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Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of
phytates. Phytates are one of the major forms of phosphorus found in plant tissues.
Fungi are mainly used for phytase production. The production of fungal phytases
has been achieved under three different fermentation methods including solid-state,
semi-solid-state, and submerged fermentation. Agricultural residues and other waste
materials have been used as substrates for the evaluation of enzyme production in
the fermentation process. Nutrients, physical conditions such as pH and temperature,
and protease resistance are important factors for increasing phytase production. Fungal
phytases are considered monomeric proteins and generally possess a molecular weight
of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with
optimal pH and temperature ranges between 1.3 and 8.0 and 37–67◦C, respectively.
The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability
engineering has been used to improve relevant enzyme properties. Furthermore, fungal
phytases are widely used in food and animal feed additives to improve the efficiency of
phosphorus intake and reduce the amount of phosphorus in the environment.

Keywords: phytase, phytase production, purification, genetic engineering, biotechnological applications

INTRODUCTION

Phytic acid is known as myo-inositol (1, 2, 3, 4, 5, 6) hexakisphosphate or phytate in salt form,
as is shown in Figure 1. It is the major form of storage for phosphorus in plant tissues such as
those in cereal grains, oilseeds, pollen, and legumes (Lott et al., 2000). Cereal grains and oilseed
meals are major ingredients in animal feed as they are known sources of phosphorus, an essential
macro-element required for animal growth (Selle and Ravindran, 2008). However, phosphorus in
seeds exists predominately in the form of phytates (salt of phytic acid), and phytate phosphorus
is not available to monogastric animals because they possess very low levels of phytase activity in
their digestive tracts (Brinch-Pedersen et al., 2002; Vohra and Satyanarayana, 2003). Therefore,
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FIGURE 1 | Structure of phytic acid (IP6, IUPAC).

phosphate supplementation is required for optimal animal
growth (Chen et al., 2008). However, a large amount of
undigested phytate phosphorus is excreted along with animal
waste and this is known to cause algal blooms and eutrophication
in surface waters. Fungal phytases are widely produced in
fermentation processes and are commonly used to overcome
the nutritional and environmental problems caused by phytates.
Currently, phytases are being utilized as a major animal feed
additive (Mullaney et al., 2000).

Phytases (myo-inositol hexakisphosphate phosphohydrolases)
are a class of phosphatases that catalyze the hydrolysis of
phytates to myo-inositol, inositol phosphate, and inorganic
phosphates (Wodzinski and Ullah, 1996; Wyss et al., 1998).
Phytases were first identified by Suzuki et al. (1907) who
found an enzyme present in rice bran. Moreover, phytases are
widespread in nature and can be produced from various host
sources including plants, animals, and microorganisms (Yao
et al., 2011). Based on their catalytic function and structure,
the first and most extensively studied group of phytases are
classified as histidine acid phosphatases (HAPs) that have been
isolated from filamentous fungi, bacteria, yeasts, and plants
(Mullaney et al., 2000). Phytases have been commonly detected
in many fungal species and are most often characterized by their
presence in those fungal species (Mukhametzyanova et al., 2012;
Singh and Satyanarayana, 2014). However, the physico-chemical
characteristics and catalytic properties of phytases depend upon
the different fungal strains that serve as their source. Thus,
the phytase production of fungi is dependent upon differing
optimum temperatures and pH values that range from neutral
to acidic (pH 1–6) or alkaline (pH 8–14) (Yao et al., 2011; Singh
and Satyanarayana, 2014). Aspergillus has been most commonly
employed for phytase production. Thus, the first generation of
commercially available fungal phytase obtained from A. niger
was marketed in 1991 and has been applied for use in various
industries ever since, such as in the production of human food
and animal feed as well as in the preparation of myo-inositol

phosphates. Furthermore, phytases have also been used in the
semi-synthesis of peroxidase employed in the paper and pulp
industries and as a soil amendment and plant growth promoter
(Singh et al., 2011). Several fungal strains have been extensively
studied for phytase production, purification, characterization and
stability, cloning and expression. Consequently, their potential
biotechnological applications have been reported (Yao et al., 2011;
Lei et al., 2013). The summarization of phytases is shown in
Figure 2. This review addresses the properties and potential
biotechnological applications of fungal phytases.

SOURCES AND PRODUCTION OF
FUNGAL PHYTASES

Phytases are produced in nature in a wide range of plant and
animal tissues and microorganisms such as bacteria, yeast, and
fungi (Vohra and Satyanarayana, 2003). Most scientific works
have focused on microbial phytases, particularly those obtained
from filamentous fungi such as Aspergillus, Myceliophthora,
Mucor, Penicillium, Rhizopus, and Trichoderma (Tseng et al.,
2000; Sabu et al., 2002; Roopesh et al., 2006; Dailin et al.,
2019). Aspergillus ficuum NRRL 3135 has been defined as the
most active fungal phytase producer and has most commonly
been employed at the commercial level (Chelius and Wodzinski,
1994). Other filamentous fungal species that can produce phytase
during the fermentation process are A. carbonarius, A. fumigatus,
A. niger, A. oryzae, Cladosporium species, Mucor piriformis, and
Rhizopus oligosporus (Howson and Davis, 1983; Casey and Walsh,
2004; Quan et al., 2004; Salmon et al., 2012). Moreover, the
phytase activity of some edible mushrooms, such as Agaricus
bisporus, Agrocybe pediades, Ceriporia sp., Ganoderma stipitatum,
Grifola frondosa, Lentinula edodes, Peniophora lycii, Pleurotus
cornucopiae, Schizophyllum commune and Trametes pubescens,
has also been reported (Lassen et al., 2001; Collopy and Royse,
2004; da Luz et al., 2012).

The production of fungal phytases has been achieved using
three different fermentation methods; namely solid-state (SSF),
semi-solid, and submerged fermentation (SmF) (Han et al.,
1987; Shivanna and Venkateswaran, 2014). Fungal phytases
are commonly produced using solid-state fermentation (SSF)
methods, in which agricultural waste and other cheap natural
substrates are used as substrates in the SSF process (Sabu
et al., 2002; Awad et al., 2014; Huang et al., 2018). Solid-
state fermentation is defined as the fermentation process of
microorganisms grown on a solid material surface with absence
or near absence of free water. However, the process must
have enough moisture content to support the growth of
microorganisms. Solid-state fermentation of phytase production
by fungi has been employed using agricultural waste and
other cheap natural materials as substrates. This has been
established due to the fact that these substrates can support fungal
growth along with their natural metabolism (secreted enzymes).
Importantly, fungi can grow on the solid substrate in the same
way they typically grow in nature (Bhargav et al., 2008; Kumar
and Kanwar, 2012). Furthermore, SSF involving fungi offers high
volumetric productivity and high yields of enzyme production.
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FIGURE 2 | The summarization of fungal phytase.

In this method, enzymes can be easily extracted with water and
the process is recognized as being less expensive, easier to use
and less time-consuming (Bhargav et al., 2008). The process has
been widely used in the fermentation industry, particularly for
enzyme production (Pandey et al., 1999; Soccol et al., 2017).
Several studies of SSF have been performed using filamentous
fungi for phytase production, such as A. flavus, A. ficuum,
A. niger, A. tubingensis, Ganoderma stipitatum, Grifola frondosa,
M. racemosus, Penicillium purpurogenum, R. oligosporus, R.
oryzae, S. commune, Thermomyces lanuginosus, and Trametes
versicolor. Some of the substrates generally used for phytase
production are citrus peels, wheat bran, wheat straw, soybean
meal, rice bran, oil cakes, corn cobs, corn bran, and coconut oil
cakes. For example, Sabu et al. (2002) have reported on phytase
production by R. oligosporus on coconut oil cake substrate in
SSF. In a recent study, triticale waste was used as a substrate for
the evaluation of phytase production by A. niger (Neira-Vielma
et al., 2018). Additionally, phytase production was investigated
by SSF using mixed substrates. Roopesh et al. (2006) reported
on phytase production by M. racemosus using combinations
of wheat bran and various oil cakes which gave the highest
phytase activity with 32.2 U/gds. Then, phytase production
by Penicillium purpurogenum was investigated by SSF using
mixed substrates consisting of corn cob and corn bran (Awad

et al., 2014). In a recent study, Kanti and Sudiana (2018)
reported on the application of Aspergillus niger, Neurospora
sitophila, and R. oryzae on mixed rice straw powder and soybean
curd residues. Neurospora sitophila showed the highest level of
phytase production at 195.66 U/g followed by A. niger and
R. oryzae. However, not only SSF has been investigated for
phytase production, but a number of research studies have also
investigated phytase production involving SmF and semi-solid
fermentation methods (Han et al., 1987; Salmon et al., 2016;
Shah et al., 2017). The production of phytase from several fungal
strains has been investigated during SmF. For example, phytase
production from Aspergillus fumigatus, A. japonicus, A. niger,
Muscodor sp., and Ganoderma sp. MR-56 was investigated under
SmF conditions using wheat bran as a substrate (Mandviwala
and Khire, 2000; Mohan et al., 2004; Alves et al., 2016; Maller
et al., 2016; Salmon et al., 2016). Coban and Demirci (2014)
have produced and optimized culture conditions for A. ficuum
NRRL 3135 using phytase selective medium containing sodium
phytate as a substrate. In addition, Kanti and Sudiana (2018)
produced phytase under SmF using mixed rice straw power
and soybean curd residue as a substrate and Aspergillus niger,
Neurospora sitophila, and R. oryzae as fungal strains to increase
phytase production. Maximum phytase activity was obtained by
N. sitophila (195.66 U/g) at 96 h of incubation. Also, Coban
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and Demirci (2015a) studied phytase production by optimizing
important nutrients using A. ficuum in SmF (glucose, Na-
phytate, and CaSO4) and the effect of pH and temperature on
phytase activity in bench-top bioreactors by conducting fed-
batch fermentations. The results revealed that the optimum
glucose, Na-phytate, and CaSO4 concentrations were 126, 14,
and 1.1 g/L, respectively. Optimum pH and temperature values
were 5.5 and 55◦C for A. ficuum phytase activity. Therefore, these
conditions indicate that phytase activity increased by improving
the media and process conditions. Table 1 presents several
examples of fungal phytase sources and a variety of different
methods of fermentation that have been employed for phytase
production. Various production factors, such as the type of strain,
culture conditions, the nature of the substrate, and availability
of the nutrients, are all considered critical factors that can affect
yields. Consequently, each of those factors should be taken into
consideration when fungal phytase production is undertaken
(Pandey et al., 2001).

Phytase production using different fungal strains is affected
by differing culture conditions (Qasim et al., 2017; Neira-
Vielma et al., 2018). Optimum conditions for the production
of phytases obtained from different fungal strains have been
established by changing both nutrient and physical conditions.
Additionally, various sources, such as glucose and sucrose, were
used as a carbon source, while ammonium sulfate [(NH4)2SO4],
ammonium nitrate (NH4NO3), yeast and malt extract were used
as nitrogen sources for the fermentation process, as is shown in
Table 2. To check the optimum physical conditions for phytase
production, such as pH value and temperature, different ranges of
the initial pH of the culture medium and different temperatures
of incubation have been employed (Alves et al., 2016; Qasim
et al., 2017). For an example, the production of phytase from
A. flavus ITCC 6720 was investigated by SSF on mustard cake
as a substrate. The Optimized conditions of production involved
supplementation with 0.5% malt extract and glucose at 58%
moisture level, 10% inoculum level, and inoculum age-72 h old.
The maximum phytase activity of 34 to 112.25 U/g fermented
substrate was produced on the 4th day under an incubation
temperature of 37◦C and a pH value of 6.0 (Gaind and Singh,
2015), while A. flavus produced maximum phytase (80 U/g of
solid substrate) in SSF using wheat bran as a solid substrate
at a pH value of 6 after 7 days of the fermentation period
at 30◦C in the medium containing glucose (2%) as a carbon
source and tryptone (1%) as a nitrogen source (Gull et al.,
2013). Phytase production by filamentous mushrooms has also
been studied. Salmon et al. (2012) reported that a maximal
level of phytase (113.7 U/gds) was obtained in wheat bran-
based medium involving 50% humidity with 7.5% of the biomass
at 33◦C and at a pH value of 7.0 over 72 h, which resulted
in a 285% level of improvement in terms of the amounts of
enzymes obtained. Ganoderma applanatum synthesized phytase
in a medium comprised of soybean molasses as a carbon source
and yeast extract as a nitrogen source at 30◦C at 150 rpm,
a pH of 6.0 and a 3% inoculum rate through SmF (Salmon
et al., 2016). The production of phytase by fungal strains
has been observed at a wide range of initial pH values and
temperatures ranging from 4.5–8.0 and 27–50◦C, respectively.

Various culture conditions used for fungal phytase production
by filamentous fungi are presented in Table 2. However,
the cultivation of a filamentous fungus is often accompanied
by several challenges, such as clumpy growth, high broth
viscosity, insufficient oxygen, and mass transfer which results in
reduced levels of productivity. Therefore, in order to improve
biomass and product formation during cultivation of filamentous
microorganisms, the process was performed under microparticle-
enhanced cultivation (MPEC). To date, microparticle talc powder
(magnesium silicate), aluminum oxide, and titanium oxide
have been used in several studies to increase the production
of enzymes in the fermentation of filamentous fungi such as
A. ficuum, A. niger, A. oryzae, A. sojae, Caldariomyces fumago,
Cerrena unicolor, and Pleurotus sapidus (Singh, 2018). Kaup et al.
(2008) studied the effects of the different microparticle sizes
of talc or aluminum microplates on chloroperoxidase (CPO)
formation by Caldariomyces fumago. They observed that small
particles (≤42 µm diameter) dispersed C. fumago to singer
hypha, while particles around 500 µm diameter did not make
any difference in the growth morphology or CPO formation
productivity by C. fumago. Driouch et al. (2012) studied
A. niger fermentation in submerged culture by adding titanate
microparticles (TiSiO4, 8 µm) to the growth medium. They
reported that fructofuranosidase and glucoamylase productions
were increased by 3.7-fold to 150 U/mL and 9.5-fold to 190 U/mL,
respectively when an additional 25 g/L of TiSiO4 was added to
the fermentation medium as compared to the control. Driouch
et al. (2011) also reported that fructofuranosidase production
was increased by 3.5-fold in the presence of microparticles
of either 10 g/L of talcum or 20 g/L aluminum oxide using
A. niger in the fermentation medium. Additionally, Coban
et al. (2015b,c) studied the effects of different microparticles on
A. ficuum phytase production. They reported that A. ficuum
phytase production was increased and the fungal pellet size
was decreased after the addition of microparticles to the batch
fermentation. Therefore, the use of a novel method of MPEC
could be applied for the purposes of improved biomass and
product formation of hydrolytic enzymes during cultivation of
filamentous fungi.

PURIFICATION AND
CHARACTERIZATION OF FUNGAL
PHYTASES

The purification of enzymes is necessary in order to study their
biochemical properties as well as to understand their structural
and functional relationships. Various methods have been used
to purify relatively large numbers of protein molecules, while
separation is often affected by the differences of the target protein
and the properties of other substances present in the sample, such
as solubility, precipitation, size, polarity, and the binding affinity
of ammonium sulfate/acetone/ethanol precipitation followed by
ultrafiltration, ion exchange, and gel filtration chromatography
(Vohra and Satyanarayana, 2003; Boyce and Walsh, 2007).
Therefore, combinations of two or more methods are commonly
used for the purification of fungal phytases (Zhang et al., 2013a;
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TABLE 1 | Types of fermentation and substrates for fungal phytase production.

Fungal taxa Fermentation type Substrate References

Aspergillus sp. FS3 SSF Citric pulp Spier et al., 2008

Aspergillus sp. F3 SSF Citrus peel Rodriguez-Fernandez et al., 2010, 2012, 2013

Aspergillus flavus SSF Wheat bran Karthik et al., 2018

Aspergillus japonicus SmF Wheat bran Maller et al., 2016

Aspergillus ficuum Semi-SSF Wheat straw Han et al., 1987

Aspergillus ficuum NRRL 3135 SmF Na-phytate Coban and Demirci, 2014

Aspergillus ficuum SGA 01 SSF, SmF Wheat bran Shivanna and Venkateswaran, 2014

Aspergillus ficuum SSF Wheat straw Shahryari et al., 2018

Aspergillus fumigatus SmF Wheat bran Mohan et al., 2004

Aspergillus niger SmF Wheat bran Mohan et al., 2004

Aspergillus niger SSF, SmF Mixed rice straw power and soybean curd residue Kanti and Sudiana, 2018

Aspergillus niger SmF Chickpea flour Shah et al., 2017

Aspergillus niger SSF, SmF Wheat bran Papagianni et al., 1999, 2001

Aspergillus niger SSF Soybean meal Saithi and Tongta, 2016

Aspergillus niger CFR 335 SSF, SmF Wheat bran Shivanna and Venkateswaran, 2014

Aspergillus niger NCIM 563 SSF, SmF Wheat bran Ebune et al., 1995; Mandviwala and Khire, 2000

Aspergillus niger NCIM 563 SmF Rice bran Bhavsar et al., 2008

Aspergillus niger NCIM 612 SSF Rice bran Das and Ghosh, 2014

Aspergillus niger 7A-1 SSF Triticale Neira-Vielma et al., 2018

Aspergillus tubingensis SSF Wheat bran Qasim et al., 2017

Ganoderma sp. MR-56 SmF Wheat bran Salmon et al., 2016

Ganoderma stipitatum SSF Wheat bran Spier et al., 2012

Grifola frondosa SSF Brown rice Huang et al., 2018

Mucor racemosus NRRL 1994 SSF Wheat bran and sesame oil cake Roopesh et al., 2006

Muscodor sp. SmF Wheat bran Alves et al., 2016

Neurospora sitophila SSF, SmF Mixed rice straw power and soybean curd residue Kanti and Sudiana, 2018

Penicillium purpurogenum GE1 SSF Corn cob and corn bran Awad et al., 2014

Rhizopus spp. SSF Oilcakes Ramachandran et al., 2005

Rhizopus oligosporus SSF Coconut oil cake Sabu et al., 2002

Rhizopus oligosporus MTCC556 SmF Wheat bran Haritha and Sambasivarao, 2009

Rhizopus oryzae SSF, SmF Mixed rice straw power and soybean curd residue Kanti and Sudiana, 2018

Schizophyllum commune SSF Wheat bran Salmon et al., 2012

Sporotrichum thermophile SmF Wheat bran Singh and Satyanarayana, 2008

Thermoascus aurantiacus SmF Wheat bran Nampoothiri et al., 2004

Thermomyces lanuginosus SSF Wheat bran Berikten and Kivanc, 2013

Thermomyces lanuginosus SmF Rice flour Bujna et al., 2016

Trametes versicolor SSF Wheat bran Spier et al., 2012

SSF, solid-state fermentation; Semi-SSF, semi-solid-state fermentation; SmF, submerged fermentation.

Neira-Vielma et al., 2018). Fungal phytases belong to a class
of HAPs. Most fungal phytases are active under acidic pH
conditions in the optimum pH range of 2.0–6.0 (Vohra and
Satyanarayana, 2003; Singh et al., 2011; Yao et al., 2011;
Zhang et al., 2013b), but some fungal phytases, for instance,
Agaricus biosporus and Rhizopus microsporus var. microsporus,
belong to 5.0–8.0 and 9.5 pH, respectively (Collopy and Royse,
2004; de Oliveira Ornela and Guimaraes, 2019). However, the
thermostability of phytases is also essential for their use in animal
feed (Dersjant-Li et al., 2015). Fungal phytases are active in the
optimum temperature range of 37–67◦C. Various studies have
reported that different fungal phytases are active under different
optimal conditions with regard to pH and temperature (Lassen
et al., 2001; Zhu et al., 2011; Neira-Vielma et al., 2018). Fungal
phytase obtained from A. niger van Tieghem showed a high

degree of specific activity under an optimal temperature range
of 52–55◦C together with an optimal pH value of 2.5 (Vats and
Banerjee, 2005). Moreover, only a few studies have confirmed
that fungal phytases are wide molecular mass proteins ranging
from 14 to 353 kDa depending on the different fungal strains
(Collopy and Royse, 2004; Sariyska et al., 2005). The purification
steps and biochemical properties of fungal phytases are presented
in Table 3.

CLONING AND EXPRESSION OF
FUNGAL PHYTASES

Fungal phytases are widely used as a feed additive to increase
phosphorus availability and reduce phosphorus excretion
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TABLE 2 | Culture conditions for phytase production by filamentous fungi.

Fungal taxa Carbon source Nitrogen source pHopt Topt (◦C) References

Aspergillus heteromorphus Glucose (NH4)2SO4 6.0 30 Lata et al., 2013

Aspergillus ficuum PTCC 5288 Glucose (NH4)2SO4 − 35 Jafari-Tapeh et al., 2012

Aspergillus ficuum SGA 01 − − 4.5 30 Shivanna and Venkateswaran, 2014

Aspergillus flavus Glucose Tryptone 6.0 30 Gull et al., 2013

Aspergillus flavus ITCC 6720 Glucose Malt extract 6.0 37 Gaind and Singh, 2015

Aspergillus fumigatus Wheat bran Yeast extract 5.5 55 Mohan et al., 2004

Aspergillus niger Wheat bran Yeast extract 5.5 55 Mohan et al., 2004

Aspergillus niger Wheat bran Peptone 5.5–5.8 30 Papagianni et al., 1999

Aspergillus niger Glucose Tryptone 5.0 30 Sandhya et al., 2015

Aspergillus niger van Tieghem Glucose and starch NH4NO3 6.5 30 Vats and Banerjee, 2002

Aspergillus niger CFR 335 − − 4.5 30 Shivanna and Venkateswaran, 2014

Aspergillus niger NCIM 563 Cowpea meal − − 37 Mandviwala and Khire, 2000

Aspergillus niger NCIM 563 Glucose NaNO3 5.5 30 Bhavsar et al., 2008

Aspergillus niger NRF9 Wheat bran NaNO3 4.5 30 Gupta et al., 2014

Aspergillus ficuum NRRL 3135 Glucose NaNO3 4.5 33 Coban and Demirci, 2014

Aspergillus tubingensis SKA Glucose (NH4)2SO4 5.0 30 Qasim et al., 2017

Ganoderma applanatum Soybean molasses Yeast extract 6.0 30 Salmon et al., 2016

Penicillium purpurogenum GE1 Glucose Peptone 8.0 27 Awad et al., 2014

Rhizopus oligosporus MTCC556 Glucose Peptone 6.0 − Haritha and Sambasivarao, 2009

Rhizomucor pusillus Glucose NH4NO3 6.0 50 Chadha et al., 2004

Schizophyllum sp. Sucrose Yeast extract 7.0 30 Salmon et al., 2011

Schizophyllum commune Sucrose Yeast extract 7.0 33 Salmon et al., 2012

Sporotrichum thermophile Starch Peptone 5.0 45 Singh and Satyanarayana, 2008

Thermoascus aurantiacus Glucose and starch Peptone 5.5 55 Nampoothiri et al., 2004

Thermomyces lanuginosus Wheat bran NaNO3 5.5 45 Gulati et al., 2007

Thermomyces lanuginosus Rice flour NaNO3 − 47 Bujna et al., 2016

in manure (Brinch-Pedersen et al., 2002). However, wild
filamentous fungal strains that produce enzymes can rarely meet
the industrial demand. Genetic engineering strategies have been
used to obtain recombinant strains that produce high levels of
enzymes for industrial interests (Correa et al., 2015).

The use of phytase transgenic plants is one of the approaches
that may help to mitigate the problems associated with phytate
indigestibility. There are two possible strategies for altering
phytate levels. One involves blocking the phytate biosynthetic
pathway or degrading phytate in developing seeds. The other
involves altering the steps of phytate biosynthesis, but this
has the potential disadvantage of affecting many other cellular
processes associated with inositol phosphates. Expressing phytase
transgenes during seed development to modify the final
composition of harvested seeds is an alternative development
process (Chiera et al., 2004). Recently, heterologous expression of
phytases in plants to produce plant seeds containing high phytase
levels has received increasing amounts of attention. Previous
publications have reported that if cereal grains or seeds contain
enough phytase, the supplementation of microbial phytase
additives in animal feed will not be required. Additionally, the
transgenic plants would access phosphate from the soil that
contains phytate-phosphate complexes (Reddy et al., 2017). Ideal
phytase transgenic expression is based on the target application,
such as with root expression and seed expression. Therefore,
the selection of enzyme sources and physical properties with

regard to pH stability and thermo-stability can affect the success
of the expression. In acidic soil, phytases with a low isoelectric
point (pI) are more effective in hydrolyzing phytates in the
soil than phytases with high pI values. Notably, in basic soil,
phytases with high pI values are preferable to phytases with low
pI values. Researchers have made several attempts to reclaim
sustainable phosphate utility, plant nutrition, and ecological
balance in various studies. There have been many research studies
involving phytase transgenic plants. Interestingly, a recombinant
fungal phytase has been constructed in soybeans that have been
widely used in livestock feed (Li et al., 1997). Chiera et al. (2004)
and Li et al. (2009) found that phytase genes obtained from
A. ficuum under the regulations of root specific Pyk10 promoters
in soybeans and transgenic plants exhibited phytase activity.
The development of soybeans containing low seed phytate levels
would increase phosphorus availability and eliminate the need for
phytase supplementation in animal feed or livestock. Moreover,
Lucca et al. (2001) recorded the expression of A. fumigatus
phytase in rice (Oryza sativa). Pen et al. (1993) reported
that transgenic tobacco seeds express A. niger phytases. These
results confirm that transgenic tobacco seeds expressed A. niger
phytases and have beneficial effects on phosphate liberation
while enhancing the broiler growth rate over commercially
produced phytases. Notably, the expression of the A. niger
phytase gene with an ER signal peptide into canola (Brassica
napus) was recorded. The results indicate that this transgenic
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TABLE 3 | Purification steps and biochemical properties of fungal phytases.

Fungal taxa Steps in purification Specific
activity

MW (kDa) pHopt Topt (◦C) Km (µM) References

Agaricus bisporus Anion-exchange, ultrafiltration
and gel filtration

14.7 U/mg 14 5.0–8.0 >60 − Collopy and Royse, 2004

Agrocybe pediades Ultrafiltration, anion exchange 400 U/mg 59 5.0–6.0 50 − Lassen et al., 2001

Aspergillus foetidus Ammonium sulfate precipitation,
gel filtration

12.6 FTU/mg 129.6 5.5 37 − Ajith et al., 2019

Aspergillus ficuum
AS3.324

Ammonium sulfate fraction and
anion exchange

− 68.5 2.0, 5.5 50 750 Zhang et al., 2003

Aspergillus ficuum
NTG-23

Ion-exchange and gel filtration 150.1 U/mg 65.5 1.3 67 295 Zhang et al., 2010

Aspergillus ficuum Ion exchange 178.76 U/mg 67.5–81.6 5.0 58 0.124 Ullah et al., 2003

Aspergillus flavus
ITCC 6720

Acetone precipitation, ion
exchange and ultrafiltration

46.53 U/mg 30 7.0 45 − Gaind and Singh, 2015

Aspergillus
fumigatus

Ammonium sulfate precipitation,
anion exchanger, and gel filtration

0.23 U/mg 118 6.0 40 7200 Sanni et al., 2019

Aspergillus niger
var. Tieghem

Ion-exchange and gel filtration 22,592 U/mg 353 2.5 52–55 0.606 Vats and Banerjee, 2005

Aspergillus niger
ATCC 9142

Ultrafiltration, ion exchange, gel
filtration, and chromatofocusing

89.6 U/mg 84 5.0 65 100 Casey and Walsh, 2003

Aspergillus niger
307

Ultrafiltration, gel filtration, and
anion-exchange

339.72 U/mg 39 2.62, 5.05 55–58 0.929 Sariyska et al., 2005

Aspergillus niger
CFR 335

Ammonium sulfate fractionation,
dialysis, and anion-exchange

32.6± 3.1 U/mg 66 4.5 30 80 ± 0.1 Gunashree and
Venkateswaran, 2008

Aspergillus niger
7A-1

Ultrafiltration and ion exchange 8.38 U/mg 89 5.3 56 220 Neira-Vielma et al., 2018

Aspergillus oryzae Anion exchange and ion
exchange

2 U/ml 74 5.5–6.0 50 − Uchida et al., 2006

Ceriporia sp. Ultrafiltration, anion exchange 700 ± 80 U/mg 59 5.5–6.0 55–60 − Lassen et al., 2001

Cladosporium sp.
FP-1

Ion exchange and gel filtration 909 U/mg 32.6 3.5 40 15.2 ± 3.1 Quan et al., 2004

Flammulina
velutipes
Lentinus edodes

Mucor hiemalis

Ion exchange and anion
exchanger and blue gel
Ion-exchange and anion
exchange
Ultrafiltration, diafiltration, ion
exchange, gel filtration and
hydrophobic interaction

3.4 U/mg

3.11 U/mg

46.7 U/mg

14.8

14

45

5.0

5.0

5.0–5.5

45

37

55

−

−

−

Zhu et al., 2011

Zhang et al., 2013b

Boyce and Walsh, 2007

Peniophora lycii Ultrafiltration and anion exchange 1080± 110 U/mg 72 4.0–5.0 50–55 − Lassen et al., 2001

Penicillium
simplicissimum

Ultrafiltration, cation exchange,
anion-exchange and gel filtration

3245 U/mg 65 4.0 55 − Tseng et al., 2000

Rhizopus
oligosporus

Acetone fractionation, gel
filtration and ion exchange

9.47 U/mg − 4.5 55 150 Buckle, 1988

Rhizopus
microsporus var.
microsporus

Ion exchange and gel filtration 0.8 U/mg 55 9.5 65 413 de Oliveira Ornela and
Guimaraes, 2019

Schizophyllum
commune

Ion exchange and
anion-exchange and gel filtration
ultrafiltration, anion exchange

5260.5 U/mg 72.5 4.6 50 248 Zhang et al., 2013a

Trametes
pubescens
Volvariella volvacea

Anion-exchange, ion exchange
and blue gel
Ion exchange, blue gel and gel
filtration

1210± 30 U/mg

−

62

14.8

5.0–5.5

5.0

50

45

−

−

Lassen et al., 2001

Xu et al., 2012

plant could accumulate phytase (Peng et al., 2006). Similar
results were reported by Wang et al. (2013) who introduced
the phytase gene into canola and it greatly boosted phosphorus
uptake, plant biomass and seed yields in the presence of a
phosphate source. Numerous research studies have proven that

enhanced phytate-phosphate availability in soil can be achieved
by expressing the phytase gene in transgenic plants, as is shown in
Table 4. Some evidence has shown that plant phytase expression
may somehow interfere with the refolding of the enzyme or
may provide an environment that is not favorable for refolding,
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TABLE 4 | Transgenic phytase in fungi.

Gene source Recombinant plant References

Aspergillus ficuum Soybean, Glycine max Li et al., 2009

Aspergillus
fumigatus

Rice, Oryza sativa Lucca et al., 2001

Wheat, Triticum aestivum Brinch-Pedersen
et al., 2000

Brinch-Pedersen
et al., 2006

Aspergillus
japonicus

Wheat Triticum aestivum Abid et al., 2017
Mohsin et al., 2017

Aspergillus
neoniger

Yeast, Pichia pastoris Zhou et al., 2019

Aspergillus niger Tobacco, Nicotiana tabacum Pen et al., 1993

Maize seed Chen et al., 2008

Soybean, Glycine max Chiera et al., 2004

Canola, Brassica napus Wang et al., 2013

Peng et al., 2006

Tobacco, Nicotiana tabacum Giles et al., 2018

Algal, Chlamydomonas
reinhardtii

Erpel et al., 2016

Penicillium
chrysogenum

Fungi, Penicillium griseoroseum Correa et al., 2015

and this could affect the enzyme properties. Yoon et al. (2011)
reported on the expression levels of six microbial phytases in
Chlamydomonas reinhardtii, and concluded that the N-terminal
signal peptide and codon optimization affected the degree of
efficient expression. Constitutive and inducible mechanisms
in plant seeds and microorganisms have been identified. The
constitutive and germination-inducible mechanisms in plant
seeds and pollen are involved in the regulation of phytate
breakdown during germination. The activity of the hydrolytic
enzymes and their rate of synthesis were controlled by these two
main mechanisms (Greiner, 2007). Li et al. (1997) studied using
the phytase gene obtained from A. niger inserted into soybean
transformation plasmids under the control of constitutive (35S
CaMV promoter) and seed specific promoters (β-conglycinin α’-
subunit promoter), with and without a plant signal sequence.
They reported that phytase activity was detected in the culture
medium obtained from transformants that received constructs
containing the plant signal sequence, and this confirmed the
expectation that the protein would follow the default secretory
pathway. Therefore, the recombinant phytase values obtained
from their studies suggested that the additional protein stability
would be required to withstand the elevated temperatures
involved in soybean growth processing.

In addition, the thermophilic mold Sporotrichum thermophile
has been investigated in terms of the cloning and expression
of phytase heterologously in bacteria (e.g., Escherichia coli) or
yeast (e.g., Pichia pastoris) (Ranjan et al., 2015; Singh et al.,
2018). The recombinant phytase (rSt-Phy) of the thermophilic
mold S. thermophile (St-Phy) had been cloned and expressed
in E. coli by Ranjan et al. (2015). They reported that rSt-
Phy was produced in LB medium containing glycerol and
glucose with a specific activity of 8000 U/mg total intracellular

protein. The supplementation of rSt-Phy to dough had been
found to be useful in the dephytinization of tandoori, naan
and bread, as well as to increase the amount of inorganic
phosphate and reduce the amount of sugars that are present.
According to Ranjan and Satyanarayana (2016), in the expression
of the codon-optimized phytase gene of S. thermophile (St-
Phy) in P. pastoris, the recombinant P. pastoris harboring
of phytase gene (rSt-Phy) secreted a 40-fold higher amount
of phytase than the native fungal strain. Subsequently, the
expression of codon-optimized S. thermophile (rSt-Phy) was
used to investigate the glyceraldehyde phosphate dehydrogenase
(GAP) promoter in P. pastoris (Maurya et al., 2017). They
reported a result of about a 41-fold improvement in rSt-Phy
production over the wild type strain. Recently, Mehmood et al.
(2019) improved S. thermophile strain ST20 using physical and
chemical mutagens for enhanced phytase activity. They used
gamma rays and EMS (Ethyl Methane Sulfonate) mutagenesis to
enhance the activity of phytase, for which the phytase activity
was improved to 387 U/mL at 45◦C. In addition, they also
reported that the mutants produced through EMS displayed
greater potential of phytase production when compared to the
parent strain. The developing and improving production of
heterologous proteins was determined under constitutive and
inducible promoters’ systems (Parashar and Satyanarayana, 2016;
Kluge et al., 2018). The expression of phytase genes phyA and
appA2 were expressed in P. pastoris (constitutive or inducible)
and Saccharomyces cerevisiae (inducible) by Lei and Kim (2005).
The pGAPZαA vector and PPICZαA vector were used in the
constitutive and inducible expressions for P. pastoris. To obtain
the inducible expression in S. cerevisiae, the pYES2 vector was
used. Subsequently, in 2017, the production of recombinant
acidic phytase was enhanced in P. pastoris under dual promoters
of constitutive (AOX) and inducible (Phy-GAP-AOX) conditions
that were generated by Maurya. They found that it led to a
1.3-fold improvement in phytase production in mixed fed-batch
cultivation when compared to that of Phy-AOX. Consequently, it
was suggested that the improvement of the recombinant phytase
gene could be beneficial to a number of production processes
including the animal feed industry and the commercial bread
baking industry. Notably, it can also be of benefit in deriving
haloperoxidase and in plant growth-promoting.

CRYSTAL STRUCTURE AND PROTEIN
ENGINEERING OF FUNGAL PHYTASES

The crystal structure analysis of phytases derived from bacteria,
yeast, fungi, and plants has been reported by several researchers
in terms of the distinct fold and biophysical properties that
rationalized their structure (Yao et al., 2011). Phytases are
classified into four groups according to the relevant catalytic
mechanism; [(1) histidine acid phytases (HAPs), (2) β-propeller
phytases (BPPs), (3) cysteine phytases (CPs), and (4) purple
acid phosphatases (PAPs)] (Dailin et al., 2019). In the case of
fungi, few phytase crystal structures from the genus Aspergillus
have been studied. The studied Aspergillus species are namely;
A. niger (Oakley, 2010), A. ficuum, A. neoniger, and A. fumigatus
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(Kostrewa et al., 1997; Liu et al., 2004; Xiang et al., 2004). Most
fungal acidic phytases belong to HAPs and can be divided into
two groups based on the optimum pH value of fungal HAPs,
and their sub-classification in type A and B (Bei et al., 2009),
PhyA (high specific activity for phytic acid and alkaline), and
PhyB (acidic, low specific activity for phytic acid). Furthermore,
PhyA is monomeric and PhyB is tetrameric (Wyss et al., 1998).
The crystal structure of HAPs revealed three distinct domains; a
large α-helical domain, a β-sheet domain, and a small α-helical
domain (Dailin et al., 2019). The HAPs are composed of a large
α/β-domain with a six-stranded β-sheet surrounded by several
α-helices and a small α-domain. The HAPs structure also consists
of N-acetylglucosamine residues and disulfide bonds. All 10
cysteine residues are involved in five disulfide bridges, but the
disulfide bridge positions and the N-acetylglucosamine numbers
are different in the Aspergillus species. Notably, the protein
signature of HAPs is represented by the sequence consensus
pattern [LIVM]-X-X-[LIVMA]-X-X-[LIVM]-X-R-H-[GN]-X-R-
X-[PAS] (Liu et al., 20041). Additionally, the protein sequences
of HAPs type A and B obtained from the genus Aspergillus
were aligned using CLUSTAL_W and were found to share
a conserved active-site motif RHGX1RX2P (Figure 3). PhyA
presents an active-site as RHGARYP. With regard to the catalytic
importance of amino acid, histidine residue has been reported
as a nucleophile in the formation of covalent phosphoenzyme
intermediates (McTigue and Van Etten, 1978; Van Etten, 1982).
The mechanism of acid phytase in the complex with inorganic
phosphate revealed that two phosphates and four calcium ions
were bound at the active site. The inorganic phosphate was then
subsequently hydrolyzed by an activated water molecule. Finally,
the hydrolyzed products amounted to myo-inositol, inositol, and
inorganic phosphates (Zhang, 1998; Shin et al., 2001).

Phytase B obtained from A. niger (HAP) was comprised of
460 amino acid residues and contained five disulfide bonds at
positions 52–368, 109–453, 197–422, 206–279, and 394–402,
most of which were located in loops next to the surface (Kumar
et al., 2013). In any case, A. fumigatus phytase consisted of 435
amino acid residues, six N-acetylglucosamine molecules, and five
disulfide bonds that were present in the structure at positions 8–
17, 48–391, 192–442, 241–259 and 413–421 (Xiang et al., 2004).
Oakley (2010) presented a structural phytase model of phytase
A obtained from A. niger that consisted of an α/β-domain, an
α-domain, and an N-terminal extension. N-acetylglucosamine
residues are bound to four sites of the phytase structure
(N82, N184, N316, and N353) within the active site (Oakley,
2010). However, thermostability engineering of phytases is of
interest for industrial and pharmaceutical applications. Site-
directed mutagenesis, random mutation, molecular dynamic
simulation, and protein glycosylation are methods of structural
modification that are commonly employed when disulfide bonds,
hydrogen bonds, ionic interaction and N/O-linked glycosylation
are introduced in the phytases. Notably, this effectively improved
their thermostability characteristics (Mullaney et al., 2010;
Vasudevan et al., 2019). Mullaney et al. (2010) removed disulfide
bridge site-directed mutagenesis number 2 from A. ficuum

1http://www.expasy.ch/cgi-bin/get-prodoc-entry?PDOC00538

FIGURE 3 | Multiple alignments of histidine acid phytase (HAPs) from genus
Aspergillus. The alignments were performed using CLUSTAL_W.

phytase, and this resulted in a complete loss of activity. Moreover,
hydrogen bonds and ionic interaction can also support a degree
of thermostability in phytases. For example, A. fumigatus phytase
is heat resilient as it has a hydrogen bonding network in the E35
to S42 regions and in ionic interactions between R168 and D161
and R248 and D244. In another study, the Mn (2′-deoxyinosine
5′-triphosphate) random mutation method used on a protease-
resistant phytase gene of Penicillium sp. developed two mutants
with improved thermal stability and optimal temperature
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tolerance (Zhao et al., 2010). Formerly, using the molecular
dynamic simulation, A. niger PhyA and its thermostable mutant
possessing a 20% greater level of thermostability, were compared
by evaluating the atomic root mean square deviation, the radius
of gyration, and the number of hydrogen bonds and salt bridges
that were present (Noorbatcha et al., 2013). Protein glycosylation
is one of the most common structural modifications employed by
biological systems to expand proteome diversity. Glycosylation
in A. niger and A. japonicus phytases has been identified for
its functional expression and thermostability when expressed in
yeast systems (Han and Lei, 1999).

APPLICATIONS AND BENEFITS OF
FUNGAL PHYTASES

Feed Supplements
Phytases are of great interest in biotechnological applications in
terms of the processing and manufacturing of human and animal
nutrition since they have the potential to improve the efficient use
of phosphorus and to reduce phytate content in food production
and animal feed (Greiner and Konietzny, 2006; Yao et al., 2011;
Singh et al., 2016). Monogastric animals, such as swine, poultry,
and fish, lack or contain low levels of gastrointestinal phytases
and they are unable to utilize the phytate phosphorus that is
present in sources of food and animal feed. Therefore, they need
inorganic phosphate supplements to meet their nutritional and
growth-related needs, which in turn increases feed costs and
levels of phosphorus pollution (Naves et al., 2012; Dersjant-
Li et al., 2015). Phytase plays an important role in the animal
feed industry because it enhances the digestion and absorption
of phosphorus and certain other poorly available nutrients
in monogastric diet supplements (Munir and Maqsood, 2013;
Vasudevan et al., 2017). Various microorganisms are favored
sources for industrial enzymes due to the ease of use that is
associated with them, along with their cost-effectiveness, fast
growth-rate and consistent production levels (Singh et al., 2016;
Raveendran et al., 2018). Phytases produced by microorganisms
are commonly used as a commercial feed additive. In 1999, the
first generation of the fungal phytase obtained from A. niger
was made commercially available in markets. At which point,
phytases were further developed and became more widely
commercially available (Lei et al., 2013; Singh et al., 2016).
Several studies have investigated the applications of phytases as
a feed additive.

Poultry
In broilers, the pretreatment of phytases in the digestive system
of animals was investigated by feeding them a soybean meal
(SBM) diet using A. niger phytase supplementation (Nelson et al.,
1968). Nelson et al. (1968) studied the effects of phytase by
pretreating corn–soya diets for broilers and reported that the
availability of phosphorus increased by 60% when microbial
phytase was given to broilers fed low phosphorus diets, while
phosphorus concentrations in the chicken manure decreased by
50%. The reports also indicated that the bodyweights of male
(13.2%) and female (5.8%) chickens increased after 21 days

of phytase supplementation. Simons et al. (1990) and Zyla
et al. (2001) reported that the addition of phytase in dietary
phosphorus could decrease phosphorus levels in manure and
increase body weight. Several studies have been carried out to
determine the effect of microbial phytase on poultry growth.
Englmaierova et al. (2015) evaluated the effect of different
amounts of A. niger phytase on egg quality, along with the
calcium and phosphorus digestibility of the hens. The results
revealed the highest degree of eggshell percentage in terms
of thickness on the index when 350 FTU/kg was applied.
Kim et al. (2017) studied the effect of super-dosing phytase
on the productive performance and egg quality in laying
hens. They reported that the super-posing level of 20,000
FTU/kg phytase in diets had a positive effect on the egg
production rate, but had no beneficial effect on egg quality
in laying hens. Woyengo and Wilson (2019) reported that
the supplementation of phytase at super-dose levels (≥2500
FTU/kg) had a more positive effect with regard to improving
the ileal digestibility of energy, protein, P in maize and other
forms of nutrient utilization in the modified diets prepared
for poultry when compared with the supplementation of
phytase administered at the industry recommended level (1,000
FTU/kg). Calcium (Ca) and phosphorus (P) are important
nutrients for bone development and the metabolic processes
involved with the enzyme cofactors present in poultry diet
formulations (Menezes-Blackburn et al., 2015; Li et al., 2017).
However, the concentration levels and rations for poultry
must be close to their specified requirements. Consequently,
a study on the effect of reducing dietary Ca levels and
calcium, along with available phosphorus (Ca:aP) ratios in
combination supplemented fungal phytases on poultry growth
performance, nutrient digestibility, bone ash, and mineralization,
was conducted (Delezie et al., 2015; de Souza Nardelli et al., 2018;
Ajith et al., 2019).

Pigs
In pigs, the main active site for microbial phytase is in the
stomach and upper part of the small intestine, a circumstance
that is similar to poultry. Most of the phytases given to
pigs are used to improve dietary phytate-P utilization and
to improve their mineral and nutrient digestibility (Humer
et al., 2015). The site of supplemental phytase activity in
the gastrointestinal tract of young pigs was investigated by
Yi and Kornegay (1996). They determined that supplemented
A. niger fungal phytase in pig diets revealed that the digesta
of the stomachs of pigs showed higher phytase activity
than the digesta of the upper small intestine. The phytase
activity levels in the stomach, as well as in the upper
and lower parts of the small intestine, were 579, 348, and
53 FTU/kg, respectively when pig feed was supplemented
with 1050 FTU/kg microbial phytases. Seynaeve et al. (2000)
reported that supplementation of 500 FTU/kg A. niger phytase
reduced intestine tract ileal digesta and total P (P = 0.09)
and IP6-P (P < 0.05) values when compared with the
non-treatment group. The supplementation of fungal phytase
can reduce total P as well as inorganic P-values in feces
and also improve overall growth performance and nutrient
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digestibility (Seynaeve et al., 2000; Dersjant-Li et al., 2015;
McCormick et al., 2017).

Fish
Fungal phytase is not only used in the poultry and pig raising
industries, but also in fisheries. Several studies on phytase
supplementation in fish feed have involved different fish species
(Kumar et al., 2012; Lemos and Tacon, 2017). For example, Yan
et al. (2002) studied the effects of phytases at levels from 0 to
8,000 FTU/kg (A. niger phytase) in channel catfish (Ictalurus
punctatus). They reported that the total phytate content in the
stomachs of channel catfish was related to phytase inclusion
levels. After feeding channel catfish for 2 h, total phytase content
in the stomachs of fish fed with the phytase-supplemented
feed was recorded at 92, 68, 50, 9, and 6% and at 500, 1000,
2000, 4000, and 8000 FTU/kg, respectively. A study by Forster
et al. (1999) involving phytase-supplemented feed given to
rainbow trout Oncorhynchus mykiss reported on the potential
for using dietary phytase to improve the nutritive value of
canola protein concentrate. Supplementation of phytase in fish
feed indicated that dietary phytase improves the nutria value
as well as increases the concentration levels of minerals in the
plasma, bone, and the entire body. Additionally, it was also
found to decrease the level of phosphorus that is discharged into
aquatic environments.

Food Additives
In addition to feeding additives, phytic acid is highly present in
the flour and wholemeal flour of various types of dough and
bread; therefore, phytases have been used as a food additive
in fermentation processes and in various applications in the
breadmaking process. For example, A. ficuum phytase has been
used in legume dephosphorylation processes. It was reported that
after mixing and incubating soybean meal with fungal phytase for
15 h, up to 78% of phytate was removed (Han and Wilfred, 1988).
Turk and Sandberg (1992) studied the effects of phytase obtained
from A. niger in InsP6 degradation during the breadmaking
process. They reported that phytase preparation from A. niger
used for making dough resulted in increased degradation of
phytates. Later, the application of phytases in bread-making
was also studied by Haros et al. (2001). Experiments have
been performed by adding different levels of fungal phytase
in whole wheat bread during the breadmaking process. Their
results showed that specific bread volume increased, while
crumb texture improved. Furthermore, Rosell et al. (2009)
investigated the effects of different breadmaking processes, such
as conventional, frozen dough, and frozen partially baked bread,
and the effect of the storage period on the technological quality
of fresh wholemeal wheat bread by adding A. niger phytase.
They reported that the fungal phytase addition could be used
in the breadmaking process and in the frozen storage of bread
to overcome the detrimental effects of bran on the mineral
bioavailability.

Applications in Plant Growth Promotion
Phosphorus (P) is a major and critical component of cells and
is a constituent in energy metabolism, and the biosynthesis of

acids and cell membranes. It is also an important macronutrient
for plant growth and development (Singh and Satyanarayana,
2011). Phosphorus deficiency in soil is a major problem for
agricultural producers worldwide. Most soils contain significant
amounts of total soil P that occurs in either an organic or
inorganic form. A phytic acid is a major form of organic
phosphorus in the soil, representing total organic phosphorus
content between 10 and 50% (Mullen, 2005). Moreover, it
is not readily available to plants as a source of phosphorus
because it forms a complex with cations or adsorbs to various
soil components. Therefore, the improvement of phosphorus
nutrition requires the mobilization of organic and inorganic
phosphorus (Richardson et al., 2001). Phosphate solubilizing
microorganisms are ubiquitous in soil and can play an
important role in the phosphorus cycle in nature as to
serve as a readily available source of carbon and energy
for their growth and reproduction (Whipps, 1990). In the
rhizosphere, plant growth-promoting fungi (PGPF) solubilize
or mineralize phosphorus and increase its availability to
plants (Zhang et al., 2016; Hossain et al., 2017). Thakur
et al. (2017) isolated and characterized extracellular phytase-
producing A. fumigatus from the rhizospheric zone of maize
fields. Phytase-producing fungi in the rhizosphere have been
isolated and studied for their important role in promoting
plant growth. Aspergillus was isolated as phytase-producing
rhizofungi, and they were found to significantly improve
the growth and phosphorus nutrition of Arabidopsis plants
(Richardson et al., 2001). Furthermore, various Aspergillus
species, such as A. flavus, A. fumigatus, and A. rugulosus,
were used to promote the growth of plants (Tarafdar and
Rao, 1996; Tarafdar and Gharu, 2006; Gaind and Singh, 2015).
Gaind and Nain (2015) isolated various phytate-mineralizing
fungi (PMF) and phosphatase-solubilizing fungi (PSF) from
the rhizosphere soil of leguminous, cereal, and vegetable crops
that belong to Aspergillus, Trichoderma, and Penicillium. They
reported that Penicillium chrysogenum solubilizes the organic
form of phosphorus and improves the available P in the
soil while increasing the level of extractable organic P under
alkaline soil conditions to benefit P nutrition. Singh and
Satyanarayana (2010) investigated the role of phytase-producing
fungi by increasing phosphorus content and promoting the
growth of wheat (Triticum aestivum L.) seedlings. Tarafdar and
Gharu (2006) also tested the significant role of the phytase
producing fungus, Chaetomium globosum, for the improvement
in plant biomass, root length, plant P concentration levels,
seed and straw yields and seed P contents in wheat and pearl
millet crops. According to the findings of a range of studies,
it can be concluded that fungal phytase could be used to
promote the growth of crop plants and to improve overall
productivity levels.

Applications in Therapeutics
In many parts of the world, humans consume plant-based
food products as the main source of raw material food.
Plant-based food products compost very important sources of
nutrients (carbohydrates, protein, dietary fiber, and vitamins)
and non-nutrients (Katina et al., 2005). Phytate is the primary
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storage compound of phosphorus in plant seeds and grains
accounting for up to 90% of the total seed phosphorus
(Loewus, 2002). It forms complexes with dietary minerals
such as zinc, iron, calcium, magnesium, manganese, and
copper, and causes mineral-related deficiency in humans
(Lopez et al., 2002; Konietzny and Greiner, 2003). For
instance, negative effects on mineral uptake, protein digestibility,
carbohydrate, and lipid utilization have been recorded. In
spite of the fact that phytates present a number of negative
effects on human health, some positive effects have also
been reported. Their consumption acts as an anticancer
property by interrupting cellular signal transduction and cell
cycle inhibition, and by enhancing natural killer cell activity
(Kumar et al., 2010). The phytate substrates have been
reported in various biomedical and biotechnological applications
including those associated with antioxidant properties, as well
as being identified as an anticancer agent, and a chelator with
neuroprotective properties that can induce autophagy and reduce
inflammation (Irshad et al., 2017). In addition, they have also
displayed various therapeutic properties as anticancer agents
(against colon cancer, breast cancer, hepatocellular carcinoma,
prostate cancer, rhabdomyosarcoma, pancreatic cancer, and
blood/bone marrow cancer) and have been found to be
effective against Parkinson’s disease (Kumar et al., 2010;
Irshad et al., 2017).

Commercial Phytase Products
Phytases are beneficial enzymes for animal nutrition. They
held the highest revenue share of 83.6% of the total industry
in 20152 and account for annual sales of US$ 350 million.
About 70% of monogastric animal feed is supplemented
with phytases (Ranjan and Satyanarayana, 2016). The first
commercial phytase product was derived from A. niger and
was classified as a 3-phytase. It was used in animal feed and
was first marketed in 1999 under the trade name Natuphos.
It was manufactured by Gist-Brocades (now DSM) and sold
by BASF, Ludwigshafen, Germany. Later, the commercial
product (Ronozyme R© P) belonging to a 6-phytase was derived
from Peniophora lycii. Subsequently, a few fungal phytase
products have been produced and marketed by other companies

2https://www.grandviewresearch.com

over the years (Table 5). On a commercial scale, phytase
production is either carried out using phytate-producing fungi
or recombinant DNA technology. The commercial products
of Allzyme R© SSF and Adisseo were produced by naturally
secreted enzymes that are synergistic with phytase. However,
most fungal phytases used on a commercial scale were derived
by using recombinant DNA technology. These commercial
products are produced by recombinant filamentous fungal
strains (Table 5).

Several commercial phytase products are used as supplements
for monogastric animal feeds. The function of phytase in
animal feeds and digestive systems is critically important. In
addition, different phytases used for animal feed applications
differ in their enzymatic properties. For instance, the optimum
pH and temperature values of Ronozyme R© P were 4–4.5
and 50–55◦C, respectively (Lassen et al., 2001). While
Natuphos R© revealed optimum pH and temperature values
at 2.0, 5–5.5, and 65◦C, respectively (Wyss et al., 1999;
Zhang et al., 2007; Weaver et al., 2009). The performance
of commercial phytases was also determined in terms of
their enzymatic properties under identical assay conditions.
For example, the commercial product named Rovabio
was used to investigate growth performance and intestinal
viscosity in broiler chicks fed (Lee et al., 2010). Additionally,
Ronozyme HiPhos was used to investigate the apparent
ileal digestibility of minerals and amino acids in ileorectal
anastomosed pigs (Guggenbuhl et al., 2012). Menezes-
Blackburn et al. (2015) used Natuphos R© and Ronozyme R©

P in a study involving in vitro stimulation of the digestive
tracts of poultry.

CONCLUSION AND FUTURE
PERSPECTIVES

Fungal phytases have gained increasing amounts of interest for
use in food production and in the feed industries as a way of
improving nutrition quality and reducing levels of phosphorus
pollution. The study of different biological properties of fungal
phytase is important and can assist researchers in improving
the levels of phytase activity and stability for nutritional and
industrial uses. However, only a few fungal strains have been

TABLE 5 | Common commercial phytases and fungal strains used.

Product Company Phytase source Fungal strain used References

Allzyme R© SSF Alltech Aspergillus niger Aspergillus niger Non-recombinant Lei et al., 2013

Finase R© P/L AB Vista Aspergillus niger PhyB Trichoderma reesei Simon and Igbasan, 2002; Misset and
Whitaker, 2003; European Union, 2004;
Haefner et al., 2005

Natuphos R© BASF Aspergillus niger PhyA Aspergillus niger Simon and Igbasan, 2002; Misset and
Whitaker, 2003; European Union, 2004;
Haefner et al., 2005

Ronozyme R© P Novozyme/ DSM Peniophora lycii PhyB Aspergillus oryzae Simon and Igbasan, 2002; European
Commission, 2004; European Union,
2004; Haefner et al., 2005

Rovabio Adisseo Penicillium funiculosum Penicillium funiculosum Non-recombinant Greiner and Konietzny, 2012
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studied in terms of phytase production. Therefore, the discovery
of new fungal species with advanced phytase properties and levels
of stability will be necessary. In addition, the cloning and protein
engineering of potential phytase producing fungal species will
also be extremely advantageous.
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