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Abstract

Children are less fluent at verifying the answers to larger single-digit arithmetic problems 

compared with smaller ones. This problem size effect may reflect the structure of memory 

for arithmetic facts. In the current study, typically developing third to fifth graders judged the 

correctness of single-digit multiplication problems, presented as a sequence of three digits, that 

were either small (e.g., 4 3 12 vs. 4 3 16) or large (e.g., 8 7 56 vs. 8 7 64). We measured 

the N400, an index of access to semantic memory, along with accuracy and response time. The 

N400 was modulated by problem size only for correct solutions, with larger amplitude for large 

problems than for small problems. This suggests that only solutions that exist in memory (i.e., 

correct solutions) reflect a modulation of semantic access likely based on the relative frequency 

of encountering small versus large problems. The absence of an N400 problem size effect for 

incorrect solutions suggests that the behavioral problem size effects were not due to differences 

in initial access to memory but instead were due to a later stage of cognitive processing that 

was reflected in a post-N400 main effect of problem size. A second post-N400 main effect 

of correctness at occipital electrodes resembles the beginning of an adult-like brain response 

observed in prior studies. In sum, event-related brain potentials revealed different cognitive 

processes for correct and incorrect solutions. These results allude to a gradual transition to an 

adult-like brain response, from verifying multiplication problems using semantic memory to doing 

so using more automatic categorization.
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Introduction

General

Children’s ability to perform elementary arithmetic provides a foundation for their later 

acquisition of higher-level mathematical skills in high school and college. As arithmetic 

fluency increases, reliance on relatively inefficient processes, such as counting and 

decomposition, declines in favor of memory-based retrieval (Ashcraft, 1982; Lemaire & 

Siegler, 1995; Siegler, 1988), and retrieval deficits have been associated with mathematical 

disability (Geary, Hoard, & Bailey, 2012; LeFevre, Daley, et al., 1996). Successful and 

efficient retrieval is dependent on the development and maintenance of accurate long-

term memory representations for arithmetic facts such as the correct answers to single-

digit multiplication problems. Characterizing the quality and retrieval processes of these 

memories, especially when they are first being established, is important both at a theoretical 

level, for resolving debates about cognitive arithmetic and its relationship (or not) to 

language processing (e.g., Butterworth, Reeve, Reynolds, & Lloyd, 2008; Frank, Everett, 

Fedorenko, & Gibson, 2008; Gelman & Gallistel, 2004), and at a practical level, for 

understanding potential vulnerabilities in the system.

Children who are first learning core arithmetic skills begin their education by operating 

on smaller numerosity and then progress to working with larger numerical values. As a 

result, effects of problem size, such as responding slower to 8 × 7 than to 4 × 3, have 

been observed. As arithmetic fluency increases, problem size effects gradually decrease 

but continue to persist into adulthood (for reviews, see Ashcraft & Guillaume, 2009; 

Campbell & Graham, 1985; De Brauwer, Verguts, & Fias, 2006; Dickson & Wicha, 2019; 

Koshmider & Ashcraft, 1991; Zbrodoff & Logan, 2005). Indeed, the problem size effect is 

so consistently observed across populations that one review referred to it as a phenomenon 

that “everyone finds” (Zbrodoff & Logan, 2005). The reduction in the problem size effect 

that occurs with increased arithmetic fluency is dependent on successful encoding of more 

difficult, typically larger problems into long-term memory (see Ashcraft & Guillaume, 2009, 

for additional perspectives). However, the source of this effect is still debated.

In adults, the explanation for the problem size effect has focused on three interrelated 

factors: frequency of occurrence, interference or “confusion” in memory, and strategy. 

First, in education, small problems are learned earlier and encountered more frequently 

(Ashcraft & Christy, 1995), leading to stronger memory representations and faster retrieval 

for smaller problems than for larger problems (Imbo & Vandierendonck, 2008; Zbrodoff 

& Logan, 2005). Second, it has been proposed that answer retrieval for larger problems 

may also involve more interference or “confusion” in memory (for a review, see Ashcraft 

& Guillaume, 2009). This interference may result from larger problems having a greater 

history of retrieval errors during learning, as compared with smaller problems, which are 

easier to remember and less prone to retrieval errors. Third, procedural strategies for solving 

arithmetic problems, such as repeated addition or transformation, are reportedly more 

frequent for larger problems than for smaller problems (cf. Kirk & Ashcraft, 2001; LeFevre, 

Sadesky, & Bisanz, 1996; Siegler, 1988). Each of these may have different implications for 

memory representations and processing of arithmetic facts.
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Traditionally, the processing of arithmetic facts has been inferred from behavioral measures 

of response time and accuracy using simple arithmetic tasks in which participants produce 

or verify the solution to a problem (Campbell & Austin, 2002; for reviews, see Domahs & 

Delazer, 2005; Noël, Fias, & Brysbaert, 1997). The prevailing understanding is that large, 

less well-learned problems are more weakly represented in memory and therefore, when 

these problems are presented, the solutions are not as accessible. However, the mechanisms 

involved at different levels/stages of arithmetic processing are not well understood; that is, 

does sensitivity to size affect access to correct and incorrect solutions equally, or are the 

behavioral effects of problem size that are observed in verification paradigms instead driven 

by downstream processes such as response selection and execution? We begin to address 

these questions in the current study.

Arithmetic processing in children

Children who have just learned simple arithmetic problems make for a particularly 

compelling study population because the memories they form during learning construct 

the foundation on which more advanced mathematical skills are built. Indeed, behavioral 

findings from children underpin much of the theoretical impetus for the approaches used 

in studying cognitive arithmetic more broadly (Siegler & Braithwaite, 2017). Notably, 

arithmetic knowledge in children has not yet been altered by disuse or learning additional 

skills in higher mathematics courses. Thus, by studying how children respond to arithmetic 

problems, we can test the functionality of the emerging arithmetic memory system and 

compare that with what is later used during adulthood (Imbo & Vandierendonck, 2008).

Determining when and how problem size, or problem difficulty, affects processing in 

children requires an understanding of the cognitive mechanisms that unfold prior to 

“cognitive end-state” accuracy and response time measures. That is, by the time a child 

makes a response to a problem, a cascade of cognitive events has transpired. Despite 

the importance of studying this, research using time-sensitive neuroimaging measures is 

surprisingly limited in children (Peters & De Smedt, 2018). Event-related brain potentials 

(ERPs) have proven to be useful as a window onto these cognitive mechanisms in children. 

The results from initial studies suggest that children may exhibit different brain responses 

than adults when processing multiplication problems (Cerda, Grenier, & Wicha, 2019; 

Grenier, Dickson, Sparks, & Wicha, 2020; Wicha, Dickson, & Martinez-Lincoln, 2018). 

This distinction, however, was not always recognized (Prieto-Corona et al., 2010), in part 

because even the adult brain response had not yet been well characterized (Dickson et 

al., 2018; Dickson & Wicha, 2019; Jasinski & Coch, 2012; Prieto-Corona et al., 2010). 

We briefly introduce this adult literature to set the historical context for understanding the 

neurocognitive indices for simple arithmetic in children.

ERP componentry during arithmetic verification tasks

An ERP is a measure of continuous electrical brain activity time-locked and averaged across 

multiple presentations of a stimulus of interest such as the solution to a multiplication 

problem. The multidimensional nature of ERP waveforms allows for inferences about the 

underlying cognitive processes based on the timing (latency), polarity (negative-going vs. 

positive-going morphology), amplitude (microvolts), and distribution across the scalp. ERPs 

Dickson et al. Page 3

J Exp Child Psychol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can even reveal changes in cognitive mechanisms that are not measurable by less sensitive 

endpoint behavioral responses (e.g., McLaughlin, Osterhout, & Kim, 2004) or can reveal 

distinct cognitive mechanisms for similar behavioral outcomes across populations (Grenier 

et al., 2020). The most relevant ERP effect for the current study emerges as a difference 

in voltage amplitude on a negative-going waveform, called the N400, which is associated 

with attempted access to semantic memory (Federmeier, 2022; Kutas & Federmeier, 2011; 

Kutas & Hillyard, 1984). N400 amplitude is reduced (i.e., less negative) with increasing ease 

of semantic access, particularly through priming or other means of contextual support. In 

other words, more expected items tend to elicit progressively less negative N400 responses. 

Critically, the N400 is an automatic brain response to any meaningful or potentially 

meaningful stimulus and can appear even without conscious awareness of the event (Luck, 

Vogel, & Shapiro, 1996).

Grenier et al. (2020) demonstrated that presenting children with multiplication problems that 

are either correct or incorrect (e.g., 2 × 4 = 8 vs. 2 × 4 = 9) modulates the N400 similarly 

to a language task (e.g., reading sentences with nouns that make sense or not in the context) 

(Kutas & Hillyard, 1984). In contrast, adults elicit a different ERP at the solution, namely 

a positive-going response called a P300, with larger amplitude for the correct solutions 

compared with the incorrect solutions (see also Dickson et al., 2018; Dickson & Wicha, 

2019; Jasinski & Coch, 2012). The P300 is typically associated with stimulus categorization 

and is larger for task-relevant targets compared with distractors (Polich, 1987, 2007, 2012; 

Sutton, Braren, Zubin, & John, 1965; Sutton, Ruchkin, Munson, Kietzman, & Hammer, 

1982). In arithmetic verification tasks, participants must make a categorical decision on the 

correctness of the presented solution. The P300 response in adults reveals that they are able 

to process the solutions to arithmetic problems efficiently, detecting the correct solution as 

their target (eliciting a large P300) and detecting incorrect solutions as distractors (Dickson 

& Wicha, 2019).

ERP studies have also reported an arithmetic problem size effect in adults, which has been 

interpreted as a late positive component (Niedeggen, Rösler, & Jost, 1999; Núñez-Peña, 

2008; Szucs & Csépe, 2005) or as a delayed P300 (Dickson & Wicha, 2019). Much 

less is known about the ERP correlates of the problem size effect in children, with no 

studies to date testing verification (Van Beek, Ghesquière, De Smedt, & Lagae, 2014, 

2015). Given that children and adults engage different cognitive processes—semantic access 

(N400) versus target categorization (P300) of the solutions, respectively— when verifying 

the correctness of simple multiplication problems (Cerda et al., 2019; Dickson et al., 2018; 

Dickson & Wicha, 2019; Grenier et al., 2020; Jasinski & Coch, 2012; Prieto-Corona et al., 

2010; Wicha et al., 2018), the prediction here was that the arithmetic problem size effect in 

children would modulate the N400 as an index of differential access to smaller and larger 

problems in semantic memory.

Multiplication verification and problem size in children

The goal of the current study was to characterize the neural correlates for the problem size 

effect in children and, in turn, the cognitive process affected during a verification task. To 

do this, we measured the effect of problem size on the arithmetic N400 while typically 
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developing children verified the correctness of four types of multiplication solutions: correct 

and incorrect solutions to small problems (e.g., 2 × 4 = 8 or 10) and correct and incorrect 

solutions to large problems (e.g., 8 × 6 = 48 or 54). This same design was used in a separate 

study with adults (Dickson & Wicha, 2019), allowing for comparison of the overall ERP 

and behavioral patterns between populations. By considering the possible effects of problem 

size on correct and incorrect solutions separately, different questions could be addressed 

regarding how children process multiplication more broadly.

First, it is helpful to consider the broader literature on the N400 to better understand what 

the arithmetic N400 reflects. Grenier et al. (2020) showed that children elicit an N400 

to multiplication solutions during a verification task, with larger negative amplitude for 

incorrect solutions than for correct solutions. This arithmetic N400 resembled the N400 

elicited in a word–picture verification task and has been interpreted in line with decades 

of language comprehension research (Federmeier, 2022; Kutas & Federmeier, 2011). In 

sentence processing studies, a word that is expected based on context elicits smaller N400 

amplitude than an unexpected word in that same context (e.g., “Dogs love to chew on 

bones/socks” (Federmeier & Kutas, 2001; Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 

2007; Kutas & Federmeier, 2011). Considering that smaller problems are easier to retrieve 

from memory, the correct solutions to small problems should in turn elicit smaller N400 

amplitude than those to large problems, similar to semantically predictable words in a 

sentence context. This N400 amplitude modulation would reflect more facilitated access to 

semantic memory for small problems than for large problems.

How might proposed explanations for the problem size effect—frequency of encountering 

a problem, interference or “confusion” in memory, and strategy use—affect the arithmetic 

N400? In the language literature, words that are more frequently encountered in daily 

life also elicit smaller N400 amplitude compared with words that are less frequent (Fischer-

Baum, Dickson, & Federmeier, 2014; Rugg, 1990; Van Petten, 1993). Words that have more 

competitors in memory elicit larger N400 amplitude (Meade, Grainger, Midgley, Emmorey, 

& Holcomb, 2018; Megías & Macizo, 2016). Therefore, regardless of whether frequency or 

confusion accounts for the problem size effect, correct solutions should elicit smaller N400 

amplitude for small problems than for large problems.

The role of strategy in explaining the problem size effect is less clear. Although children 

quickly adopt retrieval strategies (Siegler, 1988), procedural processes are reportedly more 

frequent for larger problems than for smaller problems even in adults (cf. LeFevre, Daley, et 

al., 1996; Siegler, 1988). There is no evidence that the N400 is modulated by strategy per se 

(Federmeier, 2022; Kutas & Federmeier, 2011). There is, however, some evidence that tasks 

that demand more superficial or automatic processing of words can lead to the absence of 

an N400 modulation in a language task (Fischer-Baum et al., 2014). This is perhaps in line 

with adults eliciting a P300, not an N400, when verifying multiplication problems, reflecting 

their more superficial processing of information (Dickson et al., 2018; Dickson & Wicha, 

2019; Grenier et al., 2020). At the same time, N400 amplitude is modulated when meaning 

level processing is required for the task even when the stimulus is not consciously perceived 

(Luck et al., 1996). In turn, if an N400 is observed in children for both small and large 
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problems, it is unlikely that differences in strategy would be an adequate explanation on its 

own for the problem size effect observed in behavior.

With regard to incorrect solutions, it is helpful to consider what is known from studies of 

problem size with adults. Unlike the larger N400 observed in children (Grenier et al., 2020), 

multiple studies have now demonstrated that when adults verify the correctness of simple 

multiplication problems, correct solutions elicit an earlier and larger positive-going ERP, or 

P300, than incorrect solutions (Dickson et al., 2018; Dickson & Wicha, 2019; Grenier et 

al., 2020; Jasinski & Coch, 2012). The P300 indexes the categorization of the solution as 

correct or incorrect. Consistent with the broader P300 literature, adults are so efficient at 

recognizing the correct solution to simple multiplication problems that they do not need to 

process the problems for meaning, as children do, and instead “detect” the correct solutions 

as “targets” and the incorrect solutions as “distractors” (Polich, 2012). Problem size further 

modulates the P300 for both correct and incorrect solutions in a graded fashion, with large 

incorrect solutions eliciting disproportionately smaller P300 amplitude compared with small 

incorrect and correct solutions. This is again consistent with the broader literature, revealing 

larger P300 amplitude to items that are easier to categorize (Dickson & Wicha, 2019; Isreal, 

Chesney, Wickens, & Donchin, 1980; Polich, 2007), and indicates that both problem size 

and correctness affect the ease with which adults can categorize the solutions.

In contrast to adults, the large modulation of the arithmetic N400 in children reveals that 

they process the solutions for meaning, with incorrect solutions being incongruous with 

expectations based on the preceding operands and eliciting a larger N400 amplitude (Grenier 

et al., 2020). One question is whether the brain response to both correct and incorrect 

solutions will be modulated by problem size as with adults. This is theoretically important 

because it has been argued that arithmetic facts are stored in a memory network as related 

facts, and as such related incorrect solutions should be more difficult to reject (Campbell, 

1987; Campbell & Graham, 1985; Niedeggen & Rösler, 1999; Stazyk, Ashcraft, & Hamann, 

1982). It would follow that incorrect solutions that are table related to the correct solution 

(e.g., 2 × 4 = 12) should be more available in semantic memory for smaller well-known 

problems than for larger problems that have weaker representations in semantic memory. In 

this case, an effect of problem size should reflect on ERP components measuring memory 

access, such as the N400, where greater ease of access leads to smaller N400 amplitude. 

Thus, incorrect solutions in small predictable problems should elicit smaller amplitude 

N400s compared with larger problems, reflecting spread of activation across this proposed 

memory network. We discuss other possible explanations of the problem size effect on 

incorrect solutions as they relate to the findings.

Lastly, with respect to possible ERP modulations other than the N400, there have been 

reports of problem size modulating a late positive component during an arithmetic 

production task in children (Van Beek et al., 2014, 2015). However, this later ERP effect 

has not been observed in verification of arithmetic facts (Cerda et al., 2019; Grenier et al., 

2020). The current study should determine whether children elicit post-N400 effects that are 

modulated by problem size.
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Method

Participants

A total of 57 children (24 female) in elementary Grades 3 to 5 were included in this study. 

These children were a subset of an existing large-scale study (N = 99) (Grenier et al., 

2020). Prescreening for inclusion in that study included math fluency (i.e., minimum of a 

third-grade level) and task accuracy (i.e., above chance). Their original design examined the 

effect of solution correctness and included most single-digit multiplication problems. This 

allowed us to do a subsequent analysis of the effect of problem size. Children from the 

original study were included here if their data had the minimum number of ERP trials, as 

discussed below. For completeness, we compared the excluded children with the 57 children 

based on performance and demographic data only (see “Additional analysis” section in 

Results).

Children were recruited from the local community through word of mouth and 

advertisement (e.g., free family magazines, social media groups). All were right-handed 

and had normal or corrected-to-normal vision and normal hearing. Participation was 

contingent on their ability to meet a low threshold for basic arithmetic ability (Wechsler 

Individual Achievement Test–Third Edition [WIAT-III], described below). Participants who 

had a history of neurological abnormalities or trauma, had a documented language or 

mathematical disability (including attention-deficit/hyperactivity disorder, dyscalculia, or 

dyslexia), or were taking psychoactive medications were excluded.

Participants’ average age was 10 years (range = 8 years 1 month to 11 years 9 months), 

and their average grade level was 4.7 (range = 3.7–5.9, where 5.9 covers the months of 

May–August prior to entering sixth grade in the fall), with 19 children in each grade 

(third, fourth, and fifth). The sample was representative of the diverse socioeconomic 

status (SES) and language backgrounds of the local population. The sample included 34 

monolingual English speakers (no or limited exposure to a second language), 10 dominant 

English speakers (heritage speakers of Spanish or children enrolled in Spanish–English dual 

language programs), and 13 proficient Spanish–English bilinguals. All children had at least a 

low average level of English proficiency to ensure that they were able to follow instructions 

in English (vocabulary size and oral comprehension from Woodcock–Johnson III Tests of 

Achievement; Woodcock, McGrew, & Mather, 2001).4

SES was measured on the four-factor Hollingshead scale (full range = 8–66), which for 

children considers the highest level of education and occupation of their primary caretaker 

(Hollingshead, 1975). Participants’ scores ranged from 16.5 to 66 and fell on average in 

upper-middle SES, with an average score of 50.

Informed consent (parent or legal guardian) and child assent were received in accordance 

with the institutional review board of the University of Texas at San Antonio (UTSA).

4Post hoc analyses were conducted to ensure that monolinguals (n = 34) and bilinguals (n = 23) did not differ based on performance 
(accuracy: p = .65; response time: p = .72) or ERP effects of problem size (p = .38).
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Offline behavioral cognitive assessments

Prior to the electroencephalogram (EEG) recording, we obtained multiple offline measures 

of cognitive ability, which are summarized in Table 2 in Results. The most critical of these 

was proficiency on the multiplication subtest of the WIAT, which is a paper-and-pencil 

timed (1-min) production task with single-digit problems of increasing difficulty (math 

fluency–multiplication) (Wechsler, 2009). To ensure minimum competence on the task, 

children needed to meet a third-grade level for multiplication (sample range = 9–40 of 40 

problems).

Stimuli

Single-digit multiplication problems consisted of three sequential Arabic numerals: two 

operands followed by a proposed solution. Because only one type of operation was 

presented, the multiplication sign was not included in the stimuli to keep the experiment 

shorter. All paired combinations for operands 2 through 9 were used except tie problems that 

are known to elicit reduced size effects given their unique status in memory (e.g., 3 × 3) 

(Miller, Perlmutter, & Keating, 1984). The resulting 56 problems were operationalized, half 

as small and half as large, by the size of their correct solution (see Stazyk et al., 1982). Large 

problems had correct solutions equal to or greater than 27, and small problems had correct 

solutions equal to or less than 24 (25 and 26 were not possible solutions in this set). Finally, 

across the experiment, each problem was presented once with a correct solution (e.g., 2 5 

10) and once with an incorrect solution (e.g., 2 5 16) for a total of 112 trials.

Incorrect products were always multiples of one of the preceding operands (i.e., table-related 

solutions) and were generated by adding or subtracting 1 or 2 from one of the preceding 

operands [e.g., 2 × 5 => (2 + 1) × 5]. Zero or multiples of 10 or 11 were never used as 

possible incorrect solutions. A challenge with creating related incorrect problems is that 

incorrect solutions for large problems are naturally a further numerical distance from their 

correct solution than small incorrect solutions are from theirs. For example, the incorrect 

solution 5 × 3 = 12 is a distance of 3 from the correct solution 15, but 8 × 7 = 63 is a 

distance of 7 from the correct solution 56. However, by consistently adding or subtracting 1 

or 2 from one operand, we avoided including easily discardable incorrect solutions for small 

problems. This way, incorrect solutions scale with the problem size without introducing the 

factor of plausibility, which could interfere with multiplication verification on the judgment 

task (Núñez-Peña & Escera, 2007; see Discussion). Unrelated solutions were not included 

in the stimuli in order to keep the length of the study tolerable for children. Table-related 

solutions were selected because they are more difficult to reject than unrelated solutions and 

therefore are more likely to elicit modulations on ERP components (Niedeggen & Rösler, 

1999).

Procedure

A session began with the offline standardized measures and questionnaires, followed by 

the multiplication task with simultaneous measurement of EEG and performance (accuracy 

and response times). EEG and performance metrics were treated as separate dependent 

measures. During the experimental task, participants viewed the multiplication problems one 

operand at a time and were instructed to verify whether the third number was the correct 
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product for the first two operands. A short practice set preceded the task. Participants were 

instructed in English to respond as quickly and accurately as possible as soon as they saw 

the solution (responses were not delayed; cf. Dickson et al., 2018). Solution correctness 

was indicated on a Logitech F310 Gamepad (Newark, CA, USA) by button responses with 

participants’ right and left index fingers. In the full sample, response-hand mapping was 

counterbalanced across participants by gender. In this sample, 31 (of 57) responded that a 

solution was correct with their right hand.

Paradigm (Perception Research Systems, Lawrence, KS, USA) was used to present the 

experimental stimuli in the center of a 19-inch LCD monitor positioned 100 cm away from 

participants. The presentation rate was based on Nieddegen and Rösler (1999) and was as 

follows. A 1000-ms cue to blink if needed (a cartoon eye) was followed by a 1000-ms cue 

(a yellow coin with a central X to remind participants that only multiplication problems 

were presented) to indicate that the next trial was starting and to encourage children to keep 

their eyes focused on the center of the monitor. Arabic numeral stimuli (80-point font) were 

presented in white text on a black background. Each operand was presented for 450 ms, with 

a 250-ms interstimulus interval (ISI) between them. The second operand was followed by a 

1000-ms ISI, and then the proposed solution was presented for 350 ms. Following solution 

offset, a blank screen remained for a minimum of 1000 ms (to ensure an adequate ERP 

collection window, i.e., 1 s of post-stimulus data) and a maximum of 5000 ms. Button-press 

responses within that time window would immediately advance to the next trial. Trials with 

responses beyond the 5-s cutoff were not recorded. See Fig. 1 for an example of presentation 

and timing.

Trials were distributed across eight blocks of 14 problems each. To make the experiment 

child friendly, participants were told a brief cover story about having a mission on a rocket 

ship through a math universe where their goal was to collect as many coins as quickly 

as possible. A coin would be earned for each problem that was answered correctly, and 

these coins could be used to open different levels on a treasure box. Between blocks, the 

display informed the children of the total number of coins earned in that block (i.e., trials 

answered correctly) as well as the number of blocks completed and remaining. Although 

rewards can change performance (and can modulate performance-related ERPs such as 

the P300) (e.g., Carrillo-de-la-Peña & Cadaveira, 2000; Kleih, Nijboer, Halder, & Kübler, 

2010), this feedback was critical for maintaining children’s interest in the task. Children did 

not receive feedback on their accuracy on each trial, nor did they receive negative feedback 

(e.g., percentage correct) to avoid demotivation. Children exchanged their virtual coins for 

a toy prize at the end of the experiment. All children received a reward regardless of their 

performance, and their performance was never compared with that of other children.

EEG recording

EEG data collection—During the EEG recording, the child sat alone in a sound-

attenuating, electrically shielded chamber and was monitored with a closed-circuit camera 

whenever the chamber door was closed. Continuous EEG was recorded from 26 Ag–AgCl 

active electrodes fitted into a geodesically arranged electrode cap (Electro-Cap International, 

Eaton, OH, USA) (see Fig. 3 in Results for configuration) using a BioSemi amplifier 
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running ActiveView software (BioSemi ActiveTwo; BioSemi B.V., Amsterdam). Recordings 

were also made from six external electrodes: under each eye to monitor blinking, at the outer 

canthus of each eye to monitor horizontal eye movements, and on the mastoid processes 

for referencing of the data. Electrode offsets were kept below 25 mV. An analog fixed 

first-order anti-aliasing filter with a half-power point at 3.6 kHz was applied (see https://

www.biosemi.com). The data were sampled at 256 Hz (2048 Hz with a decimation factor of 

1/8) with a digital low-pass fifth-order sinc response with a −3-dB point at 51.2 Hz (1/5 of 

the sample rate). Online recordings for each electrode were made with respect to common 

mode sense active and driven right leg passive electrodes.

EEG processing—Raw BioSemi data were imported into Version 14.1.1 of the 

MATLAB-based toolbox EEGLAB (Delorme & Makeig, 2004), which was used for 

processing and analysis in conjunction with Version 6.1.4 of the ERPLAB toolbox (Lopez-

Calderon & Luck, 2014). The raw data were referenced to the average of the left and 

right mastoid electrodes. A high-pass second-order Butterworth filter with a 0.1-Hz cutoff 

was then applied to all channels. Epochs of raw EEG data were extracted with a 100-ms 

prestimulus baseline (−100 to 900 ms of stimulus onset). Trials with inaccurate behavioral 

responses were excluded, as were epochs contaminated with artifacts; blinks (see below), 

horizontal eye movements, excessive muscle artifacts, and channel drift were identified by 

individually calibrated thresholds using algorithms in ERPLAB. Participant-level average 

ERPs were generated, and a low-pass second-order Butterworth filter with a 30-Hz cutoff 

was then applied to these data prior to analysis.

As a factor of the original paradigm (Grenier et al., 2020), there was a maximum of 28 trials 

in each condition here. This left a small margin for data loss to maintain an adequate signal-

to-noise ratio. Participants were included in ERP analyses if they had a minimum of 15 trials 

in each of the four conditions (average = 21 trials, range = 15–28). From the Grenier et al. 

(2020) dataset, 26 participants met these criteria after removing trials with artifacts, and an 

additional 31 participants met the criteria after independent component analysis (ICA) for 

blink correction. ICA was conducted using the EEGLAB runica algorithm over all 26 head 

channels on high-pass filtered continuous EEG data. Blink components were identified and 

removed using standard component spectra, scalp topography, and time course (Jung et al., 

2000). Trials with artifacts were then removed from this modified dataset.

The average number of trials per critical bin was not significantly different across trial types 

(small correct = 22; large correct = 21; small incorrect = 21; large incorrect = 20). Table 1 

shows the trial count distribution based on condition. Because of the nature of the task, there 

are more children with fewer trials in the (harder) incorrect large type and more trials in the 

(easier) correct small type. However, there was no significant difference in the number of 

trials on average across conditions.

ERP data analysis—All statistical analyses were performed in R (R Development Core 

Team, 2016). ERPs were measured separately from the onset of the second operands 

(problem size) and the solutions (problem size and correctness), each relative to a 100-ms 

prestimulus baseline. Separate analyses of variance (ANO-VAs) (using the ez package; 

Lawrence, 2016) were conducted for the second operand and solution with 2 levels of 
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problem size or problem size and correctness, respectively, and 26 levels of electrode. 

Significant interactions with electrode were subjected to additional tests for distributional 

analysis, with a subset of 16 electrodes that could be divided by anteriority (prefrontal, 

frontal, central, or posterior), hemisphere (left or right), and laterality (lateral or medial). 

Tests involving more than 1 degree of freedom in the numerator (e.g., anteriority) were 

corrected for violations of sphericity, and corrected p values and corresponding ε correction 

factors are reported. Generalized eta squared ηG
2  (Bakeman, 2005) is reported for effects 

that reach significance. When possible, effect contrasts are reported to provide within-

participant differences and standard errors as well as their effect size (dz).

Behavioral analysis—Response times (RTs) from trials that elicited accurate responses, 

regardless of whether the trials had usable corresponding ERPs, were included in analyses 

after removing extreme values (<200 ms or > 5 s; 8 trials removed). These RTs were 

subjected to an ANOVA with factors of size (small or large) and correctness (correct or 

incorrect). Percentage accuracy per critical condition was similarly assessed.

Results

Behavior

Results from the standardized measures are reported in Table 2.

Response times

Main effects of correctness, F(1, 56) = 58.50, p < .001, ηG
2 = . 04, and size, F(1, 56) = 96.73, 

p < .001, ηG
2 = . 13, reached significance. The interaction between these factors did not, F(1, 

56) = 2.43, p = .12. Responses were faster to correct solutions (1190.53 ms, SE = 48.06) 

than to incorrect solutions (1357.51 ms, SE = 55.16) and were faster to small problems 

(1121.57 ms, SE = 43.66) than to large problems (1438.23 ms, SE = 62.38). The advantage 

for small problems was 317 ms (within-participant SE = 32, dz = 1.30), and the advantage 

for correct solutions was 167 ms (within-participant SE = 21, dz = 1.05). Fig. 2 shows the 

average RT for each solution for the correct solutions only (most solutions appear in only 

one problem; 12, 18, and 24 each appear in two problems). Fig. 2 illustrates descriptively 

the effect of solution size on RT, which by definition is the problem size effect as it is 

operationalized in the literature; statistical analyses to compare individual solutions were not 

conducted due to the limited number of trials per solution size.

Accuracy

Main effects of correctness, F(1, 56) = 18.37, p < .001, ηG
2 = . 07, and size, F(1, 56) = 13.87, 

p < .001, ηG
2 = . 04, reached significance, but the interaction between these factors did not, 

F(1, 56) = 0.64, p = .43. Mean accuracy was 89.40% (range = 74.11–99.11). Participants 

were more accurate when responding to correct solutions (91.73%) compared with incorrect 

solutions (87.08%) and when responding to solutions in small problems (91.09%) compared 

with large problems (87.71%).
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ERP results

ERPs to the solution

N400 latency.: To analyze peak latency, we measured the absolute peak of the N400 

correctness effect in the broad window of 200 to 600 ms post-solution in each participant. 

The mean peak across all channels and participants was 387.87 ms (SE = 6.15). In addition, 

individual participant peak latencies were tested in a repeated-measures ANOVA with 57 

participants and within-participant factors of correctness (correct or incorrect), problem 

size (small or large), and electrode (26 levels). The ANOVA revealed no main effect of 

correctness, F(1, 56) = 1.84, p = .18, or size, F(1, 56) = 1.72, p = .20, and no significant 

interaction between these factors, F(1, 56) = 3.01, p .09. These results are consistent with the 

N400 component being stable in time (see Kutas & Federmeier, 2011, for a review on the 

N400).

N400 mean amplitude.: Mean N400 amplitude was measured in a 200-ms window centered 

around the latency peak (387.87 ms) 288 to 488 ms after solution onset. Fig. 3 shows the 

grand average ERPs for each condition at each scalp electrode (approximate distribution 

across the head). Note that the N400 amplitude might fall within the positive range (e.g., 

across the back of the head) (see Fig. 3). However, the N400 component is measured as a 

negative-going deflection rather than a negative absolute amplitude. There were significant 

main effects of correctness, F(1, 56) = 50.03, p < .001, ηG
2 = . 04, and size, F(1, 56) = 10.31, 

p < .01, ηG
2 = . 01, as well as an interaction between correctness and size, F(1, 56) = 9.26, 

p < .01, ηG
2 = . 01. The main effect of correctness was due to reduced (less negative) N400s 

for correct solutions (μV = 4.84, SE = 0.47) relative to incorrect solutions (μV = 2.13, SE = 

0.53). The main effect of size was due to reduced N400s for solutions in small problems (μV 

= 4.05, SE = 0,52) relative to large problems (μV = 2.93, SE = 0.46). The interaction was 

twofold. The main effect of correctness was greater for solutions of small problems, F(1, 56) 

= 61.94, p < .001, ηG
2 = . 16 (within-participant difference: μV = 3.79, SE = 0.48, dz = 1.04), 

than for solutions of large problems, F(1, 56) = 8.58, p < .01, ηG
2 = . 04 (within-participant 

difference: μV = 1.64, SE = 0.56, dz = 0.39). That is, the effect of correctness was more 

prominent for smaller problems. Conversely, the effect of size was significant for correct 

solutions, F(1, 56) = 20.09, p < .001, ηG
2 = . 07 (within-participant difference: μV = 2.20, SE 

= 0.49, dz = 0.59), but did not reach significance for incorrect solutions, F(1, 56) = 0.01, p = 

.93 (within-participant difference: μV = 0.05, SE = 0.50, dz = 0.09). That is, the main effect 

of size was driven by correct solutions (see Fig. 4).

To determine the reliability of the N400 problem size effect, additional analyses using 

standard error (SE) of the mean amplitude were conducted. Using a sampling of n − 1 with 

replacement in R (R Development Core Team, 2016), none of the participants increased the 

SE of the group when included in the sample. This indicates that the effects were not driven 

by outliers. The standardized measurement error (SME) tool was then used to quantify 

single-participant data quality by providing a mean of the standard errors (or SME), where 

smaller values indicate better data quality (Luck, Stewart, Simmons, & Rhemtulla, 2021). 

Within the N400 time window (288–488 ms), the average SME value across participants 
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was 3.81 (range = 1.46–8.69). Correlations between these values and trial counts showed no 

relationship (r = .27, p = .47), indicating that even children with lower trial numbers had 

reliable ERPs. Overall, our data sample is reliable based on these metrics.

The factor of electrode interacted with size, F(25, 1400) = 3.30, p < .01, ε = 0.24, ηG
2 = . 003, 

and correctness, F(25, 1400) = 3.41, p < .01, ε = 0.21, ηG
2 = . 004, but the three-way 

interaction among electrode, size, and correctness was not significant, F(25, 1400) = 0.49, p 
= .83, ε = 0.27. A distributional ANOVA (described in the “ERP data analysis” section in 

Method) was run for correctness and size. Size interacted with laterality, F(1, 56) = 9.32, p < 

.01, ηG
2 = . 002, with larger size effects over medial sites (medial effect = 1.61 μV, SE = 0.45; 

lateral effect = 0.43 μV, SE = 0.30). Correctness interacted with laterality, F (1, 56) = 13.44, 

p < .001, ηG
2 = . 002, and with laterality and anteriority together, F(3, 168) = 3.17, p < .05, 

ε = 0.86, ηG
2 < . 001, reflecting the typical centromedial distribution of the N400 effect. The 

N400 effect was larger and more distributed for correctness than for size (see Fig. 5, upper 

and lower left head plots).

Post hoc analyses were conducted to examine the impact of overall task accuracy on the 

N400 problem size effect. The range of scores in this sample was 74.1% to 99.1% accuracy. 

Three performance categories were created by dividing the range of scores into terciles.5 

This resulted in a lower-performing group (n = 10; average = 80.2%, range = 74.1–82.4), 

an average-performing group (n = 17; average = 86.4%, range = 82.41–90.8), and a higher-

performing group (n = 30; average = 94.2%, range = 90.81–99.1). Critically, the majority of 

children performed above 82% (n = 47), which indicates that our sample included children 

who were good at the task. Although the tercile groups were too small to directly compare 

their ERP responses, we looked at the brain data after removing the 10 low-performing 

children. The resulting ERPs (n = 47) were similar to the ERPs observed in the whole group 

(n = 57), with small correct solutions eliciting smaller N400 amplitude than large correct 

and incorrect solutions. The statistical analyses also revealed similar results, namely a main 

effect of correctness, F(1, 46) = 42.84, p < .001, a main effect of problem size, F(1, 46) = 

8.85, p < .01, and an interaction between correctness and problem size, F(1, 46) = 8.08, p < 

.01. Therefore, the results observed in the whole group did not change when low-performing 

children were removed, which suggests that (a) our sample was representative of children 

with overall high math fluency (as measured by accuracy on our task) and (b) even higher-

performing children did not show a problem size effect on incorrect solutions.

Post hoc analyses were also conducted to determine the impact of grade level on the problem 

size effects. There was no significant effect of grade [entered as a between-participant factor, 

F(2, 54) = 0.41, p = .67] across mean amplitudes for any of the conditions of interest.

Post-N400 effects.: Directly following the N400 time window, average ERPs per condition 

were measured over a 300-ms window (488–788 ms post-stimulus) to capture sustained 

or slow-wave effects. The distribution of the effects is best understood by examining the 

5Using the median split (M = 91.1%) resulted in a lower-performing group (mean accuracy = 85.0%, range = 74.1–91.1) and a 
higher-performing group (mean accuracy = 94.4%, range = 92.0–99.1) with drastically different ranges (17% vs. 7%).
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topographic plots of the main effects in this time window (Fig. 5), where correctness 

emerges as a posterior positivity for incorrect solutions (the opposite of the N400 pattern; 

Fig. 5 Fig. 6) and size emerges as a more central continuation of the prior N400 effect (Fig. 

6).

An omnibus ANOVA with factors of correctness (correct or incorrect), size (small or large), 

and 26 levels of electrode was computed. This analysis obtained a main effect of size, 

F(1, 56) = 4.09, p < .05, ηG
2 = . 004, which was due to a more positive-going response to 

solutions of small problems (μV = 5.41, SE = 0.54) than large problems (μV = 4.49, SE = 

0.50). This effect was qualified by an interaction between size and electrode, F(25, 1400) = 

5.15, p < .001, ε = 0.25, ηG
2 = . 005. A distributional ANOVA (described in the “ERP data 

analysis” section in Method) found that size interacted with anteriority, F(3, 168) = 5.04, 

p < .05, ηG
2 = . 003, and laterality, F(1, 56) = 10.10, p < .05, ηG

2 = . 002, with larger size 

effects over centromedial channels (effect = 2.74 μV, SE = 0.71; see Fig. 5, bottom right). 

Post hoc tests are reported here with significance of at least p values of .025. An ANOVA 

with two levels of size (small or large) and 10 levels of electrode (using a cluster of 10 

centromedial channels: LMFr, RMFr, LDCe, MiCe, RDCe, LMCe, RMCe, LDPa, MiPa, and 

RDPa) found that the significant effect of size, F(1, 56) = 10.69, p < .01, ηG
2 = . 02, was due 

to more positive response to solutions of small problems (μ = 7.65, SE = .72) compared with 

large problems (μ = 5.75, SE = 0.70) (within-participant difference: μ = 1.91, SE = 0.58, dz 

= 0.43). This late centromedial effect of problem size may be a continuation of the pattern 

observed during the earlier N400 time window except as a main effect (no interaction with 

correctness).

There was no main effect of correctness, F(1, 56) = 0.02, p = .89, but the interaction between 

correctness and electrode was significant, F(25, 1400) = 5.53, p < .001, ε = 0.26, ηG
2 = . 007. 

Distributional analysis (as per above) found that correctness interacted with anteriority, F(3, 

168) = 10.17, p < .05, ηG
2 = . 07, and both anteriority and laterality, F(3, 168) = 3.06, p < 

.05, ηG
2 = . 0005, with larger effects over occipital channels (i.e., one level more posterior 

than what was found for size) and lateral channels (occipito-lateral effect = 2.16 μV, SE = 

0.60; see Fig. 3, top right). The effect of correctness was then measured over a cluster of 

7 posterior and/or lateral electrodes (LLTe, RLTe, LLOc, LMOc, RMOc, MiOc, and RLOc; 

see channel labels in Fig. 3) and was examined in an ANOVA with two levels of correctness 

(correct or incorrect) and 7 levels of electrode, with a corrected p value for significance of 

.025. This found a main effect of correctness, F(1, 56) = 10.63, p < .001, ηG
2 = . 02, which 

was due to more positive responses to incorrect solutions (μV = 9.99, SE = 0.73) than to 

correct solutions (μV = 8.19, SE = 0.66) (within-participant difference: μV = 1.81, SE = 

0.55, dz = 0.43), a reversal of the pattern in the N400 time window.

No other effects or interactions were significant in the analysis containing all electrodes (Fs 

< 1, ps > .10).
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ERPs to the second operand—To determine whether problem size effects occurred 

before the onset of the solution, ERPs were measured from the onset of the second operand 

(−100 to 900 ms). Visual inspection (see Fig. 7) revealed typical visually evoked potentials 

(VEPs)—a P1, N1, and P2 over occipital channels and an N1 and P2 over more central and 

frontal channels—followed by an N400 component that settles back to baseline. There were 

no visible differences in the ERPs based on problem size. No further analyses are reported.6

Additional analyses—A comparison of the behavioral and demographic metrics between 

the children who were included (n = 57) and those who were excluded (n = 44)7 from the 

ERP analyses was conducted in order to characterize the participants of the current study. 

Results showed that the two samples did not differ significantly based on age, grade or SES 

scores (all ps > .15). However, the samples were significantly different on measures of math 

fluency, t(98.81) = 3.55, p < .001, accuracy, t(55.59) = 7.33, p < .001, and response time, 

t(99) = −2.44, p < .05, on the task. We summarize the results of the analyses in Table 3. 

These findings are not surprising given that children with higher math fluency and accuracy 

necessarily have more trials in each critical condition, making it more likely for them to 

be included in the ERP analysis of problem size. Not all the excluded children were low 

performing (lower group n = 18, 50%–66%; average group n = 13, 66%–82%; higher group 

n = 13, 82%–98%). Although intuitively third graders might be expected to have poorer 

performance, proportionally more fourth graders were excluded (15/33 third graders, 20/39 

fourth graders, and 9/27 fifth graders) from the original sample.

The 44 excluded children showed a main effect of correctness in both accuracy, F(1, 43) 

= 9.61, p < .005 (correct = 77% vs. incorrect = 71%), and RT, F(1, 43) = 45.88, p < 

.005 (correct = 1427 ms vs. incorrect = 1619 ms). A main effect of problem size was also 

observed for both accuracy, F(1, 43) = 49.92, p < .001 (small = 81% vs. large = 67%), 

and RT, F(1, 43) = 61.37, p < .001 (small = 1340 ms vs. large = 1706 ms). No significant 

interaction between these two factors was found for either measure. These results indicate 

that although the excluded children performed significantly lower than the study sample, 

they still exhibited a problem size effect similar to the 57 children included in ERP analysis 

(see “Behavior” section above). This indicates that the included sample is representative of 

the larger sample from the original study (n = 99; Grenier et al., 2020).

Discussion

Overview

This study examined a sizable sample of elementary school children from an existing 

dataset (Grenier et al., 2020) to characterize how problem size affects access to semantic 

representations of core factual arithmetic information, namely single-digit multiplication, in 

the developing mind and brain. ERPs were measured simultaneously with RT and accuracy 

during a multiplication verification task. The results showed typical effects of behavior, with 

6An additional analysis was conducted over the baseline (−100 to 0 ms) for the solutions to check for any prolonged effects of 
problem size after the second operand. There was no effect of problem size, F(1, 31) = 0.09, p = .76, in this time window, so baseline 
data did not significantly affect the problem size effect identified at the solution.
7Another 2 children were included in addition to the original 99, for a total of 101 children.
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lower accuracy and slower RTs for solutions in incorrect and larger problems compared 

with correct and smaller problems, consistent with the extant behavioral literature (Ashcraft, 

1992; Ashcraft & Stazyk, 1981; Campbell & Graham, 1985; Stazyk et al., 1982; Zbrodoff, 

1995; Zbrodoff & Logan, 2005). There was no interaction between correctness and problem 

size, indicating that the effect of size on performance was similar for correct and incorrect 

solutions (and vice versa).

The N400, an index of semantic memory access, was also compared across correctness 

and size. As expected, correct solutions elicited smaller N400 amplitude than incorrect 

solutions, indicating that children attempted to access the solutions from semantic memory, 

with correct items being facilitated by the preceding operands. When looking at correctness 

by problem size, the N400 correctness effect (i.e., the difference in amplitude between 

correct and incorrect solutions) was greater for small problems than for large problems. 

This suggests that small problems were more facilitated in memory than large problems. 

In other words, solutions in small problems led to a larger difference between the correct 

solutions that were strongly expected and the incorrect solutions that were clearly erroneous 

based on this strong expectation. However, when inverting this interaction to look at problem 

size by correctness, only the N400 to correct solutions was modulated by problem size, 

with reduced amplitude for small correct solutions compared with large correct solutions. 

Notably, this interaction in the ERPs went undetected by behavioral measures. We discuss 

below the implications of these findings, as well as two effects subsequent to the N400: a 

main effect of correctness over posterior electrodes and a main effect of problem size over 

centromedial electrodes.

Effects of problem size

The N400 is a relatively automatic electrophysiological response to any potentially 

meaningful stimulus regardless of modality (Kutas & Federmeier, 2011; Kutas & Hillyard, 

1984). It can be thought of as a window to the current state of semantic memory, a state 

driven by context and experience. Multiplication facts are learned through memorization in 

typical American elementary school education (note that differences in education can lead 

to less reliance on retrieval; Prado et al., 2013), such that the memorized problem (e.g., 

2 × 4) operates as the context for a given solution. As expected in children, the N400 to 

correct (expected) solutions was smaller in amplitude than that to incorrect (unexpected) 

solutions (Cerda et al., 2019; Grenier et al., 2020; Moore, Drollette, Scudder, Bharij, & 

Hillman, 2014; Prieto-Corona et al., 2010). This modulation of the N400 is consistent with 

facilitation in the memory network and easier processing of correct solutions compared with 

incorrect solutions. Problem size further modulated the N400 amplitude, but only for correct 

problems, indicating that only correct solutions are differentially available in memory based 

on the size of the problem.

The problem size effect is a robust finding in the behavioral literature in children and 

adults (Ashcraft, 1992; Ashcraft & Stazyk, 1981; Campbell & Graham, 1985; Dickson & 

Wicha, 2019; Stazyk et al., 1982; Zbrodoff, 1995; Zbrodoff & Logan, 2005). Arithmetic 

solutions are typically produced (or verified) with less accuracy for larger problems (e.g., 

7 × 8) than for smaller problems (e.g., 2 × 3). This has been interpreted as evidence that 
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memory retrieval for larger items is less successful (Campbell & Graham, 1985). Consistent 

with this, N400 amplitude was reduced for small problems compared with large problems. 

However, breaking this effect down by correctness reveals more nuance in the underlying 

cognitive processes.

Problems that exist in memory: Correct solutions

As mentioned in the introduction, the problem size effect observed in behavior has been 

explained by three interrelated factors: frequency of occurrence, interference or “confusion” 

in memory, and strategy. Both frequency and interference are known to modulate the N400 

to individual words, with larger amplitude for words that are less frequent or that have 

greater competition (Fischer-Baum et al., 2014; Meade et al., 2018; Megías & Macizo, 2016; 

Van Petten, 1993; Rugg, 1990). Small problems are more frequently encountered than large 

problems (Ashcraft & Christy, 1995; Geary, 1996) and may also experience less interference 

(or confusion) than large problems (for a review, see Ashcraft & Guillaume, 2009), making 

both frequency and competition possible sources of the N400 problem size effect. That 

is, the difference between small and large problems could reflect either greater facilitation 

in memory for more frequent small problems, greater interference in memory for large 

problems, or some combination of both. We discuss below, when unpacking the results for 

incorrect solutions, how frequency may be the more parsimonious explanation.

With regard to strategy, deployment of alternate strategies to direct retrieval, such as 

repeated addition and transformation, is more frequently reported for large problems than for 

small problems (cf. Kirk & Ashcraft, 2001; LeFevre, Sadesky, et al., 1996; Siegler, 1988). 

In principle, children might have used different strategies on a trial-by-trial basis8 to arrive 

at the solution before it appeared, although evidence from the literature does suggest that 

children quickly adopt a retrieval strategy when learning multiplication facts (Siegler, 1988).

Even if the problem size effect is partially driven by the deployment of procedural strategies 

(e.g., counting, transforming) for large problems, it is unlikely that this explains the 

observed N400 pattern. First, there is no evidence in the literature that strategy per se 

modulates N400 amplitude. Indeed, strategy implies a conscious process, yet the N400 is an 

automatic brain response to meaningful or potentially meaningful information and can occur 

even without conscious awareness of a stimulus (Luck et al., 1996). Simply put, the fact 

that both small and large problems elicit an N400 indicates an attempt to access both types 

of problems from semantic memory. Critically, if children were engaging slower procedural 

methods to respond to large problems, a delay in processing the solutions for meaning would 

be expected. Yet, even though the operands and solution are presented at the same speed for 

both small and large problems, the N400 did not shift in time based on problem size.

It might be challenging to square the data from consciously reported strategy with an 

explanation of the observed N400 modulation that does not acknowledge strategy. However, 

the N400 is an index of only one early step in the cascade of cognitive events before 

children press a button to make their correctness judgment. Consciously reported strategy 

8Trial-by-trial analysis is not feasible with ERPs in this study because it would have required many more trials than what children 
would tolerate.
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effects are more likely reflected during stages of processing other than the initial attempt to 

access meaning reflected in the N400. As noted, adults elicit a P300 on this same paradigm, 

reflecting more superficial processing of correct solutions such as targets in a categorization 

task (Polich, 1987, 2007, 2012; Sutton et al., 1965, 1982). Given that children do not show 

the adult P300 response, not even the small solutions are being processed as over-learned 

targets as in adults. We discuss problem size effects that occur after the N400 below.

In brief, both small and large problems elicit an N400, reflecting engagement of semantic 

processes for both problem types. Considering the broader literature on the N400, small 

problems likely generated a well-constrained semantic context for the correct (expected) 

solutions (see Jost, Hennighausen, & Rösler, 2004, for further discussion). In other words, 

at the level of semantic memory, children were more prepared to process correct solutions 

when they appeared in small problems than when they appeared in large problems. This 

would be consistent with the idea that the N400 reflects the current memory state as driven 

by available context. Future research can test more explicitly whether conscious strategy can 

modulate the N400 in children or the P300 in adults for simple arithmetic tasks or more 

broadly.

Problems that do not exist in memory: Incorrect solutions

The incorrect solutions in this study were always a multiple of one of the operands and 

therefore a possible correct solution on related “times table” problems. Theoretically, then, if 

children recall multiplication facts in a network of related facts, the N400 for the incorrect 

solution might have been modulated by the relative predictability of the correct solution. 

More specifically, with more facilitation for small problems, there would be more spread 

of activation to related solutions, and therefore small incorrect related solutions would also 

elicit smaller (more facilitated) N400 amplitude than large incorrect problems. In contrast, 

the N400 to incorrect solutions did not differ based on problem size.

If the N400 problem size effect could be explained by the differential deployment of strategy 

across small and large problems, we might expect that smaller problems would be more 

easily retrieved from memory and that large problems would be more laboriously calculated. 

In the language literature, there is some evidence that tasks that demand more superficial 

or automatic processing of words can reduce typical modulations of the N400 such as the 

lexical frequency effect, where less frequent words elicit larger N400 amplitude (Fischer-

Baum et al., 2014). By analogy, items that require a more procedural strategy should elicit 

larger N400 effects, but this is not what we see for large problems that elicited a smaller 

effect of correctness.

This result also poses a challenge to confusion or competition at the level of semantics as an 

explanation for differences in speed and/or accuracy based on problem size when rejecting 

incorrect solutions (Ashcraft & Guillaume, 2009). As discussed above, under an interference 

account, larger problems may have a greater history of retrieval errors during learning and 

in turn may be more likely to activate wrong answers. This competition would have elicited 

larger amplitude for large incorrect solutions than for small incorrect solutions, but instead 

there was no difference.
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The null effect also mitigates potential concern that numerical distance could account for 

the reported problem size effect in behavior (i.e., faster to reject more distant incorrect 

solutions than closer incorrect solutions). Related incorrect solutions are inherently further 

in numerical distance from the correct solution in large problems than in small problems 

(here, ±4 vs. ± 7 on average). For example, solutions in the 3 × table are + 3 from each 

other (3, 6, 9, …), but solutions in the 9 × table are + 9 from each other (9, 18, 27, …). The 

larger distance from the correct solution in large problems should have made them easier 

to dismiss than smaller closer solutions (Ashcraft & Stazyk, 1981; De Smedt, Verschaffel, 

& Ghesquière, 2009; Niedeggen & Rösler, 1999; see De Smedt, Noël, Gilmore, & Ansari, 

2013, for a review). Behaviorally, children were not faster or more accurate at verifying 

large versus small incorrect problems (i.e., no interaction between size and correctness). The 

N400 theoretically should have been reduced in amplitude for easier to dismiss items (more 

distant solutions) if numerical distance were an important factor, but again there was no 

difference between small (close) and large (distant) incorrect solutions.

Overall, frequency of encountering small versus large problems is a more parsimonious 

explanation of the results for both correct and incorrect solutions than confusion or strategy. 

However, frequency is likely not the sole cognitive factor contributing to the ease of 

accessing multiplication facts from memory. Fig. 2 shows that RTs increase with increasing 

solution size. It is unlikely that each increment in solution size would incrementally be 

less likely to occur (i.e., less frequent). In the broader numerical cognition literature, 

studying effects of problem size in arithmetic might be taken as an attempt to capture 

sensitivity to numerical magnitude itself (Siegler & Braithwaite, 2017). So, perhaps this 

incremental change in RT reflects a sensitivity to the magnitude of the solution itself 

(which operationally is the definition of problem size here). Importantly, by accessing the 

magnitude of the solutions, children are accessing the “meaning” of the solutions as they 

verify the multiplication facts, which would support our hypothesis that the N400 elicited in 

children reflects access to semantic memory.

In the current study, however, numerosity was not deliberately isolated as a factor in the 

design. The correct solutions exist on a continuum of small to large and were dichotomized 

into size categories, as is typical in the arithmetic literature (whereas studies of numerosity 

typically generate distinct classes of magnitude for comparison). Therefore, numerosity is 

confounded with other factors such as frequency of occurrence. Most critically, there was 

no effect of problem size on the N400 to incorrect solutions, where the magnitude of the 

solutions should have also had an effect.

Even in the behavioral findings, magnitude of the solution does not completely explain the 

problem size effect. In Fig. 2, solutions in the 10-s increments (i.e., 10, 20, 30, 40) appear 

to elicit faster RTs than the adjacent solutions. Although this was not statistically measured 

due to small trial counts per solution, this pattern would be consistent with the previously 

reported “five effect” (Campbell & Graham, 1985; Lemaire & Reder, 1999; Masse & 

Lemaire, 2001; Siegler, 1988). Multiplication problems with 5 as an operand have correct 

products that end in 0 or 5 (e.g., less variability in the final digit of the solutions compared 

with other problems). These items are potentially learned using a different strategy than 

other problems (Siegler, 1988). Once learned, these “special” items are easier to retrieve 
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from semantic memory. As far as how this might affect the N400, we predict that these 

“special” problems that are easier to retrieve from memory would lead to a reduction in 

N400 amplitude when verifying those facts. This would be most consistent with the leading 

explanation of the N400 as an index of semantic memory processes.

Effects of problem size beyond the N400

Importantly, these results affirm that the N400 and overt behavioral responses can be 

independent measures of cognition (see similar argument in Federmeier & Kutas, 1999). 

Generally speaking, the N400 indexes an early stage of semantic processing. Sometimes 

N400 effects can occur in the absence of behavioral effects (McLaughlin et al., 2004), 

whereas other times there are behavioral effects with no modulation of N400 (Heinze, 

Muente, & Kutas, 1998). Here, the interaction between problem size and correctness on the 

N400 was not measurable in either RT or accuracy, both of which showed only main effects 

of problem size.

The divergence between brain and behavior measures reveals that the source of the 

behavioral problem size effect for incorrect problems is not at the initial stage of semantic 

processing indexed by the N400. Instead, problem size likely affected the processing of 

incorrect solutions at a later cognitive stage, perhaps during reevaluation of the accurately 

rejected solutions or difficulty in response selection/execution (e.g., inhibiting responses to 

large problems due to uncertainty, second-guessing disproportionately for large problems).

Indeed, directly following the N400 time window, there was a main effect of problem size 

manifested as a sustained difference through the end of the recording epoch, with small 

problems eliciting more positive amplitude than large problems independent of correctness 

(see Fig. 3). This effect over-lapped in scalp distribution with the N400 (Fig. 5, bottom 

plots), so it is possible that it reflects a slow return to baseline or a continuation of the 

N400 problem size effect. However, problem size also modulated the response to incorrect 

solutions, unlike in the earlier N400 window.

The cognitive significance of this effect is unclear, but it is consistent with the view that 

problem size continues to affect processing beyond initial access to semantic memory. This 

later downstream effect may be the type of processing that leads to intertrial confusion 

and more repetition effects observed in other experimental designs (e.g., retrieval-induced 

forgetting) (Galfano et al., 2011; Phenix & Campbell, 2004).

Do children show an adult-like brain response?

A second post-N400 effect occurred as a main effect of correctness over occipital electrodes. 

This effect was an inversion of the N400 effect, with incorrect solutions eliciting larger 

positive amplitude than correct solutions independent of problem size (Fig. 5, top plots). We 

consider two possible explanations for this finding.

In the sentence comprehension literature, the N400 can be followed by a late positive 

component (LPC) that emerges with semantic incongruities and is thought to reflect post-

N400 reprocessing (Coulson & Kutas, 2001; Kuperberg, 2007). In the adult arithmetic 

literature, a similar positivity has also been described as an LPC (Niedeggen et al., 1999; 
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Núñez-Peña, 2008; Szucs & Csépe, 2005). When children encountered incorrect solutions, 

they may have engaged additional processing mechanisms to further assess them (cf. Prieto-

Corona et al., 2010), double-checking the problem in memory or second guessing their 

knowledge. Therefore, it is possible that this late positivity reflects a general semantic 

reprocessing LPC.

However, children showed this effect over occipital electrodes, which is more posterior than 

the typical distribution for an LPC but perhaps similar to a posteriorly distributed P300. 

Therefore, it is possible that this positivity reflects the beginning of an adult-like P300, albeit 

delayed. Notably, in the larger sample from the original Grenier et al. (2020) study, this 

posterior late positivity for correctness did not reach significance. As mentioned in Method, 

children who met the threshold for inclusion here were typically better at the verification 

task than children who were excluded. Therefore, this later positivity, which only reached 

significance in this smaller sample, may be sensitive to multiplication fluency, reflecting the 

beginning of an adult-like P300 in more fluent children.

Adults do not exhibit a modulation on the N400 (Grenier et al., 2020) and correspondingly 

do not have differing levels of semantic preactivation for solutions as a function of problem 

size (Dickson & Federmeier, 2017; Dickson & Wicha, 2019). In addition, adults show 

a problem size effect on both correct and incorrect solutions (Dickson & Wicha, 2019), 

whereas children show a problem size effect on correct solutions only. These outcomes 

support a gradual transition, from engaging semantic memory processes in children (N400) 

to more direct solution categorization in adults (P300). To be clear, it is not that adults have 

formed a different kind of memory but rather that they can access the information more 

efficiently with less depth of processing than children.

In children, correct trials are likely more sensitive to problem size because their accessibility 

in semantic memory is affected by relative frequency of exposure, a property that does not 

differ across incorrect solutions. As children switch to the adult approach of treating the 

problems as a target categorization task, both correct and incorrect problems are affected by 

problem size, with larger problems being harder to categorize in both cases. Interestingly, 

even the high-performing children in our sample did not show a problem size effect on 

incorrect solutions, suggesting that the full transition to adult-like processing happens 

beyond fifth grade.

This transition might not be an abrupt shift but rather a gradual change; that is, children 

might begin to use target categorization to solve small problems but still require semantic 

access to verify large problems. This idea is in line with the overlapping waves theory 

(Siegler, 1996), which also states that different strategies remain available over development 

but that the frequency of use changes over time, with more efficient strategies (here target 

categorization) becoming more dominant. As strategy use changes throughout development, 

children become less reliant on hippocampal memory (long-term memory) and transition 

into engaging more automatic processes (i.e., target categorization) to verify arithmetic facts 

(Smith & Squire, 2009).
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These results speak to the broader understanding of meaning in arithmetic in a couple of 

ways. The idea that the N400 reflects access to meaning creates an interesting theoretical 

dilemma. Models of arithmetic cognition propose that the “meaning” of arithmetic facts is 

located in the magnitude code, which in theory resides in the parietal cortex (Campbell & 

Clark, 1992; Dehaene & Cohen, 1995). However, the N400 is thought to be generated in 

verbally mediated areas of temporal cortex (Lau, Phillips, & Poeppel, 2008). This arithmetic 

N400 in children either reflects a “meaning” representation outside of the parietal cortex, 

which would be inconsistent with current models of arithmetic, or this is a novel parietal-

generated N400 (which cannot be determined with ERP data alone). In either case, the 

evidence that children elicit an N400 for both small and large problems is an important 

revelation.

Verification versus production

Finally, this study had children verify presented solutions, which may not entail the same 

processes or yield the same outcomes as a task that requires children to produce the 

solutions (e.g., Ashcraft, Fierman, & Bartolotta, 1984; Campbell & Tarling, 1996; Zbrodoff 

& Logan, 1990). In the memory domain verification and production are analogous to 

recognition versus recall memory (Craik & McDowd, 1987; Haist, Shimamura, & Squire, 

1992; Rawson & Zamary, 2019; Rhodes, Greene, & Naveh-Benjamin, 2019), and in the 

language domain they are analogous to comprehension versus production (Glenberg & 

Gallese, 2012; Pickering & Garrod, 2013; Rommers, Dell, & Benjamin, 2020). Thus, it is 

not unreasonable to expect differences.

We argue that the memory system itself is the same across tasks. What changes is more 

likely the degree of processing (i.e., when and how the information is being accessed 

and extracted). We hypothesize that in a production task children would rely more on 

semantic memory to retrieve the solution. Interestingly, in the language domain, questions of 

whether readers preactivate upcoming words (i.e., mentally produce upcoming words during 

comprehension) have been replaced by questions of when and how readers preactivate 

upcoming words (Delong, Troyer, & Kutas, 2014; Federmeier, Kutas, & Schul, 2010; 

Kuperberg & Jaeger, 2016; Wlotko & Federmeier, 2015). We believe that a similar outcome 

could be found in arithmetic verification tasks based on manipulations of answer types, task 

instructions, timing, and other factors yet to be determined.

We can make a speculative comparison of the ERP findings with data from the only known 

arithmetic production task in children (Van Beek et al., 2014, 2015). In these studies, 

children spoke the solutions to simple addition problems that were presented all at once 

(e.g., 2 + 3). A problem size effect was observed in ERPs measured to the onset of the 

problem, with more negative amplitude for large problems than for small problems on 

anterior electrodes between 250 and 500 ms and on posterior electrodes between 500 and 

625 ms. The closest comparison point in our task would be to look at the ERPs from the 

onset of the second operand when children could begin to solve the problem (Fig. 7). In 

our data, problem size did not modulate the ERPs at the second operand, indicating that 

children were not treating the problems differently at that point in time. These findings 

may support the long-standing argument that production and verification tasks engage 

Dickson et al. Page 22

J Exp Child Psychol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different cognitive processes (Campbell & Tarling, 1996; Zbrodoff & Logan, 1990) and 

that verification can be done using alternate rules or patterns (e.g., Krueger, 1986). However, 

the multiple differences between the methods used (addition vs. multiplication, presenting 

the whole problem vs. one operand at a time in sequence, etc.) make it hard to draw this 

conclusion definitively. Future research could directly compare production and verification 

on identical tasks to determine whether the cognitive processes engaged in each are indeed 

different before the solution is presented.

Conclusion

In brief, problem size only affects semantic level processing in children for problems that 

are available in memory (i.e., correct solutions), as revealed by an N400 modulation for 

correct solutions only. We argue that the frequency of encountering small versus large 

correct solutions may be the most parsimonious account of this problem size effect on 

correct solutions. A late effect of problem size for incorrect solutions reveals that the 

observed behavioral problem size effects may be due to later categorization or decision-

related processes, not differences in access to semantic memory. This highlights the value 

of synchronously assessing behavior and brain indices of cognition. This study adds to the 

current math cognition literature by characterizing the quality of memory for single-digit 

multiplication tables in the developing brain and provides support for a gradual transition 

from accessing multiplication facts from semantic memory in children to engaging more 

automated target categorization in adults. Future research could investigate individual 

differences in the use of semantic memory versus rote memory across age and populations.
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Fig. 1. 
An example of a multiplication problem showing the trial structure from left to right over 

time (in milliseconds). Horizontal dashed lines indicate the time-locking points for critical 

event-related brain potentials (ERPs) as well as the average response time (RT) (1274 ms). 

ISI, interstimulus interval.
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Fig. 2. 
Average response times by solution size for correct trials only. Small problems (in orange; 

left side) elicit faster response times than larger problems (in blue; right side). Individual 

solutions were not compared statistically.
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Fig. 3. 
Grand average event-related brain potentials to solutions are plotted for the 26 scalp 

electrodes used in the analysis, with front channels at the top (labeled according to scalp 

location). Time (in milliseconds) is on the x axis, and voltage (in microvolts) is on the y 
axis, with negative voltage plotted up. Correct solutions (in black) elicit less negative N400s 

compared with incorrect solutions (in red). The effect of size on the N400 is prominent on 

correct solutions, shown by the difference between solid and dashed lines.
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Fig. 4. 
Interaction between correctness and problem size. Mean amplitude of the N400 (in 

microvolts; 288–488 ms poststimulus) averaged across all electrodes for each condition 

is plotted with standard error (n = 57). Positive is plotted down to be consistent with the ERP 

plots.
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Fig. 5. 
Topographical plots of the main effects of correctness (top; incorrect minus correct) and 

size (bottom; large minus small) for both the N400 time window (left) and post-N400 

time window (right). The scales are matched across plots to facilitate comparison. The 

correctness effect changes polarity and location after the N400 time window, whereas the 

size effect does not.

Dickson et al. Page 33

J Exp Child Psychol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Grand average event-related brain potentials for each condition plotted from solution onset 

for two representative electrodes from Fig. 3 (MiCe and RMOc), as indicated on the scalp 

map with red dots. The effects of interest are labeled on the two plots. LPC, late positive 

component.

Dickson et al. Page 34

J Exp Child Psychol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Grand average event-related brain potentials time-locked to the onset of the second operand. 

The six representative electrodes are shown with small (black) and large (red) problems 

overlapping across the epoch.
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Table 1

Distribution of the number of participants included in the averaged event-related brain potentials per trial 

count ranges for each condition.

Trial count Correct small Correct large Incorrect small Incorrect large

15–19 11 17 15 24

20–23 23 28 26 27

24–28 24 13 17
a

7
a

a
There were no participants with 28 trials for these conditions.
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Table 2

Offline performance on standardized cognitive measures (presented for completeness and comparison with 

original sample from Grenier et al., 2020).

Assessment Children (n = 57)

Mean (SE) Range

Math fluency
a

Addition 106.00 (1.75) 72–143

Subtraction 110.33 (1.49) 93–152

Multiplication 113.82 (1.90) 90–159

Working memory
b 110.12 (2.04) 74–157

Phonological awareness
c 102.21 (1.84) 70–131

Vocabulary size
d 100.33 (1.35) 76–124

Oral comprehension
e 108.07 (1.61) 83–134

Note. The means are standardized scores where 100 is the grade-based norm and 15 points reflects 1 standard deviation outside the norm.

a
Math fluency was measured by the math fluency task of the Wechsler Individual Achievement Test - Third Edition (Wechsler, 2009).

b
Working memory was measured by the numbers reversed task of the Woodcock–Johnson III Tests of Achievement (WJ-III).

c
Phonological awareness was measured by the incomplete words task of the WJ-III.

d
Vocabulary size was measured by the picture vocabulary task of the WJ-III.

e
Oral comprehension was measured by the oral comprehension task of the WJ-III.
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Table 3

Comparison of the means (and standard errors) of demographic and cognitive measures for children included 

in the current study and those excluded from the original sample of Grenier et al. (2020).

Included children (n = 57) Excluded children (n = 44) t Test result

Grade 4.69 (0.10) 4.51 (0.11) t(99) = 1.17, p = .25

Age (years) 10.07 (0.11) 9.90 (0.14) t(99) = 1.10, p = .27

Socioeconomic status 49.84 (1.53) 46.59 (1.79) t(96) = 1.38, p = .17

Math fluency (standardized score) 113.82 (1.90) 104.43 (1.74) t(98.81) = 3.55, p < .001

Accuracy (%) 90.12 (0.79) 73.86 (2.07) t(55.59) = 7.33, p < .001

Response time (ms) 1279.28 (51.49) 1490.63 (72.77) t(99) = −2.44, p < .05
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