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Abstract: Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is recognized as a critical regulator
in physiological and pathophysiological processes of atherosclerosis (AS). However, the underlying
mechanism remains unclear. As the precursor cells of endothelial cells (ECs), endothelial progenitor
cells (EPCs) can prevent AS development through repairing endothelial monolayer impaired by
proatherogenic factors. The present study investigated the effects of S1P on the biological features of
mouse bone marrow-derived EPCs and the underlying mechanism. The results showed that S1P
improved cell viability, adhesion, and nitric oxide (NO) release of EPCs in a bell-shaped manner,
and migration and tube formation dose-dependently. The aforementioned beneficial effects of S1P
on EPCs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor of LY294002 and
nitric oxide synthase (NOS) inhibitor of N’-nitro-L-arginine-methyl ester hydrochloride (L-NAME).
The inhibitor of LY294002 inhibited S1P-stimulated activation of phosphorylated protein kinase B
(AKT) (p-AKT) and endothelial nitric oxide synthase (eNOS) (p-eNOS), and down-regulated the level
of eNOS significantly. The results suggest that S1P improves the biological features of EPCs partially
through PI3K/AKT/eNOS/NO signaling pathway.
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1. Introduction

The impairment in vascular endothelial function induced by risk factors (such as hypertension,
hyperlipidemia, and hyperglycemia), is an important initial event for the onset and progression of
atherosclerosis (AS) [1]. Endothelial progenitor cells (EPCs) derived from peripheral blood or bone marrow
can differentiate into mature endothelial cells (ECs) and migrate to injured sites to promote endothelium
repair and neovascularization in the vessel wall, and thus preventing AS progression [2–4]. However, AS
could result in an obvious decrease in the quantity and function of EPCs [5]. It is reported that EPCs in
AS patients fail to repair the injured endothelium, which breaks the physiological equilibrium between
endothelial damage and regeneration. Therefore, improvement in the quantity and function such as
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proliferation, migration, adhesion, tube formation, and nitric oxide (NO) production of EPCs is conducive to
repair the injured endothelial monolayer [5,6], and thus inhibiting the initiation and progression of AS.

Sphingosine-1-phosphate (S1P), a bioactive glycosphingolipid, regulates diverse physiological
functions in different organ systems. The highest level of S1P was observed in blood, particularly in high
density lipoproteins (HDL) and red blood cells [7,8]. Within the cardiovascular system, S1P mediates
various activities including cardioprotection following ischemia/reperfusion injury, anti-inflammation,
endothelial function improvement, anti-oxidation, anti-AS, and antithrombus [9,10]. Patient-derived
EPCs showed significantly impaired capacity for neovascularization in a mouse model of hind limb
ischemia [11,12]. After being pretreated with S1P for 2 h before intravenous infusion, patient-derived
EPCs significantly improved blood flow recovery in ischemic hind limbs [13].

The signaling pathway of S1P/S1P receptors/Src kinases/ protein kinase B (AKT)-induced NO
synthesis protected EPCs from apoptosis, and S1P/S1P receptors/Src kinases/ C–X–C chemokine
receptor type 4 (CXCR4) -mediated signaling was essential for homing and functional integration
of EPCs to ischemic tissues [14]. Src-family tyrosine kinases can activate the phosphatidylinositol
3-kinase (PI3K)/AKT/ endothelial nitric oxide synthase (eNOS) signaling pathway [15], and the integral
PI3K/AKT/eNOS/ nitric oxide (NO) pathway seems to play a vital role in improving the function of
EPCs [16]. It is generally accepted that maintaining the integrity of eNOS pathway plays an important
role in mobilization, proliferation, and migration of EPCs as well as vessel formation [16,17]. The major
upstream effectors of eNOS pathway include phosphatidylinositol-3 kinase (PI3K) and protein kinase
B (PKB/AKT). Here we hypothesize that S1P may exert its anti-AS activity through improving the
biological features of EPCs to restore damaged intima. The present study found that S1P significantly
improves the biological features of EPCs partially through PI3K/AKT/eNOS/NO signaling pathway.

2. Results

2.1. Isolation and Identification of Endothelial Progenitor Cells

After being isolated and cultured in an endothelial growth medium-2 MV (EGM-2MV) medium
for seven days at 37 ◦C with 5% CO2, mononuclear cells (MNCs) derived from mouse bone marrow
showed cobblestone-like morphology (Figure 1a). These cells could take DiI-ac-LDL (Figure 1b) and
bind FITC-UEA (Figure 1c), which can be used to indicate differentiated EPCs. The expression of EPCs
markers, such as CD133 (Figure 1d) and FLK-1 (Figure 1e), were detected after being cultured for 21 days.Molecules 2019, 24, x FOR PEER REVIEW 3 of 13 

 

 
Figure 1. Identification of endothelial progenitor cells (EPCs) derived from mouse bone marrow. The 
mononuclear cells (MNCs) isolated from mouse bone marrow showthe characteristics of EPCs 
gradually. (a) EPCs showed cobblestone-like morphology (×10) after being isolated and cultured in 
an EGM-2MV medium for 7 days at 37 °C with 5% CO2; (b) EPCs took up DiI-ac-LDL (×10); (c) EPCs 
bound FITC-UEA (×10); (d) identification of EPCs by immunofluorescence for CD133 (×20) after 
culture for 21 days at 37 °C with 5% CO2; (e) identification of EPCs by immunofluorescence for FLK-
1 (×20) after culture for 21 days at 37 °C with 5% CO2. 

2.2. S1P Improves the Biological Features of EPCs 

The EGM-2MV medium was replaced with a M199 medium added with 3% fetal bovine serum 
(FBS) before EPCs were subjected to the treatment of S1P (0–10 μM) for 24 h at 37 °C with 5% CO2. 
We found that S1P significantly improved cell viability (Figure 2A), adhesion (Figure 2B), and NO 
release (Figure 2C) in a bell-shaped manner, and migration (Figure 2D) as well as tube formation 
(Figure 2E) of EPCs dose-dependently. Interestingly, S1P improved the biological features of EPCs 
most effectively at a concentration of 1 μM among the studied ones in the present work. 

Figure 1. Identification of endothelial progenitor cells (EPCs) derived from mouse bone marrow. The
mononuclear cells (MNCs) isolated from mouse bone marrow showthe characteristics of EPCs gradually. (a)
EPCs showed cobblestone-like morphology (×10) after being isolated and cultured in an EGM-2MV medium
for 7 days at 37 ◦C with 5% CO2; (b) EPCs took up DiI-ac-LDL (×10); (c) EPCs bound FITC-UEA (×10); (d)
identification of EPCs by immunofluorescence for CD133 (×20) after culture for 21 days at 37 ◦C with 5% CO2;
(e) identification of EPCs by immunofluorescence for FLK-1 (×20) after culture for 21 days at 37 ◦C with 5% CO2.
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2.2. S1P Improves the Biological Features of EPCs

The EGM-2MV medium was replaced with a M199 medium added with 3% fetal bovine serum
(FBS) before EPCs were subjected to the treatment of S1P (0–10 µM) for 24 h at 37 ◦C with 5% CO2.
We found that S1P significantly improved cell viability (Figure 2A), adhesion (Figure 2B), and NO
release (Figure 2C) in a bell-shaped manner, and migration (Figure 2D) as well as tube formation
(Figure 2E) of EPCs dose-dependently. Interestingly, S1P improved the biological features of EPCs
most effectively at a concentration of 1 µM among the studied ones in the present work.Molecules 2019, 24, x FOR PEER REVIEW 4 of 13 

 

 
Figure 2. Sphingosine-1-phosphate (S1P) improves the biological features of EPCs. The EGM-2MV 
medium was replaced with M199 with 3% FBS before EPCs were subjected to the treatment of S1P for 
24 h at 37 °C with 5% CO2. (A) Cell viability of EPCs treated with S1P (0–10 μM); (B) number of 
adherent EPCs treated with S1P (0–2 μM); (C) ratio of NO to total protein in medium after EPCs were 
treated with S1P (0–2 μM); (D) number of migratory EPCs in 5 random field of views after treatment 
with S1P (0–1 μM); (E) average total length of complete tubes after treatment with S1P (0–1 μM); (F) 
representative micrograph of migratory EPCs after treatment with S1P (0–1 μM) (×100, corresponding 
to S1P concentration at 0, 0.25, 0.5, and 1 μM from left to right, respectively); (G) representative 
micrograph of complete tubes (×40, corresponding to S1P concentration at 0, 0.25, 0.5, and 1 μM from 
left to right, respectively). 

2.3. LY294002 and L-NAME Partialy Suppress S1P-Promoted Biological Features of EPCs 

To detect whether the improved biological features of EPCs by S1P are through 
PI3K/AKT/eNOS/NO signaling pathway, EPCs were pretreated with LY294002 (30 μM) or N′-nitro-
L-arginine-methyl ester hydrochloride (L-NAME) (200 μM) for 2 h at 37 °C with 5% CO2, and then 
incubated with S1P (1 μM). The results showed that LY294002 and L-NAME significantly suppressed 
the promoting effects of S1P on cell viability (Figure 3A), adhesion (Figure 3B), NO release (Figure 
3C), migration (Figure 3D), and tube formation (Figure 3E) of EPCs, with LY294002 more effectively 
than L-NAME. Both of them attenuated the S1P-promoted improvement in NO generation and tube 
formation of EPCs (Figure 3C). 

Figure 2. Sphingosine-1-phosphate (S1P) improves the biological features of EPCs. The EGM-2MV
medium was replaced with M199 with 3% FBS before EPCs were subjected to the treatment of S1P
for 24 h at 37 ◦C with 5% CO2. (A) Cell viability of EPCs treated with S1P (0–10 µM); (B) number of
adherent EPCs treated with S1P (0–2 µM); (C) ratio of NO to total protein in medium after EPCs were
treated with S1P (0–2 µM); (D) number of migratory EPCs in 5 random field of views after treatment
with S1P (0–1 µM); (E) average total length of complete tubes after treatment with S1P (0–1 µM); (F)
representative micrograph of migratory EPCs after treatment with S1P (0–1 µM) (×100, corresponding
to S1P concentration at 0, 0.25, 0.5, and 1 µM from left to right, respectively); (G) representative
micrograph of complete tubes (×40, corresponding to S1P concentration at 0, 0.25, 0.5, and 1 µM from
left to right, respectively).

2.3. LY294002 and L-NAME Partialy Suppress S1P-Promoted Biological Features of EPCs

To detect whether the improved biological features of EPCs by S1P are through
PI3K/AKT/eNOS/NO signaling pathway, EPCs were pretreated with LY294002 (30 µM) or
N′-nitro-L-arginine-methyl ester hydrochloride (L-NAME) (200 µM) for 2 h at 37 ◦C with 5% CO2,
and then incubated with S1P (1 µM). The results showed that LY294002 and L-NAME significantly
suppressed the promoting effects of S1P on cell viability (Figure 3A and Figure S1), adhesion (Figure 3B),
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NO release (Figure 3C), migration (Figure 3D), and tube formation (Figure 3E) of EPCs, with LY294002
more effectively than L-NAME. Both of them attenuated the S1P-promoted improvement in NO
generation and tube formation of EPCs (Figure 3C).Molecules 2019, 24, x FOR PEER REVIEW 5 of 13 

 

 
Figure 3. LY294002 and N’-nitro-L-arginine-methyl ester hydrochloride (L-NAME) suppress S1P-
promoted improvement in biological features of EPCs. EPCs were pretreated with LY294002 (30 μM) 
or L-NAME (200 μM) for 2 h at 37 °C with 5% CO2, and then incubated with S1P (1 μM) for 24 h. Cell 
viability (A), adhesion (B), nitric oxide (NO) release (C), migration (D), and tube formation (E) of EPC 
were evaluated as aforementioned. (F) Representative micrograph of EPCs migration after treatment 
(×100, corresponding to treatment conditions of non-treated, S1P, S1P + LY294002, and S1P + L-NAME 
from left to right, respectively). (G) Representative micrograph of complete tubes after treatment (×40, 
corresponding to treatment conditions of non-treated, S1P, S1P + LY294002, and S1P + L-NAME from 
left to right, respectively). 

2.4. S1P Activates AKT and eNOS Phosphorylation 

To investigate the underlying mechanism by which S1P improves the biological features of 
EPCs, we analyzed its effects on PI3K/AKT/eNOS signaling pathway at different time points (0–1 h) 
by Western blotting assay. The results showed that levels of phosphorylated AKT (p-AKT), 
phosphorylated eNOS (p-eNOS), and eNOS were significantly up-regulated with time duration (15–
60 min) in the presence of S1P at 1 μM (Figure 4A–D). Among the treatment concentrations employed 
in the present study, S1P at 1 μM up-regulated levels of p-AKT and p-eNOS at 60 min (Figure 4E–H) 
most effectively. 

Figure 3. LY294002 and N’-nitro-L-arginine-methyl ester hydrochloride (L-NAME) suppress
S1P-promoted improvement in biological features of EPCs. EPCs were pretreated with LY294002
(30 µM) or L-NAME (200 µM) for 2 h at 37 ◦C with 5% CO2, and then incubated with S1P (1 µM) for
24 h. Cell viability (A), adhesion (B), nitric oxide (NO) release (C), migration (D), and tube formation
(E) of EPC were evaluated as aforementioned. (F) Representative micrograph of EPCs migration after
treatment (×100, corresponding to treatment conditions of non-treated, S1P, S1P + LY294002, and S1P
+ L-NAME from left to right, respectively). (G) Representative micrograph of complete tubes after
treatment (×40, corresponding to treatment conditions of non-treated, S1P, S1P + LY294002, and S1P +

L-NAME from left to right, respectively).

2.4. S1P Activates AKT and eNOS Phosphorylation

To investigate the underlying mechanism by which S1P improves the biological features of EPCs,
we analyzed its effects on PI3K/AKT/eNOS signaling pathway at different time points (0–1 h) by Western
blotting assay. The results showed that levels of phosphorylated AKT (p-AKT), phosphorylated eNOS
(p-eNOS), and eNOS were significantly up-regulated with time duration (15–60 min) in the presence of
S1P at 1 µM (Figure 4A–D). Among the treatment concentrations employed in the present study, S1P at
1 µM up-regulated levels of p-AKT and p-eNOS at 60 min (Figure 4E–H) most effectively.
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** p < 0.01 versus 0 min) or concentration (0–2 μM) (E–H) on levels of p-AKT, p-eNOS, and eNOS in 
EPCs were investigated by Western blot analyses. 

2.5. LY294002 Inhibits The Levels of p-AKT, p-eNOS, and eNOS Promoted by S1P 

EPCs were pretreated with LY294002 (30 μM) at 37 °C with 5% CO2 for 2 h, and then incubated 
with S1P at 1 μM for 1 h. As is shown in Figure 5, LY294002 significantly inhibited the activation of 
AKT and eNOS induced by S1P (Figure 5A–D). 

 
Figure 5. LY294002 inhibits S1P-induced activation of p-AKT, p-eNOS, and eNOS in EPCs. Western 
blot analyses of p-AKT, p-eNOS, and eNOS in EPCs treated with S1P at 1 μM or S1P at 1 μM plus 
LY294002 at 30 μM (A–D) were performed. 

Figure 4. S1P up-regulates the levels of phosphorylated AKT (p-AKT), phosphorylated endothelial
nitric oxide synthase (p-eNOS), and eNOS. Effects of S1P at different time duration (A–D) (* p < 0.05, **
p < 0.01 versus 0 min) or concentration (0–2 µM) (E–H) on levels of p-AKT, p-eNOS, and eNOS in EPCs
were investigated by Western blot analyses.

2.5. LY294002 Inhibits The Levels of p-AKT, p-eNOS, and eNOS Promoted by S1P

EPCs were pretreated with LY294002 (30 µM) at 37 ◦C with 5% CO2 for 2 h, and then incubated
with S1P at 1 µM for 1 h. As is shown in Figure 5, LY294002 significantly inhibited the activation of
AKT and eNOS induced by S1P (Figure 5A–D).
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Figure 5. LY294002 inhibits S1P-induced activation of p-AKT, p-eNOS, and eNOS in EPCs. Western
blot analyses of p-AKT, p-eNOS, and eNOS in EPCs treated with S1P at 1 µM or S1P at 1 µM plus
LY294002 at 30 µM (A–D) were performed.



Molecules 2019, 24, 2404 6 of 12

3. Discussion

EPCs originate from hemangioblast existing in peripheral blood or bone marrow [18] and express
cell surface markers similar to those of mature ECs [19]. Endothelial damage is an important early step
in the pathogenesis of AS [20]. It is suggested that impaired EPCs population can negatively affect the
cardiovascular system, and a decreased quantity of EPCs in patients is associated with an increased
risk for endothelial injury and a progression of AS plaque [3]. In the case of endothelial damage,
bone marrow-derived EPCs enter the circulation and migrate to the injury site, which potentially inhibits
AS and relevant complications by restoring endothelial function and promoting neoangiogenesis [21,22].

Endothelial dysfunction serves as a primary initial factor and contributes to the development of AS
and other vascular diseases. EPCs promote the repair of damaged endothelium, inhibit AS development
and stimulate neovascularization in ischemic tissue [22,23]. It was reported that restoration of blood
flow in peripheral artery disease and recovery of left ventricular function were facilitated by autologous
transplantation of cultured EPCs derived from the bone marrow of patients with coronary artery
disease (CAD) [24]. However, risk factors for CAD and severe heart failure have shown to be
detrimental to circulating blood-derived EPCs, and thus limiting the capacity of isolated EPCs to
facilitate blood flow recovery after infusion [24]. Likewise, significantly impaired capacity for homing
and neovascularization of bone marrow-derived EPCs isolated from patients with chronic ischemic
heart disease was also demonstrated [24,25].

The migrationis essential for circulating EPCs homing, and the survival demonstrated impaired by
the risk factors for cardiovascular disease [26]. The adhesion capability of EPCs to vascular endothelium
and extracellular matrix plays a vital role in angiogenesis [27]. Tube formation assay can be employed
to assess the ability of EPCs for new vessel formation [28]. The characteristic early shortage of NO and
relevant biomolecules related to AS progression were well reported [29]. Severe AS can be induced
by chronically inhibited NO as well as high cholesterol diet [30]. NO could exert anti-AS effects via
suppressing the adhesion of monocyte to endothelium and chemotaxis of smooth muscle cells [31].

S1P is one of the most vital metabolites of sphingolipids ubiquitous in mammalian membranes
and possesses five specific cell surface G-protein-coupled receptors (S1PR1–S1PR5) [32,33]. S1P exerts
diverse effects on monocyte attachment and migration, along with cell viability of smooth muscle cells,
which is vital to AS development [34]. S1P levels in serum of patients with peripheral artery disease
and carotid stenosis were reported significantly lower than those in healthy volunteers [25,34]. S1P can
inhibit the adhesion of leukocytes to ECs and subsequent transmigration, as well as the production
of proinflammatory mediators in ECs. In addition, it can activate eNOS [20]. S1P/S1P receptors/Src
kinases/CXCR4 receptor-mediated signaling was essential for homing and functional integration of
EPCs to ischemic tissues [14]. Kimura et al. found that S1P receptor agonist of FTY720 (fingolimod)
promoted the migration and bone marrow homing of human CD34+ progenitor cells induced by stromal
cell derived factor-1 (SDF-1) [35]. Zhao et al. demonstrated that S1P restored the bone marrow-derived
progenitor cells (BMPCs)-induced endothelial barrier protection through Rac1 and Cdc42 signaling
pathway [36]. S1P induced the migration and angiogenesis of EPCs through S1PR3/PDGFR-beta/AKT
signaling pathway [37]. S1P-dependent pathways are reported critical for the angiogenic/vasculogenic
activity of endothelial colony forming cells derived from human bone marrow [38]. However, effects
of S1P on EPCs derived from bone marrow were still unclear. The activation of AKT and eNOS in
PI3K/AKT/eNOS pathway was reported to play a vital role in survival and functioning of EPCs [39,40].
Similarly, PI3K/AKT/eNOS pathway was reported to be a downstream target for the angiogenesis
properties of S1P [41]. In addition, S1P promotes the proliferation and attenuates apoptosis of EPCs via
S1PR1/S1PR3/PI3K/AKT pathway [42]. In the present work, S1P improved the cell viability, migration,
adhesion, tube formation, and NO release of EPCs, and activated the phosphorylation of both AKT
and eNOS in a dose-dependent manner by and large, with most effective action concentration at 1
µM. Interestingly, S1P exerted its promoting effects on cell viability, adhesion, and NO release of EPCs
in a bell-shaped manner, consistent with several previous studies finding that many endogenous
compounds exhibited bell-shaped mode of action when used exogenously in several cell lines [43–45].
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Pretreatment with LY294002 or L-NAME inhibited the promoting effects of S1P on EPCs, and LY294002
worked more effectively than L-NAME. These results suggest that S1P may facilitate EPCs through
other downstream signal pathways of PI3K/AKT, except for those dependent on PI3K/AKT/eNOS/NO.
PI3K Inhibitor inhibited NO release from EPCs treated by S1P, suggesting the dependence of NO
generation on AKT activation.

In conclusion, S1P improves cell viability, migration, adhesion, tube formation, and NO
release of EPCs partially through PI3K/AKT/eNOS/NO pathway. S1P agonists may be employed in
clinical progenitor cell therapy to improve EPCs function in patients with CAD through activating
PI3K/AKT/eNOS/NO signaling pathway. Since S1P possesses five specific cell surface receptors,
knowing which receptor(s) play(s) an important role in improving the biological features of EPCs is
something that needs further investigation.

4. Materials and Methods

4.1. Isolation and Culture of EPCs Derived from C57 Mice Bone Marrow

C57 mice, four to eight weeks old, were purchased from the Vital River Laboratory (Beijing, China).
All animal-use protocols were reviewed and approved by the Animal Care and Use Committee of
Weifang Medical University. This study was approved by the Animal Experimental Ethics Committee
of Weifang Medical University. The mice were humanely sacrificed by cervical dislocation after being
anesthetized by isoflurane (Sigma, catalog number: Y0000858, St. Louis, MO, USA). The whole bone
marrow from the femurs and tibias of the mice was prepared by flushing medium-2MV (EGM-2MV,
Lonza, catalog number: CC-3162, Basel, Switzerland), using a sterilized syringe. Bone marrow
mononuclear cells (MNCs) were isolated by density gradient centrifugation using Histopaque 1083
(Sigma, St. Louis, MO, USA, catalog number: 10831) according to the manufacturer’s instructions.
The isolated MNCs were seeded in fibronectin-coated six-well plates (Corning, catalog number: 3524,
New York, NY, USA) at a density of 106/cm2 and cultured in endothelial cell growth medium-2MV
(EGM-2MV) at 37 ◦C with 5% CO2 in a humidified incubator. After 72 h of culture, non-adherent cells
were removed by replacing the culture fluid with fresh culture medium thoroughly and the medium
was changed every three days. MNCs differentiated into late outgrowth EPCs in about 21 days.

4.2. Immunocytochemistry

After being cultured for 10 days, MNCs were incubated with l,l’-dioctadecyl-1,3,3,3’,3’-tetramethyl
-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-ac-LDL, Peking
Union-Biololgy Co. Ltd, Beijing, China, catalog number: N/A) (2.5 mg/mL) for 2 h at 37 ◦C, and then
fixed with 2% paraformaldehyde (Sigma, catalog number: P6148,) for 5 min. Thereafter, the cells were
washed with DPBS (ThermoFisher, Waltham, MA, USA, catalog number: 14190250) for three times and
incubated with FITC-UEA (10 mg/L, Sigma, catalog number: L9006) for 1 h at 37 ◦C.

After being fixed in 2% paraformaldehyde (Sigma, catalog number: P6148) for 10 min, the cells
were incubated with primary antibodies against CD133 (Abcam, Cambridge, UK, catalog number:
ab16518) and FLK-1 (Abcam, catalog number: ab9530) for 1 h at 37 ◦C. After being washed with
PBS for three times, EPCs were incubated with secondary antibodies conjugated with Cy3 (BOSTER,
catalog number: BA1031, Pleasanton, CA, USA) or FITC (Santa Cruz, DBA, Milan, Italy, catalog
number: SC-2359) for 30 min at 37 ◦C. Then a representative micrograph was acquired by a fluorescence
microscope (Olympus, Tokyo, Japan).

4.3. EPCs Treatment

Before being treated with S1P (Sigma, catalog number: 73914), the EGM-2MVmedium was
changed to M199 medium (Hyclone, catalog number: SH30253.01, Thermo Fisher Scientific, Waltham,
MA, USA) with 3% FBS (ThermoFisher, catalog number: 10100), and these cells were divided into
four groups and treated as follows: Control group (M199 + 3% FBS), S1P group (M199 + 3% FBS +
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0–10 µM S1P), S1P + LY294002 (M199 + 3% FBS + 1 µM S1P + 30 µM LY294002), and S1P + L-NAME
(M199 + 3% FBS + 1 µM S1P + 200 µM L-NAME). EPCs were pretreated with the PI3-kinase inhibitor
of LY294002 (Sigma, catalog number: L9908) at 30 µM or NOS inhibitor of L-NAME (Sigma, catalog
number: N5751) at 200 µM for 2 h and then treated with S1P for 24 h.

4.4. Cell Viability of EPCs

Cell viability of EPCs was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT) (Sigma, catalog number: 11465007001) assay based on the formazan transformed from
MTT by viable cells. The cells were treated as mentioned previously and seeded in 96-well plates at a
density of 103 cells/cm2. Twenty microliters MTT (5 mg/mL) was added to every well, followed by
being cultured at 37 ◦C with 5% CO2 for 4 h. Then 150 µL dimethylsulfoxide (DMSO) (Gibco, Grand
Island, NY, USA, catalog number: D12345) used to dissolve the insoluble formazan crystals existing in
viable cells was added to each well after the medium was removed. The optical density (OD) values at
490 nm were determined using a microplate spectraphotometer (Multiskan GO, Thermo, Rockford, IL,
USA) to calculate the cell viability which was presented as the ratio to the control group.

4.5. EPCs Migration Assay

Migration of EPCs was evaluated by transwell migration assay (BD, San Diego, CA, USA). EPCs
were treated as aforementioned. EPCs suspension (200 µL, 1.2 × 104 cells/mL in M199 medium) were
added to the upper chamber of a 24-well transwell plate with 8 µm pore membrane. M199 and
EGM-2MV medium were added to the upper and lower transwell chamber, respectively. After culture
at 37 ◦C with 5% CO2 for 24 h, a cotton wool swab was used to gently wipe the upper cells that had
not migrated, and the lower cells were fixed and stained with DAPI (Sigma, catalog number: D8417).
The migratory EPCs in five randomly selected fields of view were analyzed under a fluorescence
microscope (×100) (Eclipse TE300, Nikon, Tokyo, Japan).

4.6. Cell Adhesion

After being treated by S1P at 0, 0.1, 0.25, 0.5, 1, and 2 µM, respectively, EPCs were detached using
0.25% trypsin (Solarbio Life Sciences, catalog number: T1300, Beijing, China). After centrifugation and
resuspension in EGM-2MV, identical quantity of EPCs (1× 104 cells) were seeded in a fibronectin-coated
24-well plate (Corning, catalog number: 3337) and cultured at 37 ◦C with 5% CO2 for 30 min.
After incubation, non-adherent cells were gently removed and adherent cells were counted using a
phase contrast microscope (Eclipse 80i, Nikon) in five randomly selected fields of view (×100) by three
independent blinded investigators.

4.7. Tube Formation Assay

After being treated by S1P at 0, 0.25, 0.5, and 1 µM, respectively, EPCs were detached using
0.25% trypsin. After centrifugation and resuspension in EGM-2MV (Lonza, catalog number: CC-3162),
EPCs were seeded in 96-well plates precoated with (BD Bio-science, Stockholm, Sweden, catalog number:
354230) at a density of 1.0 × 104 cells/well and cultured at 37 ◦C with 5% CO2 for 8 h. A microscope
(×40) (Nikon) was used to detect the tube formation in five randomly selected microscopic fields of
view. The average total length of tubes with tubular structures (exceeding approximately six cells in
length) was analyzed by Image-Pro Plus (version 5.1, Media cybernetics, Silver Spring, MD, USA).
The total length of tubes (% of control) was compared among the groups.

4.8. Detection of NO in Medium

After being treated by S1P at 0, 0.1, 0.25, 0.5, 1, and 2 µM, respectively, a nitric oxide (NO) assay
kit (Jiancheng, Nanjing, China, catalog number: A012-1-2) was used to detect the concentration of NO
released from EPCs. In brief, 100 µL supernatants from cultured EPCs were harvested and the levels
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of NO released by EPCs were quantified based on colorimetric assay at 550 nm using a microplate
spectraphotometer (Multiskan GO, Thermo, Rockford, IL, USA). The NO-releasing ability of EPCs
was calculated as the ratio of NO to total protein (µM/µg). And the total protein concentration was
measured by the BCA method.

4.9. Western Blot Analyses

Radio immunoprecipitation assay (RIPA, Solarbio, catalog number: R0010) lysis buffer equipped
with phenylmethylsulfonyl fluoride (PMSF, final concentration at 1%) and supplemented with
protein phosphatase inhibitor (Solarbio, catalog number: P1260) was used to extract total protein.
Equal amounts of total proteins (30 µg) for each well were loaded and isolated by 10% sodium dodecyl
sulfate polyacrylamide gel (SDS-PAGE) electrophoresis. Then the proteins were transferred onto
a polyvinylidene difluoride (PVDF) membrane. After being blocked with 5% FBS for 2 h at room
temperature, the membranes were incubated with primary antibodies against β-actin (1:5000, Sigma,
catalog number: A5441), AKT (1:1000, CST, catalog number: #2920), p-AKT (1:5000, Abcam, catalog
number: ab81283), eNOS (1:300, Santa Cruz, catalog number: sc-8311), and p-eNOS (1:500, Santa Cruz,
catalog number: sc-21871-R) overnight at 4 ◦C under constant shaking. After being washed with
PBS buffer three times (5 min each), the membranes were incubated with the secondary antibodies
conjugated to horseradish peroxidase (HRP) (1:2000, Santa Cruz, catalog number: sc-2004 or sc-2005)
for 2 h at room temperature under constant shaking. After washing the membrane with PBS buffer three
times (5 min each), an ECL chemiluminescence detection kit (catalog number PE0010, Solarbio, Beijing,
China) and a chemiluminescence gel imaging system (FluorChem Q, ProteinSimple, San Jose, CA, USA)
were used to visualize the immunoproteins complexes, and protein band intensities were analyzed by
Image-Pro Plus software (version 5.1, Media cybernetics, Silver Spring, MD, USA), with β-actin as
internal reference.

4.10. Statistical Analysis

All data are represented as means ± SD (standard deviation). Statistical analyses were conducted
by One-way ANOVA, with Student-Newmann-Keuls post-hoc test for multiple comparisons using
the SPSS software of version 17.0 (SPSS Inc., Chicago, IL, USA). A p < 0.05 value was considered
statistically significant.

Supplementary Materials: The following are available online, Figure S1: Effects of LY294002 or L-NAME on cell
viability of EPCs
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