative fluorescence intensity of PP MPs stained with different dye/MP (a) and
MP/aqueous solution (b) ratios. Staining conditions: dye = S-FN; surfactant = Tween 20;
dye/surfactant = 1 g/L; staining time = 60 min; staining temperature = 80 ◦C. MP/aqueous so-
lution is 1 g/L for (a), and dye/MP is 2.5 wt% for (b).

More than 18,000 particles of MPs are reportedly often found in 1 L of wastewater [53].
Assuming that the shape and diameter of the MPs are spherical and 159 µm (median value
of 106~212 µm of this study), respectively, this concentration of PP MPs (i.e., 18,000 MP
particles/L) corresponds to 3.5 × 10−2 g/L of MP [density of PP = 0.92 g/cm3, volume of
MP = (1/6) × π × d3] [54]. Figure S7 shows the fluorescent behavior of PP MPs stained
with S-FN/Tween 20 at this concentration. The PP MPs were collected through filtration
(Figure S7a) or redispersed in aqueous solution (Figure S7b) for observations (illuminated
by UV Hand Lamp at 365 nm), which clearly demonstrates the successful staining of PP
MPs with the dye/surfactant combination even at this low MP concentration.

To semi-quantitatively characterize stained MPs by using FS-2 fluorescence spec-
troscopy, 150 mg of MP sample is required. Practically, an MP/aqueous solution concentra-
tion of 3.5 × 10−2 g/L is too low to collect such a quantity of MPs. In addition, to stain MPs
viably and effectively, the MP-containing aqueous sample can be concentrated to some
degree prior to staining by partial removing of water. In this context, the staining behavior
of the MP aqueous solution in the MP/aqueous solution range of 0.1~1.0 g/L was checked
(~10 times concentrated than 3.5 × 10−2 g/L). As shown in Figure 7b, the relative fluores-
cent intensities of stained PP MPs determined by FS-2 were almost constant regardless
of the tested MP concentration, which again supports the good staining capability of the
S-FN/Tween 20 combination in this study.

Figure S8 (see Supplementary Materials) shows the effect of different sizes of MPs
stained with S-FN/Tween 20 on their fluorescence behaviors. All MPs exhibited strong
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fluorescence intensities. Interestingly, the larger MPs exhibited slightly higher fluorescent
intensities, although the reason remains unclear.

As mentioned in the introduction, research interest regarding the real-time and on-
the-spot detection of MPs has increased. To realize this detection, in situ fluorescence
quenching of non-adsorbed free dye molecules in staining solution is proposed in this
study to selectively illuminate stained MPs without filtration or drying (final step of
Scheme 1). To check the feasibility, 0.25 M aniline was introduced into the aqueous staining
solution in the presence of MPs, and their fluorescence behavior was observed. Aniline was
specifically adopted as a quenching agent based on the literature studies [55,56]. As shown
in Figure 8, immediately after the introduction of aniline, the fluorescence intensity of the
free dye in the staining solution almost completely disappeared (Figure 8a versus Figure 8b,
and Figure 8c). However, the fluorescence intensity of the stained MP was well maintained
regardless of the addition of aniline, likely due to the encapsulation and trapping effect of
the dye in the polymer matrix to protect the dye from quenching (Figure 8b,d). The results
were also well evidenced by the clear fluorescent emission of collected PP MPs before
and after quenching (Figure 8e,f). In other words, in the presence of MPs, the fluorescent
activity of the free non-adsorbed dye in solution was selectively eliminated by introducing
the quenching agent aniline and leaving the selective fluorescent illumination of the stained
MPs (Figure 8a versus Figure 8b). The results suggest that the staining solution may not
have to be removed after the staining procedures to observe MPs, which may dramatically
simplify the detection system of MPs by eliminating tedious separation/filtration/drying
procedures to collect MPs. Application of the developed methodology to on-site monitoring
of MPs will be the content of our next research.
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Figure 8. Optical photographs of the aqueous staining solution with PP MPs before (a) and after
(b) quenching with aniline illuminated by UV Hand Lamp at 365 nm. Fluorescence spectra of the
aqueous staining solution (without MPs, (c)) and stained PP MPs (d) before and after quenching with
aniline. Fluorescence photographs of stained PP MPs before (e) and after (f) quenching with aniline.
Staining conditions: dye = S-FN; surfactant = Tween 20; dye/surfactant = 1 g/L; dye/MP = 2.5 wt%;
MP/aqueous solution = 1 g/L; staining time = 60 min; staining temperature = 80 ◦C. Fluorescence
quenching condition: 0.25 M aniline, room temperature.
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4. Conclusions

In this study, with the aid of a surfactant, in situ staining of MPs in aqueous media
is proposed. Despite the nonpolar nature of fluorescent dyes, the introduction of the
surfactant dramatically improved the solubility of the dyes in water, as evidenced by
the reduced dye particle sizes (~10 nm for S-FN/Tween 20) and afforded the efficient
and successful fluorescent staining of MPs. The S-FN-stained MPs exhibited a clear blue
fluorescence color with long-term stability, supporting successful incorporation of S-FN into
the polymer matrix of MPs. MPs stained with S-FN exhibited orthochromatic characteristics
and relatively consistent fluorescent emission spectra with maximum emission wavelengths
of 429~437 nm regardless of the MP and surfactant compositions. With S-FN/Tween 20,
the study on different staining parameters, such as the temperature, time, and dye/MP
ratios on the staining characteristics of MPs indicated that 90 ◦C, >10 min, and ~10 wt%
dye/MP, were the optimal staining conditions. Staining of PP MP with S-FN/Tween 20 was
possible for various MP/aqueous solution concentrations of 3.5 × 10−2~1.0 g/L, which
supports the good staining capability. Fluorescence quenching of non-adsorbed free dye
molecules in staining solution was successfully accomplished by introducing aniline, while
the fluorescent intensity of stained MP was well maintained due to the encapsulation and
protecting effect of the dye by the polymer matrix. Through the staining and quenching
procedure, in situ selective fluorescent illumination of the stained MPs in the staining
solution was successfully achieved, which may eliminate the tedious separation/filtration
procedure to detect/monitor MPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14153084/s1, Supplementary Materials associated with
this article can be found as a separate file: 3 Tables and 8 Figures. Table S1, Examples of MP stain-
ing methods; Table S2, Representative density and fusion temperature values of common MPs;
Table S3, Comparison between recent prices of dye candidates to stain MPs; Figure S1, Relative
fluorescence intensity of PP-MPs stained with S-FN and Nile red with Tween 20 and different sol-
vents. Staining conditions: dye/surfactant or solvent = 1 g/L; dye/MP = 2.5 wt%; MP/water
solution = 1 g/L; staining time = 60 min; staining temperature = 80 ◦C. Figure S2, Size of the
dye particles with different dye/surfactant ratios at various S-FN/Tween 20 concentrations in wa-
ter; Figure S3, Size of the dye particles with different surfactants at various S-FN concentrations
in water (dye/surfactant = 1 g/L); Figure S4, Optical photographs of different stained MPs at dif-
ferent staining temperatures (illumination by UV Hand Lamp at 254 nm for MPs stained with
Nile red and 365 nm for MPs stained with S-FN). Staining conditions: surfactant = Tween 20;
dye/surfactant = 1 g/L; dye/MP = 2.5 wt%; MP/aqueous solution = 1 g/L; staining time = 60 min.
Figure S5, Normalized fluorescence spectra of S-FN (a) and Nile red (b) in stained MPs. Stain-
ing conditions: surfactant = Tergitol MIN FOAM 1x; dye/surfactant = 1 g/L; dye/MP = 2.5 wt%;
MP/aqueous solution = 1 g/L; staining time = 60 min; staining temperature = 80 ◦C. Figure S6, Opti-
cal photographs of stained MPs after removing the staining solution and redispersing the MPs in a
water/ethanol solution (illuminated by UV Hand Lamp at 365 nm). Staining conditions: dye = S-FN;
surfactant = Tween 20; dye/surfactant = 1 g/L; dye/MP = 2.5 wt%; MP/aqueous solution = 1 g/L;
staining time = 60 min; staining temperature = 80 ◦C. Figure S7, Optical photographs of PP MPs
stained at an MP/aqueous solution concentration of 3.5 × 10−2 g/L: Filtered PP MPs (a) and redis-
persed PP MPs in aqueous solution (b) after staining (illuminated by UV Hand Lamp at 365 nm).
Staining conditions: dye = S-FN; surfactant = Tween 20; dye/surfactant = 1 g/L; dye/MP = 2.5 wt%;
MP/aqueous solution = 3.5 × 10−2 g/L; staining time = 60 min; staining temperature = 80 ◦C.
Figure S8, Fluorescence spectra of PP MPs with different sizes stained with S-FN/Tween 20. Staining
conditions: dye/surfactant = 1 g/L; dye/MP = 2.5 wt%; MP/aqueous solution = 1 g/L; staining
time = 60 min; staining temperature = 80 ◦C. References [2,5,18,28–34,36,48,57–66] are cited in the
Supplementary Materials.
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