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Non-invasive reconstruction of electrophysiological activity in the heart is of great significance for clinical disease prevention and surgical
treatment. The distribution of transmembrane potential (TMP) in three-dimensional myocardium can help us diagnose heart diseases
such as myocardial ischemia and ectopic pacing. However, the problem of solving TMP is ill-posed, and appropriate constraints need to
be added. The existing state-of-art method total variation minimisation only takes advantage of the local similarity in space, which has the
problem of over-smoothing, and fails to take into account the relationship among frames in the dynamic TMP sequence. In this work, the
authors introduce a novel regularisation method called graph-based total variation to make up for the above shortcomings. The graph
structure takes the TMP value of a time sequence on each heart node as the criterion to establish the similarity relationship among the
heart. Two sets of phantom experiments were set to verify the superiority of the proposed method over the traditional constraints: infarct
scar reconstruction and activation wavefront reconstruction. In addition, experiments with ten real premature ventricular contractions
patient data were used to demonstrate the accuracy of the authors’ method in clinical applications.
1. Introduction: Using electrophysiological imaging (ECGI)
to depict the electrophysiological information within the heart
has become a research hotspot for the diagnosis and therapy
of heart disease. By selecting appropriate source and volume
conductor model, one can reconstruct the potential distribution
or the excitation propagation on the surface of the heart or in
the three-dimensional (3D) ventricles, and then determine the
location and extent of the lesion based on the anomalous
characteristics that appeared [1, 2].
Common sources include transmembrane potential (TMP) [3],

endo- and epicardial potential (EEP) [4], and activation time
[5]. Among them, TMP was selected as the research target of
this paper since it provides the most abundant physiological infor-
mation and allows stronger prior information constraints [6].
However, it is ill-posed to reconstruct myocardial TMP from
body surface potential (BSP) due to the following two points:
(i) the dimensions of known quantities do not match those of
unknown quantities (for accuracy, the number of unknown points
on the heart is much larger than the number of surface leads).
(ii) According to the Helmholtz’s equivalent double-layer principle
of the electromagnetic field, an infinite number of intramural
solutions fit the same electrical field on the surface. Hence,
researchers have made great efforts to add appropriate constraints
on the solution space, called regularisation [7].
The most classic method is Tikhonov regularisation [8], which

imposes a neighbourhood smoothing constraint and provides a
solution with compromise accuracy. In recent years, combined
with the sparsity and piece-wise smoothness of the potential
on the heart, reconstruction methods based on sparse expression
have been proposed, such as total variation (TV) minimisation
[9]. These methods impose a constrain term with L1 norm form,
which performs better than the L2 norm form in maintaining the
steeply changing area of potential. However, they can only
process one frame of data at the same time. If the whole sequence
is to be solved, the computational time will increase linearly with
the length of the sequence. The low rank and sparse constraint
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assume that the solution is composed of low-rank background
and sparse foreground [10]. This method treats the solution of
the whole sequence as a matrix, which takes into account the
time dependence of the solution. However, singular value decom-
position (SVD) in high-dimensional solution space in each iteration
also makes the method computationally expensive.

With the rapid development of deep learning in the medical field,
researchers try to solve the inverse problem of ECG by data-driven
methods. Ghimire et al. trained a large number of simulation data
to learn the general transformations of BSPs to TMP [11], and
discussed the influence of different autoencoder architectures on
the results [12]. However, there is no clinical method for directly
measuring cardiac TMP values. Therefore, no real patient data
participates in the training.

In order to make use of time dependence while avoiding frequent
singular value decomposition, and taking into account the piece-
wise smoothness and sparsity in space, we propose a novel
method, the graph-based TV reconstruction. This method improves
the classical TV minimisation. We regard the records on each point
in the sequence as a graph signal, making full use of the temporal
and spatial correlations of the myocardial TMP distribution.
Specific contributions are as follows:

(i) We construct a graph structure on the preliminary estimation
of the solution which is based on the spatial surface smoothing
hypothesis. This structure constructs a similarity relationship
among the whole 3D myocardium, making full use of the under-
lying nonlocal features.
(ii) Different penalty weights are given to nodes with different
similarities, which enhance intra-class consistency and inter-class
differences.
(iii) The criterion for judging similarity is the Euclidean distance
between TMP value vectors over a period of time at each node.
Therefore, the temporal correlation among dynamic TMP sequence
frames is taken into account. This makes the method more robust
than that based on a single frame, and less affected by noise.
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(iv) The mentioned method solves the whole sequence at the same
time, avoiding the computational time increases linearly with the
length of the sequence.
(v) The mentioned method is based on the spatio-temporal distribu-
tion characteristics of the solution, without the need for training
based on large amounts of data.

2. Methodology
2.1. TMP imaging model: The forward relationship between TMPs
and BSPs can be modelled as the following linear equation by apply-
ing the quasi-static approximation of electromagnetic theory [13]:

F = HU (1)

in which F [ Rm×t represents the m-lead BSPs of a length t,
H [ Rm×n is the transform matrix which contains the geometry
and conductivity information in the heart-torso structures, obtained
by finite element method (FEM) or boundary FEM (BEM).
U [ Rn×t is the n-dimensional TMPs of a length t. t represents
the information of time dimension. The equation denotes the
forward mapping relationship between dynamic TMP sequence
and dynamic BSP sequence. To overcome the ill-posedness of this
problem, we start from the characteristics of the spatio-temporal
distribution of dynamic TMP sequence to find reasonable constraints
for the solution.

First, we considered the distribution of TMP on the myocardium
during infarction or myocardial ischaemia cases. At the ST segment
of the electrocardiogram (ECG), the ventricular cells are in a plateau
phase in which all depolarisations are completed and sharp repolar-
isation has not yet begun. The potential distribution is flat, which
corresponds to the condition of the normal heart. For infarcted
or ischaemic cells, their action potentials are reduced due to the
decreased or absent cell activity. This is prominent in a flat TMP
distribution. There is a clear boundary between the normal area
and the lesion area, as shown in Fig. 1.

For the case of the activation sequence, there are many nodes
activated at the same time, but they are not necessarily concentrated
near the same area. The TMP value changes for nodes activated at
the same time are similar for a period of time. Fig. 1c shows this
feature. This example is the spatial distribution of TMP at about
120 ms after the onset of pacing rhythm. The red part indicates
high potential. The white line is the active wavefront and is
annular in the myocardium. We can see that the nodes j and k
have approximate values and may be considered adjacent in the
graph, although they are separated in space.
Fig. 1 Piecewise smoothing and gradient sparse feature of the TMP
distribution
a TMP distribution of the 3D myocardium at a certain time (ischaemia)
b Matrix U∈R^(2223× 100), the 2D version of (a)
c Value on the different nodes of the heart
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The piecewise smoothing and gradient sparse feature of the TMP
distribution prompts us to find a constraint to enhance the similarity
between nodes in similar classes, and to distinguish between differ-
ent classes of nodes. This makes the border clearer and can accur-
ately indicate the lesion and the activation wavefronts.

2.2. Constraint regularisation: The TV method is the most classic
sparse constraint method. Comparing Figs. 1a and b, we can see
that in matrix U , the same values are not simply clustered
together. This is caused by the way the FEM models the heart.
The adjacent nodes in the 3D space are not spatially adjacent in
the 2D matrix U expanded by the serial number. The classic TV
method uses adjacency matrix in 3D space to find spatial adjacent
nodes and minimise the TV among them. However, this brings
several problems that limit the improvement of precision: (i) The
adjacency matrix of 3D space is the only prior to this problem,
so it puts high requirement on the accuracy of cardiac modelling.
(ii) It can only use the information between spatial adjacent
nodes, similarities between those nodes which are not adjacent in
space, but still belong to the same class are not available. (iii) It
only considers the situation at a certain moment, without using
the time correlation of dynamic sequences. This inspired us to
propose a graph-based TV constraint.

2.2.1 Neighbourhood-smoothness estimation: First, we apply
a spatial neighbourhood-smoothing constraint to overcome the
mathematical ill-posedness of the problem. This low-resolution
solution Û will be used as the initial input for the subsequent
optimisation algorithm.

Û = HTH+ lLTL
( )−1

HTF (2)

L is the surface Laplacian operator, which utilises the spatial con-
nection information of the nodes in the 3D heart model.

2.2.2 Graph-based TV constraint: In recent years, graph-based
regularisation methods have attracted much attention in image
and manifold processing, for the graph structure extracts and
enhance the self-similarity of the signal [14]. Similar ideas have
also been applied to medical image processing [15, 16]. A graph
structure contains three core constituent factors: node, edge and
weight matrix W. Adjacent nodes are connected by edges. Here
judging whether adjacent or not is based on the similarity of the
values on the nodes, not just the spatial connection which classical
total variation takes as a priori. The degree of similarity of two
nodes i, j is measured by the Euclidean distance:

ℓ = ui − uj

∥∥∥
∥∥∥
2

(3)

The vector u represents the value on one node, which is, in our
case, a record of the TMP values overtime on a single node of
the heart. A smaller ℓ indicates a high consistency between
two nodes, meaning that they are more likely to be in the same
state, e.g. both infarct cells or cells activated at close time. The
k-nearest neighbour (KNN) search algorithm finds the distance
for each pair of nodes, then returns the nearest k ones for each
node, which are considered to be adjacent. The graph TV constraint
can be written as

∇GU
∥∥ ∥∥

1=
∑
i[n

∇Gui
∥∥ ∥∥

1=
∑
i[n

∑
j[ni

���������
W i, j

( )√
ui − uj

∥∥∥
∥∥∥
1

(4)

where n denotes the total number of nodes representing the heart. ni
is a collection of all the neighbours of node i, the result from KNN.
For a pair of adjacent nodes with a short edge (small ℓ), we apply a
large weight to minimise the gradient between them. For those
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nodes that have a large dissimilarity, we reduce the weight between
them. Based on this, we choose the following form of weight matrix
definition with parameter σ being the average distance of the con-
nected nodes:

W i,j = exp −
ui − uj

∥∥∥
∥∥∥2
2

s2

⎛
⎜⎝

⎞
⎟⎠ (5)
Fig. 3 3D map of reconstructed TMP spatial distribution of infarct areas
located in different regions with the body surface potential being disturbed
by 20 dB noise
2.3. Optimisation algorithm: Our reconstruction problem can be
written as the following constraint minimisation form:

min
U[Rn×t

HU−F‖ ‖2F+m ∇GU
∥∥ ∥∥

1 (6)

where F represents the BSPs of a length t. H is the transform
matrix. U is the transmembrane potentials of a length t. m is a
positive weighting parameter used to balance data fidelity term
with regularisation term.
The problem (6) can be solved using forward–backward

primal-dual method [17, 18]. This algorithm minimises a non-
differentiable function by combining a gradient descent step
(forward) with a proximal point step (backward). We split the
target problem (6) into two sub-functions:

h U( ) = HU−F‖ ‖2F (7)

g LU( ) = m ∇GU
∥∥ ∥∥

1 (8)

h U( ) is the data fitting term with a Lipschitz continuous gradient

∇h U( ) = 2HT HU−F( ) (9)

As for g LU( ), L is a linear operator, which in our case the graph
gradient operator ∇G . Since the L1 norm is non-differentiable, we
calculate its proximal operator by the soft-thresholding method [19]

proxsg x( ) = sgn x( ) ·max x| | − s, 0( ) (10)

proxsg∗ x( ) = x− sprox1/sg
x

s

( )
(11)

By alternately solving the forward gradient and backward proximal
problems, the algorithm finally converges to the final optimal
solution. To ensure the convergence of the algorithm, the step
size parameters should be chosen rigorously. The Lipschitz
constant b of h U( ) equals to 2 H‖ ‖2. We set t = 1/b, g = 0.99.
The algorithm converges under the condition that (see Fig. 2)

t−1 − s L‖ ‖22≥
b

2
(12)

We have tested the reconstruction quality of different m values
within a certain range, for there are no mature ways to decide the
best choice for this regularisation parameter. Specific details will
be discussed in Section 4.1.
Fig. 2 Algorithm 1: primal-dual for graph TV
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3. Experiments: We designed two sets of simulation experiments
and one set of real patient experiments to verify the superiority
and accuracy of our method. The ground truth and heart model
of the simulation experiments are from the ‘Experimental
Data and Geometric Analysis Repository’ (EDGAR) database
[20]. This is an Internet-based archive of curated data that is
freely distributed to the international research community for the
application and validation of electrocardiographic imaging
(ECGI) techniques.

3.1. Infarct scar reconstruction: In this section, we set the infarct
nucleus locating at eight different segments to explore the
performance of our method in reconstructing different infract
locations. To test the robustness of the method to different noises,
we add 5, 10, 15, 20, 25, 30 dB noise to the simulated BSP. We
focus on comparing the performance between the graph-TV
method and the classic TV method. The TV method we choose is
Iteratively Re-weighted Minimisation of TV (IRTV) [10], which
has been used to solve the myocardial TMP inverse problem.

We set the TMP value of the infarct site to −84 mV and the
healthy site to 27 mV as the reference ground truth, with sequence
length to 100 ms. It can be found from Fig. 3 that the infarct area
reconstructed by Graph-TV method has a higher consistency with
the ground truth, with the scar shape being closer to the reference
and the edge representation being more accurate. In contrast,
the Tikhonov method provides an overly smooth solution, and its
location has some artefacts. The IRTV method eliminates artefacts
and provides a higher quality solution. Fig. 4 shows the numerical
analysis results for 8 locations, total 48 cases when the body surface
potentials were disturbed by noise in the range of 5–30 dB. Since
our method considers the TMP distribution over the entire
sequence, it provides better performance than the frame-by-frame
calculation methods.

The accuracy of the method was evaluated by comparing the
correlation coefficient (CC) and the relative error (RE) between
Fig. 4 Comparison of CC and RE for three methods at different noise levels.
The height of the column represents the average result value at a particular
signal to noise ratio. Error bar shows the standard deviation among eight
different segments
a CC
b RE
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Fig. 6 3D map of reconstructed TMP wavefront and activation time maps
for pacing at RV-posterior
the ground truth (subscript t) and the reconstructed TMP value
(subscript r).

CC = Cov xr, xt
( )

�������
D xr
( )√ �������

D xt
( )√ (13)

RE =

�������������������∑N
i=1 xri − xti

( )2

∑N
i=1 xti

( )2

√√√√√√ (14)

3.2. Activation wavefronts reconstruction: This part of the experi-
ment was designed to verify the accuracy of our method in recon-
structing the activation propagation sequence. Eight ventricular
pacing transmembrane potentials were interpolated on the coarse
tetrahedral mesh. The depolarisation phase of pacing can reveal
the abnormality in the conduction pathway, which is helpful in
locating the ectopic site or the underlying pathology.

In the initial phase of pacing, the Tikhonov regularisation method
is almost impossible to indicate the location of the pacing site. The
L1-norm based sparse constraint makes the IRTV method perform
better at the initial and final phases of the pacing. However, the
position of the propagation wavefront cannot be accurately
captured. The result of Graph-TV method has the highest concord-
ance to reference ground truth during the whole process of propaga-
tion, with the closest wavefront shape. Fig. 5 shows the statistical
results of the reconstruction at different pacing sites. Each sequence
length is 150–250 ms. Outliers often appear at the beginning and
end of the sequence. In this time period, the number of activated
nodes (or inactivated nodes) is small, and accurate reconstruction
is more difficult than others. The results of reconstruction at the
septum are worse than those at other locations, for this location
hides the deepest from the body surface.

As another property describing the process of excitement
propagation, the activation time map is used to visually indicate
the order in which cardiomyocytes are activated. The earliest
point of the activation time map is considered as the beginning
Fig. 5 Comparison of CC and RE for three methods at different pacing sites
a CC
b RE
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point of pacing. In the case of Fig. 6, the location errors of listed
three methods are 15.63 mm (Tikhonov-2), 9.95 mm (IRTV) and
7.44 mm (Graph-TV).

3.3. Real patient experiment: In this section, we collected the data
of ten premature ventricular contractions (PVCs) patients, and to
non-invasively locate the lesion by the mentioned three methods
to explore the potential of the methods in clinical application.
We locate the pacing site by reconstructing the high-potential
area in the early stages of pacing. The 64-lead ECG recorded the
distribution of body surface potentials overtime during arrhythmia
with a sampling frequency of 2 kHz, i.e. F, in our problem. The
patient wears lead electrodes for a CT scan, whereby the position
of the lead on the torso can be obtained to establish a torso
model. We sliced the CT image containing the relative position
of the heart-torso along the short axis of the heart, then labelled
the contours of the epicardium, ventricular and right ventricular
outflow tracts to obtain a 3D cardiac model. Finally, the two
models are registered in the same coordinate system, and the
anisotropic conduction information is combined to obtain a
personalised TMP-BSP transfer matrix H. The blue part of Fig. 7
shows this process. The Ensite3000 diagnostic results of invasive
surgery records are considered as the gold standard to verify the
accuracy of non-invasive reconstruction results. Nine cases of the
ectopic pacing site were located in the right ventricular outflow
tract and one in the left ventricular apex.

The occurrence of PVC is usually accompanied by a large and
deformed QRS wave, hence we select this segment for reconstruc-
tion. Table 1 lists the clinical diagnosis and reconstruction results of
these ten patients. Fig. 8 shows the 37th lead ECG, the Ensite3000
diagnostic screenshot and the distribution of TMP on the 3D heart
model of cases 1, 2 and 3. We reconstructed the QRS part
(about 140–180 ms) and selected the early time nodes for 3D
display. The high level (red) indicates the location of the pacing.
Combined with Table 1, it can be seen that for patients with com-
plete data collection (with CT scan data with 64 lead positions,
so that a personalised cardiac torso model can be established), the
proposed method can accurately determine the location of the pace-
maker. For cases where CT images were not acquired, we used a
general model, which made the reconstruction results of the two
cases slightly offset (see cases 7 and 10). The personalised model
contains patient-specific geometric location information and has
an important impact on the quality of the reconstruction results.
Experiments have shown that our method can clearly indicate
the boundary between the active site and the resting site, so as to
accurately locate the lesion.

4. Discussion
4.1. Parameter setting: In our proposed optimisation algorithm, the
parameters k and μ are the two most critical parameters affecting the
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 181–186
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Fig. 7 Illustration of the proposed graph-based TV reconstruction method. The solid red line represents the main flow. The blue part is the establishment of the
H matrix. The yellow part is the creation of the graph. The dashed line of the double arrow shows the two parts are equivalent

Table 1 10 cases of real patient data and diagnostic results

Case Gender Age CT PVC origin Graph-TV result IRTV result Tikhonov-2 result

1 F 32 √ RVOT septum RVOT septum RVOT septum RVOT septum
2 F 45 √ RVOT posterior RVOT posterior RVOT posterior RVOT posterior
3 F 57 √ RVOT anterior RVOT anterior RVOT anterior RVOT free wall
4 M 33 √ RVOT posterior RVOT posterior RVOT posterior RVOT posterior
5 M 52 — LV apex LV apex LV apex LV apex
6 F 58 √ RVOT anterior RVOT anterior RVOT septum RVOT anterior
7 F 67 — RVOT posterior RVOT septum RVOT septum RVOT septum
8 M 35 √ RVOT anterior RVOT anterior RVOT anterior RVOT anterior
9 F 53 — RVOT posterior RVOT posterior RVOT posterior RVOT posterior
10 F 58 — RVOT posterior RVOT septum RVOT septum RVOT septum

Fig. 8 Clinical Ensite3000 diagnosis and graph-TV-based electrophysio-
logical imaging diagnosis of three real PVC patients with ectopic pacing
site located at RVOT, respect to case 1,2,3 in Table 1. In Ensite3000, the
colour from red to blue indicates the active timing, and the torso in the
upper right corner represents the orientation of the current model

Fig. 9 Parameters test
a Effect of different k values on reconstruction results
b Optimal μ value test at different SNR levels. k is fixed at 5
final result. The k value affects the accuracy of the graph structure,
while μ is an important factor that weighs the data fidelity and
sparse constraints.
We first determine the value of k and then test the effect of dif-

ferent μ values based on a fixed k. After test we found that the
value of k has little effect on the result compared to the value
of μ. Fig. 9a shows that the gap between CC and RE is less
than 0.005 when k changes from 0 to 20. Considering that a
large k value will produce a significant oscillation near the
optimal solution, while a too small k increases the calculation
time, we finally choose k= 5 as our experimental parameter.
Fig. 9b shows that the optimal value of μ increases as the noise
level increases. This is in line with the general denoising problem
we are familiar with.
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 181–186
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4.2. Computing time: Here we discuss the computational time cost
of the three methods mentioned. Table 2 shows the results of one set
of activation wavefronts reconstruction experiments. The pacing
site was located at LV-APEX, with a sequence length of 221 ms.
The number of mesh nodes of the heart model is 2223. The
experimental environment is MATLAB R2016a, with a 3.2 GHz
processor and 16 GB RAM.

The Tikhonov method takes the shortest time because it does not
require iterative computation. The calculation of both single frame
and sequence involve one singular-value decomposition. IRTV is
an iterative algorithm, and the regularisation parameter is adjusted
in each iteration to converge to the optimal solution. Each frame
is computed independently, so the time-consuming increases
almost linearly. Graph TV is an iterative algorithm, which con-
verges to the optimal solution by solving the primal and dual pro-
blems alternately. Because the algorithm can solve the whole
sequence at the same time, it has a great advantage in speed com-
pared with the IRTV algorithm.
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Table 2 Comparison of the computing time for three methods

Tikhonov-2, s IRTV, s Graph-TV, s

single frame 3.7 6.2 4.3
sequence 7.8 542.9 14.2
5. Conclusion: This paper proposes a graph-based TV constraint to
solve the inverse problem of ECG imaging. Simulation experiments
show that the proposed method has higher reconstruction quality
than the Tikhonov method based on L2-norm and the classical
TV method based on spatial adjacency constraints. Real patient
experiments also illustrate the accuracy of the method of clinical
application. Compared to the frame-by-frame reconstruction
method, the sequence-based solution overcomes the disadvantage
that the computation time increases linearly with the sequence
length. Due to the lack of sufficient training data, this work has
not been compared with the deep learning method for the time
being. In the future, we will consider combining deep learning
and traditional optimisation methods to improve the performance
of TMP reconstruction in a data-driven manner.
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