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Periods of rhythmic slow-wave activity during physio-
logical slow-wave sleep or induced by anesthesia are
characterized by a waxing and waning of spontaneous
neuronal firing coordinated between cortex and thalamus.
This activity is generated in the cortex but influences
neuronal excitability and stimulus–response properties of
neuronal networks throughout the brain (Steriade et al.,
1993; Stroh et al., 2013; McGinley et al., 2015b). The
corresponding low-frequency component of field poten-
tial recordings reflects alternating active states, in which
cells are depolarized and synaptic activity is high, and

silent states with hyperpolarized membrane potentials
and low synaptic activity (Steriade et al., 2001; Timofeev
et al., 2001). In contrast, waking is generally associated
with continuous depolarization of cortical neurons, result-
ing in persistent activity (Destexhe et al., 2007; Sheroziya
and Timofeev, 2015) and suppression of silent states
(Steriade et al., 2001; McGinley et al., 2015b). In their
recent study, Sheroziya and Timofeev (2015) demon-
strated that moderate cortical cooling (to 29–31°C) of
lightly ketamine/xylazin (ket/xyl) anesthetized or non-
anesthetized mice reversibly diminished silent states and
induced a persistent active state of the cortex. Mild heat-
ing (to 39–40°C), in contrast, increased rhythmicity of
slow waves. Under deep ket/xyl anesthesia, cortical cool-
ing disrupted slow waves and promoted bursts of activity
correlated with thalamic firing. Local cooling of somato-
sensory cortex was shown to be sufficient to induce a
shift from slow-wave to wide-spread persistent cortical
activity, extending to the thalamus as well as the con-
tralateral hemisphere. These results suggest that cortical
temperature change can be used as a bidirectional and
reversible tool for investigating global brain state fluctua-
tions, and provide evidence that the thalamocortical net-
work rapidly reacts upon local depolarization of a small
neuronal population with wide-spread shifts of brain state.
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Significance Statement

This commentary describes important findings of the article published by Sheroziya and Timofeev in The
Journal of Neuroscience in 2015. The authors use moderate cortical temperature change, local cooling or
heating of somatosensory cortex, to modulate excitable states of the brain. These changes, under
physiological conditions, result from neuromodulation, as well as other network effects. They report that
cooling disrupts thalamocortical slow oscillations and induces an activated cortical state, while mild heating
has the opposite effect and increases slow-wave rhythmicity. We evaluate these findings regarding their
utility for inducing and investigating cortical state fluctuations, compare the results to physiologically
occurring state changes, and put them into perspective with other discoveries in the field.
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An effect of cortical cooling on thalamocortical slow
waves has previously been reported (Kalmbach and Waters,
2012). These authors examined consequences of tempera-
ture loss in cortical areas underneath a cranial window prep-
aration and showed that a decline of surface temperature to
28°C leads to depolarization and reduction of silent states in
whole-cell recordings of layer 2/3 pyramidal neurons. They
compared these datasets to recordings performed under
constant perfusion of warmed solution over the craniotomy,
resulting in 36–38°C of cortical temperature, similar to con-
trol conditions of Sheroziya and Timofeev (2015). Kalmbach
and Waters (2012) observed a reduction of slow-wave syn-
chrony during cooling, characterized by diminished silent
and prolonged active states. As they used relatively high
isoflurane anesthesia, these results are comparable with the
results of Sheroziya and Timofeev (2015) acquired under
deeply anesthetized conditions. Sheroziya and Timofeev
(2015) examined cooling-induced active states also in
non-anesthetized animals where thalamic and contralat-
eral recordings demonstrated a widespread effect of
cooling far beyond cortical layer 2/3. Cooling prevented
the generation of slow waves, and the authors state that it
appeared to elicit a sensory experience that excited the
animals, although this effect was not extensively de-
scribed. Thus, the work of Sheroziya and Timofeev (2015)
goes beyond previous studies about the effects of tem-
perature on cortical activity, showing that temperature
change can be used to reversibly induce global cortical
state fluctuations in awake or physiologically sleeping
animals without directly influencing or manipulating neu-
romodulation.

Although the exact conditions leading to spontaneous
brain state shifts remain unknown, several pathways have
been described in this process, and the effects of cooling
may overlap mechanistically with these pathways. In
awake but restful animals, slow waves may be observed
and are suppressed by the initiation of whisking or loco-
motion (Crochet and Petersen, 2006) or firing of thalamic
neurons (Poulet et al., 2012), which speaks for underlying
neuromodulatory influences (Lee and Dan, 2012). Re-
cently, state shifts in cortical networks have been directly
related to neuromodulatory pathways, especially the cho-
linergic (Eggermann et al. 2014; McGinley et al., 2015a)
and the noradrenergic (McGinley et al., 2015a) system.
For example, selective optogenetic stimulation of cholin-
ergic axons in the cortex leads to desynchronization of
cortical local field potentials (Kalmbach et al., 2012).
Sheroziya and Timofeev (2015) claim that, similar to neu-
romodulator release, moderate temperature decrease
leads to depolarization of neurons by a partial closure of
potassium channels and reduction of synaptic release in a
manner similar to, but independent from neuromodula-
tion. As mentioned by the authors, reduced activity of
potassium channels directly leads to depolarization of
neurons and thereby could induce a desynchronized ac-
tive state. The mentioned reduction of synaptic release by
cooling may contribute to this effect through local disin-
hibitory circuit mechanisms (McGinley et al., 2015b). Lo-
cal reduction of synaptic release in the cortex, as it is the
case during cooling, may favor excitation by activating

disinhibitory pathways, which can increase the level of
excitability of cortical pyramidal cells (Lee et al., 2013; Fu
et al., 2014; McGinley et al., 2015b) and thereby contrib-
ute to the network shift toward an active state. Cooling
itself was shown to disrupt inhibitory circuits at least in
hippocampal slices (Javedan et al., 2002), which could
further contribute to this effect. Moreover, McGinley et al.
(2015b) propose several mechanisms for transitioning be-
tween slow-wave and active brain states in the awake
animal which may also be relevant to the cooling-induced
cortical activation. Analogous to acetylcholine, cooling
may modulate cortical activity through subcellular effects.
For example, the authors show a strong reaction to cool-
ing in the ket/xyl anesthetized animals that might be
explained by the actions of xylazin as an �2 adrenorecep-
tor agonist that depolarizes layer 5 pyramidal cells (Mc-
Cormick, 1992). This may disrupt oscillatory activity in this
cortical layer which is critical to slow-wave generation
(Sanchez-Vives and McCormick, 2000), and thus may
contribute to slow-wave suppression during cooling.

McGinley et al. (2015b) further introduce two models of
transitions between states in physiological conditions
which may be relevant for evaluating the temperature
induced state shifts. First, they suggest a sigmoidal rela-
tionship between cellular membrane potential and arousal
state, wherein the transition from low to medium arousal
causes cells to exhibit depolarized membrane potentials,
and the shift to high arousal causes further depolarization
of the network. In contrast, they present a U-shaped
model, where moderate arousal suppresses slow-wave
oscillations and hyperpolarizes neurons, and only further
arousal causes neuronal depolarization. Both models
predict depolarized membrane potentials due to the ap-
pearance of gamma activity at high arousal levels. Syn-
chronized gamma (�40Hz; Singer and Gray, 1995) is
characteristic of persistent, global brain activity, including
representations of specific stimuli. Gamma activity in-
creases in the cortical EEG (Steriade et al., 2001) after a
transition to waking. In awake animals, spontaneous or
induced rises of arousal level are accompanied by a
monotonic increase in gamma band synchronization
(Lima et al., 2011; McGinley et al., 2015a). The depolar-
ization of cortical neurons (Kalmbach and Waters, 2012)
and the increase of gamma activity (Sheroziya and
Timofeev, 2015) upon cooling under deeper anesthesia
mimic initial arousal from slow-wave state and support
the sigmoidal model. Depolarization is explained by the
increase of spontaneous active states with reduction of
silent states, leading to more depolarized membrane po-
tentials because of the dominating high-frequency com-
ponents. However, rather hyperpolarized membrane
potentials and decreased gamma activity during light an-
esthesia and cortical cooling (Sheroziya and Timofeev,
2015) supports the U-shaped model. Here, suppression
of slow-wave activity is accompanied by reduced power
in the gamma frequencies because bursting activity dur-
ing slow waves no longer occurs. At present, both models
are supported by cortical recordings under various phys-
iological conditions, and may be related to differential
impact of neuromodulatory release (McGinley et al.
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2015b). The effects of cortical cooling fit the predictions of
the two models, which supports the notion that the
cooling-induced state-changes recapitulate physiological
neuronal network dynamics. This is also in agreement
with the idea that each of the models may be more
applicable depending on experimental conditions, physi-
ological factors, such as the type of arousal leading to
state changes, or the initial state of wakefulness of the
animal.

However, the question remains whether a cooling-
induced state leads to neuronal response properties com-
parable to those of physiological active states of the
cortex. Although obtained results share characteristics of
spontaneous physiological state shifts, other widespread
effects due to cooling cannot be completely excluded. For
example temperature change has been shown to affect
brain pH (Schuchmann et al., 2002, 2006), and could have
effects on cerebral blood flow with accompanied com-
pensational mechanisms. In addition to the effects on
potassium channels and transmitter release discussed by
the authors, temperature change will also exhibit strong
effects on mitochondrial activity, with cooling resulting in
reduced ATP synthesis and thereby decreased activity of
sodium–potassium pumps. The resulting depolarization
will inevitably affect glutamate and GABA uptake, which
may impede a direct comparison to a physiologically
active state. Additionally, it is not clear whether the shown
cooling effects simply result from slowed ion channel
kinetics and reduced network excitability so that a highly
active state, such as the synchronous neuronal activity
during slow oscillations, can no longer be supported. The
network might default to a desynchronized state where
individual neurons may still fire rapidly, but overall neural
excitability is reduced in a way, which does not replicate
a physiologically awake state. This concept is supported
by Sheroziya and Timofeev’s (2015) Figure 3, which
shows shorter interspike intervals for neurons in the syn-
chronous state versus the cooled state. Such a break-
down of network synchrony locally in the cooled cortex
may propagate to other cortical regions due to effects of
local desynchronization on the thalamocortical network.
This hypothesis could be tested by applying sensory stim-
ulation during cooling conditions and comparing neuronal
responses to those observed in awake animals; for exam-
ple, measuring firing rates in somatosensory cortex upon
whisker stimulation in cooled versus control conditions. If
the desynchronizing effect of cooling is simply due to
lower neuronal excitability, then this would be reflected in
a reduced response of cortical neurons to sensory stim-
ulation in the cooled versus awake condition.

Finally, although therapeutic hypothermia is often used
to prevent or control seizures, it is argued that moderate
cortical cooling has a light epileptogenic effect (Sheroziya
and Timofeev, 2015). This is due to similarities observed
between cooling-induced cortical discharges and cortical
activity during spike-wave absence seizures, and con-
trasts with another study showing that moderate, focal
cooling can prevent seizures in a rodent injury model of
epilepsy (D’Ambrosio et al., 2013). It was debated that the
effects of hypothermia on metabolism may explain neu-

roprotective actions, and that the changes to cellular
membrane properties actually counter the neuroprotec-
tive effects of cooling with regard to epilepsy. However to
fully understand the relevance of cooling-induced
changes on cellular activity to the treatment of epilepsy, it
is necessary to consider a broader range of epileptic
conditions. Overall, the described desynchronizing effect
of hypothermia on neuronal activity may provide the best
neuroprotective element for epilepsy treatment. Brain
state plays an important role in seizure generation, as
epilepsy is associated with sleep disturbance (St Louis,
2011; Kalume et al., 2015), and many seizures are more
likely to occur or generalize during slow-wave sleep. For
example, Herman et al., (2001) compared the initiation
and generalization of partial, frontal, and temporal lobe
seizures and concluded that non-REM sleep was most
conducive to seizure generation and that the hypersyn-
chrony of this sleep state facilitates initialization and gen-
eralization of partial seizures. This is consistent with a
therapeutic effect of cortical cooling in epilepsy, based on
the interruption of hypersynchrony associated with slow
waves. Additionally, the enhancement of slow-wave ac-
tivity with cortical heating is consistent with hypersyn-
chrony as a trigger for seizures because of the tendency
for seizures to be generated with fever, although this
phenomenon has also been linked to respiratory alkalosis
and changes to brain pH with high body temperatures
(Schuchmann et al., 2006).

In conclusion, we find that the authors provide intriguing
evidence in support of temperature changes as a tool to
modulate brain states. Although further studies need to
evaluate whether the cooled state represents persistent
population activity comparable to physiological active
states of the thalamocortical network, the present study
adds valuable information to current knowledge about the
nature and mechanisms of cooling-induced desynchroni-
zation. Additionally it provides evidence that mild heating
may be used to synchronize brain networks. The implica-
tions for these findings could be far reaching, with appli-
cations in studies of both the mechanisms of brain state
shifts and the use of temperature in the treatment of
diverse diseases from epilepsy to sleep disturbances.
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