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Abstract

The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow
deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation
remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a
previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic a–helix (residues 13–23) and
an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or
replacement of the a–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible
segment and the a–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning
mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the
helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the
channel and that the N–terminal a–helix ensures that the flexible tail is correctly orientated for interaction with the
activation gating machinery to stabilize the open state of the channel.
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Introduction

The human ether–a–go–go related gene (hERG) encodes

Kv11.1, the pore forming subunit of the rapidly activating delayed

rectifier K+ channel (IKr) [1]. Reduction of hERG channel activity

either by drugs [2] or genetically inherited mutations [3] results in

prolongation of the QT interval on the surface electrocardiogram

and a markedly increased risk of arrhythmias and sudden cardiac

death [4]. hERG channels are tetrameric with each subunit

containing cytoplasmic N– and C–terminal domains and six

transmembrane domains. The fifth and sixth transmembrane

domains along with an intervening pore helix from each of the

four subunits surrounds the ion conducting pore [5]. In addition, a

cyclic nucleotide binding domain (cNBD) immediately C–terminal

to the pore domain is thought to contribute to the stabilization of

the tetrameric structure [6]. Conversely, the cytoplasmic N–

terminus of each subunit contains a Per–Arnt–Sim (PAS) domain

(residues 26–135) [7,8] that is stable as a monomer and interacts

with the remainder of the channel thereby regulating the kinetics

of channel opening and closing [7,9,10].

In hERG, N–terminal deletions that remove the PAS domain

(D2–373 [11], D2–354 [12,13], and D2–138 [7]) significantly

enhance the rate of deactivation of the channel. Further, the N–

terminal domain (residues 1–136) is able to restore deactivation

gating in N–terminally truncated hERG [7,9]. However, deletions

within the short N–terminal tail that precedes the PAS domain

(residues 1–25) also result in significantly faster rates of

deactivation [7,12,13]. Moreover, application of a peptide

corresponding to the N–terminal 16 residues can slow the

deactivation kinetics of channels with most of the N–terminus

deleted (D2–354, [12]).

To clarify the role of the N–terminal tail domain in hERG K+

channel deactivation, we determined the solution state structure of

a construct encompassing both the PAS domain and the N–

terminal tail. We show that the tail contains an amphipathic a–

helical region from T13 to E23. Deletion of either the initial

unstructured segment (D2–9) or replacement of the amphipathic

a–helical region with a flexible linker resulted in faster deactiva-

tion, suggesting that both regions are necessary but neither is

sufficient to permit normal deactivation. Alanine scanning of the

N–terminal tail indicated that residues R5 and G6 are involved in

critical interactions that stabilize the open state of the channel.

Although the majority of alanine mutations in the amphipathic a–

helical region did not have a significant effect on the rate of

deactivation, both I19A and R20A showed an enhanced rate of

deactivation. This suggests that the a–helix may act as a spacer,
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rather than being involved in critical specific interactions with

other domains of the channel.

Materials and Methods

Protein expression
The PAS domain (residues 1 to 135) was expressed as an N–

terminal cleavable glutathione–S–transferase (GST) fusion in E.

coli C41 strain after overnight induction at 20uC. A freeze/thaw

method was used to lyse the cells with 20 mM Tris buffer

containing 5 mM 2–mercaptoethanol, 0.1% v/v Tween 20, and

150 mM NaCl. The lysate was incubated with glutathione beads

(GE Healthcare, Amersham, UK) for 3 h and the protein eluted

by TEV protease digestion overnight at 4uC. The protein was

concentrated and passed through a Superdex 75 column (GE

Healthcare), equilibrated in 10 mM HEPES pH 6.9, 150 mM

NaCl, 5 mM N–octyl–D–glucoside (OG) (Anatrace Inc., Maumee,

OH, USA) and 3 mM tris(2–carboxyethyl)phosphine (TCEP). The

purified PAS domain eluted as a single peak at the expected

molecular size for a monomer (as previously described [7]). The
13C/15N double–labelled PAS domain was produced by substi-

tuting the nitrogen and carbon sources in bacterial growth

medium with 15N–enriched NH4Cl and 13C–enriched glucose,

respectively.

Sample preparation and NMR spectroscopy
The NMR sample consisted of 0.21 mM 13C/15N PAS domain

protein in solution containing 10 mM HEPES, 3 mM TCEP,

5 mM OG, and 7% D2O, at pH 6.9. All NMR experiments were

performed on a Bruker Avance II 900 MHz NMR spectrometer at

298 K. 2D 1H–15N HSQC, 3D 1H–15N NOESY and 3D 1H–13C

NOESY data were acquired using traditional methods while 3D

HNCO, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH,

C(CO)NH, H(CCO)NH and HCCH–TOCSY data were ac-

quired using a non–uniform sampling method and maximum

entropy reconstruction [14]. The sample was buffer–exchanged in

D2O before acquiring 3D HCCH–TOCSY and 1H–13C NOESY

NMR spectra.

NMR chemical shift assignment and structure
calculations

All NMR spectra were analysed using XEASY3 [15].

Sequence–specific backbone assignments were made using 3D

HNCO, HNCA, HN(CO)CA, HNCACB and CBCA(CO)NH

data. Side–chain chemical shift assignments were made using 3D

(H)CC(CO)NH–TOCSY, H(CC)(CO)NH–TOCSY and HCCH–

TOCSY data. A total of 2634 distance constraints were derived

from 3D 1H–15N and 1H–13C NOESY data, 24 hydrogen bond

constraints were derived from the 1H–13C NOESY data (based on

amide protons that were still observable afte exchange of the

sample into D2O buffer), and 178 dihedral angle constraints (w,y)

were derived from TALOS [16]. The error range used in the

structure calculations were set to twice the standard deviation

estimated by the program. Automated NOE assignment and

structure calculations were performed using the program CYANA

v2.1 [17]. An ensemble of the 20 structures with the lowest target

function values was chosen to represent the solution structure of

the protein. Energy minimization of these structures was

performed using the program AMBER 10 [18]. The generalized

Born (GB) solvent model was used for the final energy

minimization using the distance constraints from the CYANA

calculation. The energy–minimized structures were validated

using the PSVS server [19] and deposited in the PDB [20] under

the accession code 2L0W. Chemical shift assignments were also

deposited in the BioMagResBank under accession code 17066.

Secondary structure elements were predicted using Talos+ [21].

Electrophysiology
HERG cDNA (a gift from Dr Gail Robertson, University of

Wisconsin) was subcloned into a pBluescript vector containing the

59 untranslated region (UTR) and 39 UTR of the Xenopus laevis b–

globin gene (a gift from Dr Robert Vandenberg, University of

Sydney). Mutagenesis was carried out using the Quickchange

mutagenesis method (Agilent Technologies, CA, USA) and

confirmed by DNA sequencing. Wild–type (WT) and mutant

channel cDNAs were linearized with BamHI and cRNA

transcribed with T7 RNA polymerase using the mMessage

mMachine kit (Ambion, city, TX, USA).

Xenopus laevis oocytes were prepared as previously described

[22]. Stage V and VI oocytes were isolated, stored in tissue culture

dishes containing ND96 (in mM: KCl 2.0, NaCl 96.0, CaCl2 1.8,

MgCl2 1.0 and HEPES 5.0) supplemented with 2.5 mM sodium

pyruvate, 0.5 mM theophylline and 10 mg mL21 gentamicin,

adjusted to pH 7.5 with NaOH and incubated at 18uC. All

experiments were approved by the Garvan/St Vincent’s Animal

Ethics Committee (Approval ID 08/34).

Xenopus laevis oocytes were injected with 5–10 ng cRNA and

incubated at 18uC for 24–48 h prior to electrophysiological

recordings. All experiments were undertaken at room temperature

(21–22uC). Two–electrode, voltage–clamp experiments were

performed using a Geneclamp 500B amplifier (Molecular Devices

Corp, Sunnyvale, CA, USA). Glass microelectrodes had tip

resistances of 0.3–1.0 MV when filled with 3 M KCl. Oocytes

were perfused with ND96 solution (see above). In all protocols a

step depolarization of +20 mV from the holding potential of

290 mV was applied at the start of each sweep to enable off–line

Table 1. Structural statistics of the final 20 ensemble of PAS
domain in solution.

Parameter Ensemble

Total number of NOE constraints used: 2634

Short range | i – j | , = 1 1259

Medium range 1, | i – j | , 5 498

Long range | i – j | . = 5 877

NOE constraints per residue
(135 residues)

19

Distance constraints for
hydrogen-bonds:

24 (48 including
upper and lower
constraints)

TALOS backbone dihedral angle
constraints

89 (w), 89 (y)

Coordinate r.m.s.d. (Å) for all residues
(S26-K135) exluding N-terminal tail

Average backbone r.m.s.d. to mean 0.40

Average heavy atom r.m.s.d. to mean 1.10

Ramachandran assessments *

MolProbity (%)

Favored regions 96.9 (95.8)

Allowed regions 2.9 (3.8)

Disallowed regions 0.2 (0.4)

*ordered residues (F14-F22;R27-R62;T65-E134) and all residues (M1-K135),
respectively.
doi:10.1371/journal.pone.0016191.t001

N-Terminal Tail and hERG Deactivation
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leak–current subtraction. We assumed that the current leakage

was linear in the voltage range 2160 to +40 mV. Data acquisition

and analysis were performed using pCLAMP software (Version

9.2, Molecular Devices Corp, Sunnyvale, CA, USA) and Excel

software (Microsoft, Seattle, WA, USA). All parameter values were

estimated as mean 6 standard error of the mean (SEM) for n

experiments, where n denotes the number of different oocytes

studied for each construct.

Isochronal activation curves were measured using standard tail

current analysis [1]. Cells at a holding potential of 290 mV were

subjected to 4–s depolarizing steps to voltages in the range 270 to

+50 mV before stepping the voltage to 270 mV where tail

currents were recorded. Tail current data were normalized to the

maximum current value (Imax) and fitted with a Boltzmann

expression:

g

gmax
~ 1 z exp

V0:5 { Vtð Þ
k

" #{1

ð1Þ

Figure 1. NMR structure of hERG N–terminal domain. Ensemble
of 20 structures of the hERG N–terminal domain (residues 1–135) shown
in panel A. The PAS domain is shown as a ribbon representation with a
color ramp from green at the N–terminus to red at the C–terminus. The
N–terminal a–helix (T13–E23) is shown in blue and the remaining
residues (M1–N12) are shown in black. B. Superposition of the lowest–
energy NMR structure (blue) on the previously determined crystal
structure (1BYW, red [7]) yields a backbone RMSD of 0.78 Å. The N–
terminal tail (M1–Q25) was excluded in this superposition. Helices and
sheets are labelled using the schema devised by Moglich et al. [30].
doi:10.1371/journal.pone.0016191.g001

Figure 2. Structure of N–terminal tail domain. hERG residues 13–
23 form an amphipathic a–helix. (A) Ensemble of the 20 lowest energy
NMR structures superimposed over the backbone of residues T13 to
E23 (blue). Only residues 1–25 are shown. The first 12 residues (M1 to
N12, black) are disordered in solution. (B) Distribution of charged
residues in the N–terminal helical segment. (C) Surface representations
of the N–terminal helix. Each view was rotated 90u anti–clockwise on
the y–axis. Positively charged residues (R20 and K21; blue), negatively
charged residues (D16 and E23; red) and neutral polar residues (T13 and
T17; purple) are located on the same side of the helix while non–polar
residues (white), with the exception of I19, are located on the opposite
face.
doi:10.1371/journal.pone.0016191.g002

N-Terminal Tail and hERG Deactivation
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where g/gmax is the relative conductance, V0.5 is the half–activation

voltage, Vt is the test potential and k is the ‘slope factor’.

Alternatively, the data were fitted with the thermodynamic form of

the Boltzmann expression:

I

Imax
~ 1 z exp

DG0 { zgEFð Þ
RT

" #{1

ð2Þ

where DG0 is the work done at 0 mV, zg is the effective number of

gating charges moving across the membrane electric field, E. F, is

Faraday’s constant, R is the universal gas constant and T is the

absolute temperature. Equations (1) and (2) are equivalent,

however from Equation (2) we can calculate the effect of mutations

on changes in the chemical potential (DG0) and electrostatic

potential (–zgEF) that drives activation and deactivation of the

channel.

To measure rates of deactivation, oocytes were depolarized

from a holding potential of 290 mV to +40 mV for 1 s to fully

activate the channels; they were then repolarized to potentials in

the range 250 to 2160 mV. A double exponential function was

fitted to the decaying portion of tail currents. In order to compare

rates of deactivation for different mutants at comparable driving

forces, the voltages in the range 260 to 2160 mV were converted

to electrochemical driving forces (–zgEF) as defined in Equation

(2).

Results

The solution structure of hERG 1-135 domain was well folded

with dispersed peaks in the 1H-15N-HSQC (Fig. S1). More than

97% of the backbone amides were assigned, the exceptions being

A40 and R77. 75% of the sidechain N–H from arginine,

asparagine and glutamine were assigned; the exceptions were

R4, R5, R73, R76, R77 and Q84. All resonances of Ha and Hb
atoms were assigned except for Hb of R4 and R5. All Ca, Cb and

C were assigned except for the carbonyls of R76 and V113. In

addition, more than 90% of the remaining sidechain proton and

carbon resonances were assigned. These assignments allowed a

total of 2634 distance constraints (Table 1) to be unambiguously

derived and these were used in combination with the dihedral

angle and hydrogen–bond constraints to calculate the solution

structure of the N–terminal 135 residues of the hERG K+ channel

(Fig. 1). The RMSDs of all backbone and heavy atoms excluding

Figure 3. Both the unstructured tail and the a–helix of the N–
terminal domain are required to slow deactivation kinetics of
WT hERG channels. Sequence of the N–terminal domain in WT hERG1
channels is shown in panel A. Mutant constructs were designed to
examine the effect of removing the unstructured tail (D2–9) or the
entire N–terminal domain (D2–25), or the effect of disrupting the N–
terminal a–helix (GGS) by replacing residues L15 and T17–E23 with
P_GGSGGSG as shown in red. (B) Typical rates of deactivation observed
in tail currents recorded at 2120 mV following a step to +40 mV. To aid
comparison current traces were normalized to peak tail current.
Constructs D2–9 (blue), D2–25 (green) and GGS (red) all produced
channels with faster deactivation rates than WT hERG (black). (C and D)
Mean 6 SEM for deactivation rates recorded over a range of voltages
from 250 mV to 2160 mV. Current decay associated with channel
deactivation was best fitted to two exponentials, generating tfast (C)
and tslow (D) for WT (open circles, n = 11), D2–9 (blue squares, n = 14),
D2–25 (green triangles, n = 5) and GGS (red inverted triangles, n = 10)
channels. All mutant channels enhanced the rates of both the fast and
slow components of deactivation over the entire voltage range.
doi:10.1371/journal.pone.0016191.g003

N-Terminal Tail and hERG Deactivation
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the N–terminal tail (S26 to K135) were 0.40 and 1.10 Å,

respectively.

Statistics highlighting the extremely high precision and

stereochemical quality of the ensemble of hERG PAS domain

and N–terminal tail structures are shown in Table 1. The average

MolProbity score of 1.55 places the ensemble in the 94th

percentile relative to all other structures ranked by MolProbity

[23]. The high stereochemical quality of the ensemble stems from

a complete absence of bad close contacts, high Ramachandran

plot quality (95% of residues in the most favored region), and a

very low percentage of unfavorable sidechain rotamers. During the

automated NOESY assignment/structure calculation process the

CANDID module of CYANA assigned 86% of all NOESY

crosspeaks to give an average of 19 NOE constraints per residue.

The NMR solution structure for the segment from residues S26

to K135 was almost identical to the crystal structure of the same

region (Fig. 1B). The average RMSD of this NMR ensemble

relative to the crystal structure (1BYW) was less than 1 Å. The

only significant discrepancy was observed for the loop between Hb
and Ib, a region previously shown to be highly dynamic in a

molecular dynamics study [24].

In addition to the structure of the PAS domain (residues S26 to

K135), the NMR solution structure revealed a randomly

distributed a–helical tail (blue lines in Fig. 1A), in particular

residues T13 to E23 (Fig. 2A) with a backbone RMSD of 0.31 Å.

Despite not being able to determine a fixed conformation of the

N–terminal tail, it was consistent with the secondary structure

prediction using the NMR chemical shifts and inter–residue NOE

constraints (Fig. S2).

Closer examination of the N–terminal helix (T13 to E23)

revealed that it was amphipathic with positively charged residues

(R20 and K21), negatively charged residues (D16 and E23), and

polar residues (T13 and T17), located on the same side of the helix

(Fig. 2B), while non–polar residues (F14, L15, I18, I19 and F22

but not I19) were located on the opposite face of the helix.

Residues 1–9 are disordered with no clearly defined structure,

while residues 10–12 adopted a turn conformation.

To study the functional significance of the a–helix in the N–

terminal tail, we compared the effects of deleting only the initial

portion of the N–terminus (D2–9), with deletion of the entire N–

terminal tail (D2–25), or replacement of the a–helix with a flexible

linker (denoted GGS mutant, see Fig. 3A). Typical examples of tail

currents for D2–9, D2–25 and GGSmut channels (recorded at –

120 mV and normalized to the peak inward current amplitude)

are shown in Fig. 3B. All mutant channels showed significant

enhancement of both the fast (Fig. 3C) and slow (Fig. 3D)

components of deactivation over the entire voltage range studied.

None of the mutants affected the relative amplitudes of the fast

and slow components of deactivation at the most negative

potentials. However, at less negative potentials where the fast

component became less dominant, the amplitude of the fast

component relative to the slow component was greater in all three

mutant channels compared to WT hERG (Fig. S3).

There were small, but statistically significant, differences in the

rates of deactivation between D2–25, D2–9 and GGSmut

channels; e.g., at 2120 mV the time constant for the fast

component of deactivation was 11.460.3 ms (n = 14, for D2–9),

8.760.3 ms (n = 5, for D2–25) and 7.560.2 ms (n = 10, for GGS

mut) compared to 33.761.0 ms (n = 11, for WT hERG channels).

When comparing the rates of deactivation for WT and mutant

channels at a single voltage, it is important to consider that

changes to steady–state activation can affect the electrochemical

potential for deactivation. Steady–state activation properties were

determined by fitting, with a single Boltzmann expression

(Equation 1), the I–V relationship of peak tail currents at

270 mV plotted against the preceding voltage step (Fig. 4). The

resulting half–maximal voltage for activation (V0.5) of D2–9

channels (25.660.9 mV, n = 14) was shifted in the depolarizing

direction compared to WT hERG (223.260.8 mV, n = 11,

ANOVA p,0.05), without any change in slope. A small but

statistically significant shift in activation V0.5 was also observed for

Figure 4. Rates of deactivation after correction for changes in
activation properties. Steady–state activation curves for WT (open
circles, n = 11), D2–9 (blue squares, n = 14), D2–25 (green triangles, n = 5)
and GGS (red inverted triangles, n = 10) channels are shown in panel A.
Peak tail currents recorded at 270 mV, following steps to a range of
potentials between 270 mV to +50 mV, were normalized to Imax and
plotted against the preceding voltage. Data represented as mean 6

SEM were fitted with Boltzmann expression (solid lines, see Methods).
Construct D2–9 gave channels exhibiting a shift in the half maximal
voltage for activation (V0.5) in the depolarizing direction compared to
WT hERG. B. Rates of deactivation (tfast from Fig. 3C) are plotted against
the total electrochemical driving force –(DG0–zgEF) for channel
deactivation. Deactivation rates taken at an equivalent driving force
of 230 kJmol–1 (dotted line) indicate that all mutant channels
deactivate faster than WT hERG (symbols as in A).
doi:10.1371/journal.pone.0016191.g004

N-Terminal Tail and hERG Deactivation
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GGSmut (218.560.6 mV, n = 10) channels, while D2–25 chan-

nels were similar to WT hERG (Fig. 4A). The chemical (DG0) and

electrostatic (–zgEF) potential that drives activation was calculated

by fitting the activation data with a Boltzmann function in the

form of Equation 2 (data summarized in Table S1). Since changes

in DG0 parallel changes in activation V0.5, D2–9 channels had a

significantly smaller chemical potential for activation (–1.960.3 kJ

mol–1) than WT hERG (26.860.2 kJ mol21, ANOVA p,0.05).

To compensate for changes in electrochemical driving force, the

rates of deactivation calculated at voltages between 250 mV to

2160 mV were plotted against the electrochemical potential for

deactivation (Fig. 4B). After correction, D2–9, D2–25 and

GGSmut channels all had enhanced rates of deactivation

compared with WT hERG (ANOVA p,0.05). Thus, alterations

to the electrochemical driving force for deactivation could not

explain the enhanced deactivation rates seen with these mutant

channels.

To probe the role of individual residues within the N–terminal

tail, native residues from P2–E23 were individually replaced with

alanine, or with valine in the case of A9. Measured rates for fast

(tfast) and slow (tslow) components of deactivation, in addition to

the relative contributions of these components are given in Table

S2. At negative potentials, the fast component accounted for the

majority of deactivation (.80%). This parameter was therefore

used to compare WT and mutant channels. Several of the

mutations introduced small (less than 610 mV), and statistically

significant shifts in the voltage dependence of channel activation

when compared to WT hERG (Table S1). Accordingly, the effects

of each mutation on deactivation rate were compared at an

equivalent driving force of 230 kJmol–1 (as indicated in Fig. 5). In

Fig. 6, the effect of alanine mutants on deactivation rates are

classified into those that were unchanged (grey bars), faster (red

bars) and slower (blue bars) compared to WT.

Typical tail currents recorded at 2120 mV, as well as mean tfast

values plotted against electrochemical driving force, are shown in

Fig. 5A for two mutations (R5A and G6A) located in the

unstructured N–terminal tail. Both the R5A and G6A mutants had

significantly faster deactivation rates than the WT channel; the

tfast at 230 kJmol–1 was 16.561.0 ms (n = 8) for R5A and

12.761.3 ms (n = 7) for G6A compared with 28.562.8 ms (n = 11)

for WT (ANOVA p,0.05, Fig. 6). These data suggest that either,

or both, of these residues could interact with other parts of the

channel protein to slow deactivation rates in WT hERG.

Within the amphipathic N–terminal a–helix (residues T13 to E23),

alanine mutations I19A and R20A gave channels with faster rates of

deactivation when compared with WT hERG; tfast at 230 kJmol–1

was 19.261.3 ms (n = 13) for I19A and 20.461.0 ms (n = 20) for

R20A (vs WT of 28.562.8 ms, ANOVA, p,0.05). Somewhat

Figure 5. Point mutations within the N–terminal tail alter deactivation rates of hERG channels. Examples of point mutations that either
slow (D16A, blue trace in left panel) or enhance (R5A, red trace in right panel) rates of deactivation compared to WT hERG (black traces) are shown in
panel A. Rates of deactivation are represented by the decay in tail currents recorded at 2120 mV following a step to +40 mV. Current traces were
normalized to peak tail current to aid comparison. B. Mean 6 SEM rates of deactivation (tfast) plotted against the total electrochemical driving force –
(DG0–zgEF) for channel deactivation. When compared at an equivalent driving force of –30 kJmol–1 (dotted line) four mutant channels exhibited
altered deactivation rates compared with WT hERG (open squares, n = 11). Two mutations, P10A (green circles, n = 14) and D16A (blue triangles,
n = 10), produced channels that were slower than WT (left panel), while R5A (red diamonds, n = 8) and G6A mutant channels (orange inverted
triangles, n = 7) deactivated faster than WT hERG (right panel).
doi:10.1371/journal.pone.0016191.g005

N-Terminal Tail and hERG Deactivation
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surprisingly, two mutations in the a –helical region, i.e., T13A (tfast,

38.262.2 ms, n = 15) and D16A (tfast, 54.264.7 ms, n = 10)

exhibited slower deactivation rates than WT (ANOVA, p,0.05).

Interestingly, the four residues with altered deactivation rates (T13,

D16, I19, R20) lay on one face of the amphipathic helix (Fig. 6C). In

addition, mutation of one residue (P10A) that lies between the

amphipathic a–helix and the D2–9 region, also significantly slowed

deactivation (44.462.4 ms, n = 14) compared with WT hERG

(28.562.8 ms, ANOVA p,0.05).

Discussion

The solution structure of hERG PAS domain determined in this

study was found to be very similar to the crystal structure determined

previously by Morais Cabral et al. [7] and the solution structure

recently reported by Li and colleagues [25]. Our solution structure of

the PAS domain (residues 26–135) superimposed very well with the

crystal structure apart from the loop between Hb and Ib that was

previously shown to be highly dynamic [24]. The major difference

between the X–ray and NMR structures is that in the latter the N–

terminal tail contained an amphipathic a–helix from residues T13 to

E23. The first nine residues in the NMR structures were unstructured

as were residues 24–26 that link the a–helix to the PAS domain. The

remaining tail–domain residues (P10, Q11, N12) appeared to adopt a

turn conformation but there were insufficient NOE constraints to be

able to define it as an extension of the a–helix.

Our functional, electrophysiological data indicated that removal

of either the initial unstructured segment (D2–9) or replacement of

Figure 6. Summary comparing rates of channel deactivation for point mutations within the N–terminal tail. Deactivation rates (tfast)
compared at an equivalent electrochemical driving force -(DG0–zgEF) of 230 kJmol–1. Data represented as mean 6 SEM (panel A) or as ratio with WT
hERG (panel B). Mutant constructs (D2–9, D2–25 and GGS) and point mutations (R5A, G6A, I19A, and R20A) that significantly enhanced rates of
deactivation compared to WT (black bar) are shown in dark red, while point mutations (P10A, T13A and D16A) that slow deactivation are shown in
dark blue (ANOVA p,0.05). C. Representation of the N–terminal a–helical region with residues colored depending on the severity of deactivation
phenotype after mutation to alanine. Residues with the most severe alterations to deactivation rates (T13, D16, I19 and R20) clustered on the same
face on the a–helix.
doi:10.1371/journal.pone.0016191.g006
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the a–helix with a flexible linker (GGS mutant) both produced

similar phenotypes, i.e. markedly faster rates of deactivation. This

is essentially the same phenotype produced by deletion of the

entire N–terminal tail (D2–25, Fig. 3A, or D2–23 [7] or D2–26

[7]). These data indicate that the initial unstructured N–terminal

segment and the a–helical region (residues 13–23) were both

required, but neither alone was sufficient, for the normal slow

deactivation kinetics of WT hERG channels.

Alanine scanning mutagenesis of the initial unstructured N–

terminal segment (P2 – N12) identified R5 and G6 as the most

critical residues for deactivation. Both R5A and G6A mutants had

enhanced rates of deactivation that could easily explain the faster

deactivation observed with deletion of residues 2–9. Within the a–

helical segment two alanine mutants resulted in enhanced rates of

deactivation (I19A and R20A). These mutants resulted in a smaller

perturbation to deactivation than R5A and G6A, nevertheless the

combined effect of all four residues may explain why deletion of

residues 2–25 caused a greater enhancement of the rate of

deactivation than did deletion of residues 2–9.

Whilst the deletion mutants and the GGS mutant all had faster

deactivation phenotypes, three alanine mutants resulted in slowed

deactivation, i.e., T13A and D16A in the a–helix and P10A in the

linker between the a–helix and the initial unstructured segment. It

is possible that these three residues are important for ensuring that

the tail does not bind too tightly to the open state of the channel. It

is noted that T13 and D16 lie on the same side of the a–helix as

I19 and R20, which are the only other residues in the a–helix that

significantly perturbed deactivation. This suggests that this surface

of the a–helix is involved in protein–protein interactions that affect

the rate of deactivation. However, when we mapped the functional

effect of alanine mutants onto the structure of the N–terminal a–

helix, the residues with perturbed function did not lie along the

entire length of the a–helix (Fig. 6C). We therefore suggest that in

addition to providing some specific interactions the a–helix may

also serve as a spacer to ensure that the flexible tail is held a

predetermined distance from the PAS domain itself. Given that

alanine mutants tend to stabilize a–helices it is also possible that

the P10A mutant may have stabilized a longer helical domain that

results in slower deactivation.

It is important to recall that the structure we have solved is an

isolated domain. It is possible that the N–terminal tail structure

reported here is more flexible than it would be in the whole, intact

channel protein. Conversely, it is clear that the N–terminal tail

interacts with another part of the channel protein to regulate

deactivation and we suggest that the flexibility of the distal N–tail

(residues 1–9) is important for its function and/or regulation.

Model for the structural basis of deactivation gating
Deletion of the N–terminal tail (D2–25, Fig. 3A), the entire PAS

domain (D2–138, [7]) or majority of the N–terminus (D2–354 [13],

D2–373 [11]) all result in a very similar phenotype, i.e.

approximately 5–fold faster rate of deactivation. A plausible

hypothesis that explains these observations is that the PAS domain

binds (with relatively high affinity) to another domain on the

hERG channel and it positions the flexible N–terminal tail region

close to the central core of the hERG channel where it binds and

unbinds sufficiently rapidly to modulate the rate of deactivation.

The region(s) of the channel where the PAS/N–terminal a–helix

and the flexible N–terminal domains bind remain to be

determined. Two obvious candidates are the S4–S5 linker [25],

a part of the channel known to be critical for regulation of

deactivation gating [12,13,26] and the C–linker + cyclic–

nucleotide binding domain, as mutations in this domain modulate

the kinetics of deactivation [27,28,29]. Li and colleagues showed

that the PAS domain can bind to the S4–S5 linker, however these

studies were perfomed with an isolated S4–S5 peptide fragment

and need to be confirmed in studies involving either the entire

channel protein or at least larger domains. Similarly, testing of the

hypothesis that the PAS domain and/or N–terminal a–helix bind

to the cyclic–nucleotide binding domain will require expression

and purification of the cyclic–nucleotide binding domain.

Supporting Information

Figure S1 15N-HSQC spectrum of hERG N–terminal
domain (M1-K135). The spectrum was collected at 25uC on a

Bruker 900 MHz Avance II spectrometer fitted with a cryoprobe.

Backbone amide proton resonances are identified by their residue

numbers. Sidechain N-H resonances are indicated by an sc suffix.

(EPS)

Figure S2 Amino acid sequence of hERG PAS domain
and overview of NMR data. The secondary structure elements

are labelled according to the hERG PAS domain PDB structure

(2L0W). Hydrogen bonds constraints used in the structure

calculation are indicated as black circles. Chemical shift index

(CSI) prediction of the secondary structure is shown immediately

above the amino acid sequence. Thick and thin bars indicate

strong and weak NOE cross-peaks intensities for the sequential

proton–proton NOE connectivities (dNN, daN and dbN). The

observed medium-range NOEs dNN(i, i+2), daN(i, i+2), daN(i,

i+3), dab(i, i+3) and daN(i, i+4) and are indicated by lines

connecting the two residues that are related by the NOE.

(EPS)

Figure S3 Relative amplitudes of tfast and tslow that
comprise deactivation rates. Tail currents recorded over a

range of potentials (Vm) following a test pulse to +40 mV are fit

with a double exponential function (see methods). Relative

amounts of tfast and tslow components are then plotted against

voltage. At negative potentials, where tfast dominates, there is

little difference in relative amplitudes between WT (black) and

mutant channels (D2-9: blue; D2-25: green; GGSmut: red).

However, at less negative potentials (.290 mV) there is a

significant increase in the relative amounts of tfast in mutant

channels (D2-9, D2-25, GGSmut) compared to WT hERG.

(EPS)

Table S1 Time constants for fast component of deacti-
vation, at 230 kJ mol21, for WT and all mutants
investigated in this study.

(DOC)

Table S2 Time constants for fast and slow components
of deactivation and ratio of fast and slow components of
deactivation, at -120 mV, for WT and all mutants
investigated in this study.

(DOC)
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