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sketching algorithms for processing the
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Abstract

Considerable advances in genomics over the past decade have resulted in vast amounts of data being generated
and deposited in global archives. The growth of these archives exceeds our ability to process their content, leading
to significant analysis bottlenecks. Sketching algorithms produce small, approximate summaries of data and have
shown great utility in tackling this flood of genomic data, while using minimal compute resources. This article
reviews the current state of the field, focusing on how the algorithms work and how genomicists can utilize them
effectively. References to interactive workbooks for explaining concepts and demonstrating workflows are included
at https://github.com/will-rowe/genome-sketching.

Introduction
To gain biological insight from genomic data, a genomicist
must design experiments, run bioinformatic software and
evaluate the results. This process is repeated, refined or
augmented as new insight is gained. Typically, given the
size of genomic data, this process is performed using high
performance computing (HPC) in the form of local com-
pute clusters, high-memory servers or cloud services.
HPC offers fast disk-access, a large number of processors
and high-memory. But HPC resources are in demand,
with researchers queuing to use them, or having limited
funds to access them. Worse yet, what happens when an
experiment has too much data to be realistically stored or
analyzed using these resources? Similarly, given the advent
of real-time sequencing technologies, what if researchers
want to ask questions of data as they are being generated
or cannot wait for HPC to become available?
As genomics continues to thrive, from basic research

through to personalized genome services, data continue to
flood into genome archives and databases. One of the many
consequences of this has been that genomicists now have a
wealth of data to choose from when they design their ex-
periments. This requires sampling considerations to be

made, such as the quantity, quality and distribution of data.
In an ideal world, most genomicists would elect to include
all available data but this is growing harder to achieve as
the amount of data drives up runtimes and costs.
In response to being unable to analyze all the things, gen-

omicists are turning to analytics solutions from the wider
data science field in order to process data quickly and effi-
ciently [1–4]. In particular, the model of streaming data
processing is proving incredibly effective in minimizing the
resource usage of genomic analysis. Rather than capturing,
sorting and indexing every piece of data, streaming data
processing instead quickly looks at each piece of data as it
is received and uses this information to summarize the
current state. Once a piece of data has been processed it is
no longer accessible; only the overall summary is kept [5].
This summary is termed a sketch and serves as an approxi-
mation of the data that was processed (Table 1).
Sketch data structures are relatively small so fit entirely in

memory; they need only a single pass of the data and you
can use a sketch before the underlying data stream has ter-
minated [6]. This makes sketching faster and more efficient
than high latency alternatives; you do not have to store an
entire data stream and you can analyze data in real-time [4,
7]. Another major advantage of sketch data structures is
that they can be used to estimate averages; which in the
case of genomics can be used to approximate the similarity
of genomes without using all the sequence data [1].
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The next section outlines some properties of sketches
and how they can be used to approximate the underlying
data. In subsequent sections, the core sketching algo-
rithms are described, detailing their uses, advantages,
variants and current implementations for genomics.
Interactive workbooks to demonstrate key concepts and
workflows that utilize sketching to tackle real-world gen-
omics problems are provided (see “Availability of data
and material” section) [8].

What is sketching
The concept of data sketching has been around for several
decades, originating with probabilistic counting algorithms
that can estimate the number of distinct elements within a
dataset on disk [9]. Sketching has more recently been used
to summarize data streams; first applications provided an
ephemeral overview of data and more recently have of-
fered persistent summaries of data streams [10].
Put simply, sketching is the process of generating an

approximate, compact summary of data. A sketch sup-
ports a set of predetermined query and update opera-
tions, which are used to approximate the original data.
Compared with non-probabilistic algorithms, sketching
requires less memory and has constant query time [5].
To be considered a sketching algorithm, several re-

quirements must be satisfied. Cormode et al. [6] state
that sketch updates must be consistent, irrespective of
sketch history or the current sketch state. The sketching
process results in a probabilistic data structure (the
sketch) that is a linear transform of the input data.
Sketches typically implement four key methods: create,
update, merge and query. The ability to update and
merge means parallelization is often achievable.
It should be stressed that sketching is not sampling.

Although both allow for data to be summarized, sam-
pling does not allow certain questions to be asked of the
data, e.g. set membership. Sketching can yield better

estimates than sampling. Standard error of a sample of
size s is 1

ffiffi

s
p , whereas sketches of size s can guarantee

error that is proportional to 1
s [5].

Sketching effectively compresses data, resulting in low
memory requirements, queries in linear-time and reduced
bandwidth requirements in distributed systems. Conse-
quently, sketching has applications in data analytics, signal
processing and dimensionality reduction. So if you can
accept an approximate answer and need it quickly, sketch-
ing algorithms fit the bill. Which particular algorithm to
use depends on the nature of the question you want to ask.

Sketching algorithms and implementations
Set similarity with MinHash
Set similarity
Say we wish to compare two music collections, each con-
taining 100 records. Each collection is a set and we can use
Jaccard similarity, defined as the size of the intersection of
two sets, divided by the size of their union, to measure their
similarity. If our two collections have 60 records in com-
mon, then the Jaccard similarity is 60 divided by the num-
ber of distinct records 140, giving 0.429.
Jaccard similarity is regularly used in data science, for

tasks such as document aggregation and duplicate detec-
tion [11]. Document similarity can be based simply on the
number of shared words (a “bag of words” model), but to
also take into account document structure, it may be bet-
ter to represent the document as a set of overlapping
groups of words (termed “n-grams”). For instance, the fol-
lowing sentence “We come from the land of the ice and
snow” can be broken into five n-grams (where n = 6): “We
come from the land of”, “come from the land of the”,
“from the land of the ice”, “the land of the ice and” and
“land of the ice and snow”. Now, compare that with an-
other sentence: “The hammer of the gods will drive our
ships to new land”. Both of these sentences share the

Table 1 Glossary of terms

Term Definition

Bit-pattern observable The run of 0 s in a binary string

Bit vector An array data structure that holds bits

Canonical k-mer The smallest hash value between a k-mer and its reverse complement

Hash function A function that takes input data of arbitrary size and maps it to a bit string that is of fixed size and typically
smaller than the input

Jaccard similarity A similarity measure defined as the intersection of sets, divided by their union

K-mer decomposition The process of extracting all sub-sequences of length k from a sequence

Minimizer The smallest hash value in a set

Multiset A set that allows for multiple instances of each of its elements (i.e. element frequency)

Register A quickly accessible bit vector used to hold information

Sketch A compact data structure that approximates a data set

Stochastic averaging A process used to reduce the variance of an estimator
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words “of”, “the” and “land” but not in the same n-gram
context, so they do not have any similarity when you ac-
count for document structure. The Jaccard similarity is
0.176 using a bag of words model, but 0 using a bag of n-
grams model (where n = 6), which retains some structure.
Looking at this example, you can tell it is a bit imprac-

tical to use the groups of words as they are; a 10-word
sentence turns into five 6-word groups. Instead, we can
hash these groups. Hash functions take large input data
of arbitrary size and map it to a bit string of fixed size
(called a hash value). So, each of these groups of words
would be mapped to a hash value, and documents are
compared by calculating the Jaccard similarity between
the sets of hash values.
Even when using sets of hash values, you can see that

Jaccard similarity calculations will get harder to compute
as the sets get bigger, or the number of sets increases. In
fact, in a worse-case scenario, pairwise similarity calcula-
tions scale quadratically in terms of time and space com-
plexity. To perform set similarity queries efficiently on
large datasets, we could accept approximate answers and
look to sketching algorithms.

MinHash algorithm
The MinHash algorithm generates a sketch that is de-
signed to allow scalable approximation of the Jaccard
similarity between sets. It was originally developed for
detection of near-duplicate web pages and images [12].
MinHash, as with other sketching algorithms, relies on

hash functions. The hash functions used in sketching al-
gorithms should be uniform and deterministic, i.e. input
values should map evenly across an output range and a
given input should always produce the same hash value.
By applying a hash function to every element in a set
and sorting the set by the resulting hash values, a
pseudo-random permutation of the set is achieved. Tak-
ing this idea a step further, if the same hash function is
applied to two sets, the chance of both sets having the
same minimal hash value is going to be equal to the ra-
tio of the number of common elements to the size of
the union, i.e. the Jaccard similarity. Broder [12, 13] first
demonstrated this concept in his seminal work on
MinHash.
The MinHash sketch data structure is a vector of hash

values, plus some extra information describing how the
sketch was made (e.g. which hash function). There are
several different MinHash “flavors”, such as k-hash func-
tions (KHFs) sketch, k-minimum values (KMVs) sketch
and the k-partition sketch [13–19].
For now, let us focus on MinHash KHF sketches as

this is the classic example of MinHash. As the name
suggests, this flavor of MinHash uses K hash functions
to generate K permutations of the set. For each

permutation, the minimum value is added to the sketch
and all other values are ignored (Algorithm 1).

To estimate the Jaccard similarity of two sets using their
KMV sketches, we compare the values in each position of
the sketches and increment a counter if they match. The
counter is then divided by sketch length, yielding the Jac-
card similarity estimate. As this is probabilistic, we can in-
crease the accuracy by increasing the number of random
permutations sampled; the longer the sketch, the better
the Jaccard similarity estimate. However, as having lots of
unique hash functions is expensive, KHF sketching often
uses K min-wise, independent permutations and a strong
universal hash function that maps one hash value onto
several other hash values.

An alternative to this approach is to have just one
hash function, instead sampling K minimum values from
the set. This is KMV sketching (also known as bottom-K
sketching) and has the advantage that the sketch only
needs to be updated if a new hash value is encountered
that is smaller than the maximum value currently in the
sketch. This means that KMV sketches can be straight-
forward to implement using a priority queue, allowing
quick evaluation of a new hash value against the largest
value currently in the queue. Another advantage with
KMV sketching is that accuracy increases linearly with
K; so for a set of N elements, when K ≥N, accuracy = 1
as all elements will be in the sketch. This accuracy scal-
ing is not guaranteed by a KHF sketch.
It is important to remember that when comparing

MinHash sketches, they must have been constructed
using the same MinHash algorithm, as well as with the
same hash functions so that shared elements will yield
the same hash values.

MinHash implementations for genomics
To apply MinHash to a genomic data stream, we rely on
the bioinformatic workhorse of k-mer decomposition.
This involves breaking down a sequence into a set of
overlapping subsequences of length k, termed k-mers,
equivalent to the word groups in our earlier example
(Fig. 1a). We do not need to differentiate between k-
mers and their reverse complement, so we hash them
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both and keep only the smaller of the two hash values
(the canonical k-mer).
Some of the earliest implementations of MinHash for

genomic applications were MHAP and MC-MinH,
which applied MinHash sketching to genome assembly
and metagenome sequence clustering, respectively [20,
21]. These ideas were taken further with MASH, where
the authors demonstrated that KMV MinHash sketches
facilitate fast, approximate sequence similarity searches
and provide an efficient method of sequence compres-
sion [1]. The MASH authors extended MinHash to in-
corporate a pairwise mutation distance and P value
significance test. MASH is able to accurately cluster gen-
ome and metagenome data, as well as perform real-time
sequence database search. Since MASH, other multipur-
pose and well-documented MinHash libraries for gen-
omics have been developed, such as sourmash, Finch
and BBSketch (part of BBMap) [22–24].
As well as these libraries, several bioinformatic pro-

grams utilize the MinHash algorithm to provide fast
and efficient answers for common genomics work-
flows (Table 2). These include GROOT, which uses
KHF sketching for variant detection in metagenome
samples [25], mashtree, which uses KMV sketching
for phylogenetic tree construction [26], and Mash-
Map, which uses KMV sketching for long read align-
ment [27, 41]. MashMap now also uses minimizers,
which is a concept closely related to MinHash. By
sliding a window across a sequence and decomposing
windows to k-mers, the smallest hashed k-mer is the
minimizer for that window. The minimizers from
each window make up the sketch. Minimizers were
proposed by Roberts et al. [42] as a sequence com-
pression method, and have been popularized by the
MiniMap read aligner [28, 43].

Considerations and variations
MinHash is an efficient way to estimate Jaccard similar-
ity between sets. It was described above that Jaccard
similarity is based on the union and intersection of sets,
and that in genomics we consider k-mers as set elements
in order to account for sequence structure. However,
Jaccard similarity does not take into account element
frequency within a set (referred to as a multiset). In gen-
omics, we may want to include k-mer frequency in our
similarity estimates, particularly when dealing with
metagenomes. Several MinHash implementations have
provision for multisets. For example, sourmash keeps a
record of k-mer frequencies if requested (−-track-abun-
dance) [22], and Finch has a clever over-sketching
method, which creates a parent sketch with tracked k-
mer abundance which is used to populate a smaller child
sketch with dynamic filtering [23].

Another consideration is how to handle sets of differ-
ent size; MinHash performance degrades with increasing
difference in set size [44]; for instance, using MinHash
to find a genome within a metagenome. One solution is
to combine MinHash with other data structures and
utilize a containment index; set intersection is divided
by the size of one of the sets to normalize for imbalance.
This approach is now offered by sourmash, Finch and
MASH [22, 23, 45]. Sourmash also features several inter-
esting alternatives, such as k-mer binning and greedy
partitioning (see lca and gather sub-commands) [22].
As well as the MinHash libraries discussed already,

several recent algorithm variations deserve mention-
ing. BinDash [46] is an implementation of binwise
densified MinHash, offering improved speed, precision
and compression performance over KMV sketching
implementations. Order MinHash [47] is a variant
that considers the relative order of k-mers within se-
quences, enabling estimation of edit distance between
sequences. HyperMinHash and b-Bit MinHash are
MinHash variants that offer compressed sketches, and
are typically a trade-off between accuracy, speed and
storage cost [17, 48].

Set membership with Bloom filters
Set membership
From our earlier example of set similarity, we know
that we have similar taste in music. Let us say that
you now want to listen to the records in my collec-
tion that you have not got in yours. This is a set
membership query and, in a worst-case scenario, will
require a loop through your collection for each record
in my collection.

This worst-case scenario can be improved upon.
For example our record collections could (or should!)
be sorted alphabetically, meaning if I had “AC/DC -
Powerage” and went through all the As in your
collection without finding it, I would not need to
continue looking and could play the record. We could
also improve our search by remembering the entirety
of your collection, bypassing the need to loop through
your collection for each record in mine.
However, sorting sets can take time and memorizing

sets can be difficult or impossible; our example would
not scale well if we had millions of records. Fortunately,
sketching algorithms allow us to approximate set mem-
bership queries and return answers quickly.

Bloom filter algorithm
The Bloom filter algorithm produces a sketch for set
membership queries; telling us if an element is
possibly in a set, or if it is definitely not in the set
(i.e. it allows false positives but no false negatives).
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Fig. 1 (See legend on next page.)
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Once you add an element to a Bloom filter, a
subsequent query using the same element will tell
you that you have probably seen it before. Elements
cannot be removed from a Bloom filter and the more
elements you add, the larger the probability of false
positives [49].

The Bloom filter algorithm uses hash functions to
populate a bit vector (the sketch), which is essentially a
row of bits that can be set to 0 or 1 (Algorithm 2). To
begin, all bits are set to 0. When adding an element to
the sketch, multiple hash functions are used to map the
element to several positions in the sketch. At each

(See figure on previous page.)
Fig. 1 a Sketching applied to a genomic data stream. The genomic data stream is viewed via a window; the window size may be equivalent to
the length of a sequence read, a genome or some other arbitrary length. The sequence within the window is decomposed into a set of
constituent k-mers; each k-mer can be evaluated against its reverse complement to keep only the canonical k-mer. As k-mers are generated, they
are sketched and the sketch data structure may be updated. The sketch can be evaluated and allow feedback to the data stream process. b
Common sketching algorithms applied to a single k-mer from a set, using example parameters. MinHash KHF: the k-mer is hashed by three
functions, giving three values (green, blue, purple). The number of hash functions corresponds to the length of the sketch. Each value is evaluated
against the corresponding position in the sketch; i.e. green compared against the first value, blue against the second, and purple against the third.
The sketch updates with any new minimum; e.g. the blue value is smaller than the existing one in this position (3 < 66), so replaces it. Bloom
filter: the k-mer is hashed by two functions; giving two values (red and orange). The output range of the hash functions corresponds to the
length of the sketch, here 0–3. The hash values are used to set bits to 1 at the corresponding positions. CountMin sketch: the k-mer is hashed by
two functions; giving two values (red and brown). The number of functions corresponds to a row in the sketch, here 0 or 1, and the output range
of the functions corresponds to the length of the rows, here 0–2. So the first hash value (red) gives matrix position 0,0 and the second gives 1,1.
The counters held at these positions in the matrix are incremented. HyperLogLog: the k-mer is hashed by one function; giving a single value
(10011). The prefix (brown) corresponds to a register, and the suffix (blue) corresponds to the bit-pattern observable. The suffix is compared to the
existing value in register 1, is found to have more leading zeros and so replaces the existing value in register 1

Table 2 Examples of bioinformatic software utilizing sketching algorithms

Software Purpose Sketching algorithm

GROOT [25] Variant detection in metagenomes MinHash (KHF)

mashtree [26] Phylogenetic tree construction MinHash (KMV)

MashMap [27] Long read alignment Minimizer/MinHash (KMV)

MASH [1] Sequence analysis MinHash (KMV)

sourmash [22] Sequence analysis MinHash (KMV)

finch [23] Sequence analysis MinHash (KMV)

MiniMap2 [28] Read alignment Minimizer

ABySS [29] Genome assembly Bloom filter

Lighter [30] Sequencing error correction Bloom filter

BIGSI [31] Sequence index and search Bloom filter

khmer [32] Sequence analysis Count-Min sketch

FastEtch [33] Genome assembly Count-Min sketch

dashing [2] Sequence analysis HyperLogLog

krakenUniq [34] Metagenome classification HyperLogLog

HULK [4] Sequence analysis Histosketch

ntCard [35] Sequence analysis ntCard

BBsketch [24] Sequence analysis MinHash

MHAP [21] Genome assembly MinHash

MC-MinH [20] Sequence clustering MinHash

KmerGenie [36] Sequence analysis Count-Min sketch variant

Squeakr [37] Sequence analysis Counting Quotient Filter

Mantis [38] Sequence index and search Counting Quotient Filter

kssd [39] Sequence analysis K-mer Substring Space Decomposition

An up-to-date list is provided in [40]
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mapped position, the bit is changed to a 1 if not already
set, and cannot be changed back during the life of the
sketch.

To perform a set membership query, the query is hashed
using the same functions used to create the Bloom filter.
Each of the returned sketch positions is checked; if all bits
are set to 1 then the element has probably been seen before.
If one or more bits are set to 0, the element has definitely
not been seen before. This is thanks to the deterministic
property of the hash functions, meaning that an element will
always be hashed to the same value.
To calibrate a Bloom filter, the false-positive rate is

inversely proportional to the sketch length (the num-
ber of bits). The longer the sketch, the greater the
number of possible hash values and the lower the
chance of different elements hashing to the same
value (a false positive); this is known as a hash colli-
sion. The more hash functions a Bloom filter uses the
slower it will be, but using too few functions or too
many will result in more false positives. A simple cal-
culation computes the optimal number of hash func-
tions for a given size of Bloom filter, but requires
knowing an estimate of the number of distinct ele-
ments (Eq. 1).
The optimal number of hash functions (k) to minimize

the false-positive rate for a Bloom filter of size m, for an
estimated number of distinct elements (n)

k ¼ m
n

ln 2 ð1Þ

To decide how long to make the sketch and how many
hash functions to use, optimization calculations can be
performed to parameterize the sketch to give approxi-
mations within specified error bounds [50].

Bloom filter implementations for genomics
To apply a Bloom filter to a genomic data stream, we
again use k-mer decomposition. The canonical form of
each k-mer is passed through a Bloom filter; if the k-mer
has not been seen before then it is added to the sketch
(Fig. 1b). This can have several uses, such as approximat-
ing k-mer counts (using an additional hash table to track
counts), or excluding unique k-mers from analyzes.

Although Bloom filters were first used in bioinformat-
ics around 2007, one of the first genomics applications
was BFCounter in 2011 [51]. BFCounter used a Bloom
filter to track k-mer counts; it used this sketch to give
an approximation of k-mer abundance, or generated
exact counts by combining the sketch with a hash table
and performing a second pass of the data.
K-mer counting is a very common component in

many genomic processes, such as sequence assembly,
compression and error correction. Software that utilize
Bloom filters for these processes include Minia, ABySS,
Xander and dnaasm for assembly [44, 52–54], Quip for
compression [55], and Musket, BLESS and Lighter for
error correction [45, 56, 57]. Bloom filters are also used
in conjunction with other sketching algorithms, such as
by MASH to prevent singleton k-mers (which often arise
from sequencing error) from being added to the Min-
Hash sketch [1].

Considerations and variations
Although Bloom filters offer many performance advan-
tages over non-sketching algorithms for set membership
queries, as illustrated by their ubiquity in data science
and genomics, they have several shortcomings which
must be considered prior to their use. Limitations in-
clude the inability to remove elements, dynamically re-
size the sketch or count the number of occurrences of
each item. Several variants of the Bloom filter algorithm
aim to improve on these shortcomings, including count-
ing, multistage and spectral Bloom filters [3, 58], Cuckoo
filters [59] and counting quotient filters [60].
In addition to these variants, Bloom filters have been

used as building blocks in several algorithms for gen-
omic indexing problems. One example is sequence
bloom trees, which are a hierarchy of compressed Bloom
filters with each one containing a subset of the items be-
ing indexed [61]. Sequence bloom trees have been com-
bined with MinHash to allow disk-based search of
sketches [22].
A recent indexing algorithm, the Bit-sliced Genomic

Signature Index (BIGSI) [31], utilizes a set of indexed
Bloom filters for real-time sequence search. BIGSI im-
proves upon other methods, including sequence bloom
trees, which suffer from a performance drop when
indexing diverse sequences (i.e. a scaling dependence on
the total number of k-mers in the union of sequences
being indexed). To create a BIGSI index, each sequence
(e.g. genome assembly) is decomposed to k-mers, hashed
N times and sketched using a Bloom filter; each Bloom
filter is stored as a column in a matrix (the index). To
query the index a k-mer is hashed N times to give N
row indices; the corresponding row (a bit-slice) is
returned for each. By performing a bitwise AND oper-
ation on the bit-slices, the returned column indices
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indicate samples containing the query k-mer. Not only is
BIGSI exceptionally elegant and simple, it shows that a
sketching algorithm that has been around for decades
can still be adapted to create novel and high-
performance genomics applications.

Element frequency with count-min sketch
Element frequency
To continue with our record collection analogy, you are
busy enjoying the AC/DC back catalogue but are now
wondering how many times they have used that same
chord progression. This is an element frequency query
and, in a worst-case scenario, requires you to create a
list of every chord progression used in all the songs and
count the number of times each occurs.
Element frequency queries get harder when you have

massive and diverse sets, where the list of counts might
become too large to process or hold in memory. For ex-
ample, keeping count of all k-mers observed in a gen-
ome is memory intensive. This is where the Count-Min
sketch comes in.

Count-min sketch algorithm
The Count-Min sketch algorithm produces a sketch that
is a two-dimensional matrix (d * w) which is used to ap-
proximate element frequency queries [62]. The matrix
size is parameterized by two factors, epsilon and delta,
where the error in answering a query is within a factor
of epsilon with a probability of delta.
To add an element to a Count-Min sketch, the elem-

ent is hashed by d pairwise independent hash functions,
where each hash function maps an element to a position
in the range of 1..w. For each position, the counter in
the matrix is incremented (Algorithm 3). The require-
ment of hash functions to exhibit pairwise independence
minimizes hash collisions. The Count-Min sketch ac-
commodates multisets as the counters in the matrix can
be incremented by values greater than one.

To query a Count-Min sketch and obtain a frequency
estimate, an element is hashed as though it is being
added to the sketch. Instead of incrementing the counter
in each matrix position, the counters are evaluated and
the minimum value is returned as the estimate.

Count-min sketch implementations for genomics
Similar to MinHash and Bloom filters, a Count-Min
sketch is implemented for genomics by considering k-
mers as set elements. Each k-mer is added to the sketch
and the counter incremented by the k-mer frequency
(Fig. 1b).
Khmer [3, 32] is a multipurpose software library for

working with genomic data; at its core is a Count-
Min sketch implementation for recording k-mer fre-
quencies. Khmer also features a Bloom filter imple-
mentation for presence–absence queries. Some of the
functionality of Khmer includes: read coverage
normalization, read partitioning, read filtering and
trimming. Count-Min Sketching is also utilized by the
genome histosketching method, where k-mer spectra
are represented by Count-Min sketches and the fre-
quency estimates are utilized to populate a histos-
ketch [4]. The Count-Min sketch has also been used
for de Bruijn graph approximation during de novo
genome assembly; reducing the runtime and memory
overheads associated with construction of the full
graph and the subsequent pruning of low-quality
edges [33].

Considerations and variations
The Count-Min sketch is a biased estimator of element
frequency, due to the possibility of counts being overes-
timated but not underestimated. Overestimates occur
when hash collisions result in the same position in the
matrix being incremented by different elements. This is
mitigated by increasing the size of the sketch to reduce
hash collisions, although this cannot be performed when
the sketch is in use (although dynamic sketches are a
possibility). Another option is to use Bayesian statistics
to characterize uncertainty in the Count-Min sketch fre-
quency approximations [63].
One variant of the Count-Min sketch involves scaling

the counters during the lifetime of the sketch, allowing
outdated elements to be gradually forgotten. This is an
effective way of handling concept drift, whereby the dis-
tribution of the underlying data changes over time [7].
Other variants of the Count-Min sketch exist, mostly
aimed at improving the performance of the sketch when
it needs to be kept on disk [64].

Set cardinality with HyperLogLog
Set cardinality
Suppose we want to count how many different songs
you have in your record collection. You simply count all
the songs by title. If you had multiple copies of a song
(e.g. live recordings), you only count them once. This is
a set cardinality problem (counting distinct set ele-
ments). Set cardinality problems get harder to compute
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when the set size grows. The classic example is counting
unique website views. Counting every unique IP address
to visit a website using a hash table or database needs
each address to be stored, which for websites with
massive traffic requires lots of memory.

HyperLogLog algorithm
HyperLogLog is a sketching algorithm designed to esti-
mate the number of distinct elements in large datasets
[65]. Unlike the sketch algorithms looked at so far,
which use the ordering of hash values, HyperLogLog is
based on bit-pattern observables. The bit-pattern observ-
able is the number of bits until the leftmost 1 is encoun-
tered. For example, 0001010 has three leading 0 s before
the leftmost 1, so the bit-pattern observable value is 4.
We use bit-pattern observable probabilities to estimate
set cardinality. The process is akin to flipping a coin; the
odds of getting a run of two heads before tails is ½ * ½ *
½, which is (12.5%). The odds of a run of three heads
before tails is 6.25%. The odds of getting a run of N
heads followed by a tails is 1/2N + 1. Rather than a se-
quence of heads or tails, think of a binary string (e.g.
0001010). The chance of seeing N 0 s followed by a 1 is
1/2N + 1.
The key idea behind the HyperLogLog algorithm is

that by applying a uniform and deterministic hash func-
tion to get a set permutation (à la MinHash), you use
bit-pattern observables of the hash values to estimate
the number of unique values in the set [9]. If you en-
counter the hash value 0001010, which has a bit-pattern
observable of 4, you can estimate you’ve seen 24 distinct
values. We use this logic to estimate set cardinality by
finding the longest run of 0 s. If the longest is N 0 s and
then a 1, you have probably seen around 2N + 1 elements
in your set. However, because this process is stochastic
(you might have one element but its hash is 000001, giv-
ing an estimated 26 elements), we need to average mul-
tiple estimates.
To take multiple estimates we use the concept of

registers. The HyperLogLog sketch is an array of reg-
isters; each records a count and is addressable with a
unique identifier. By taking multiple estimates and
then using stochastic averaging to reduce variance,
HyperLogLog gives a cardinality estimate within de-
fined error bounds.
To add an element to the sketch, it is hashed and the

prefix (first A bits) of this value is removed and used to
lookup a register in the sketch. The remainder of the
hash value (the suffix) is used for the bit-pattern observ-
able; the register is updated if the new bit-pattern ob-
servable is greater than the current one (Algorithm 4).
To obtain a cardinality estimate from this sketch, the
harmonic mean is calculated across all sketch registers

and this is the approximate number of distinct elements
in the set.

HyperLogLog implementations for genomics
HyperLogLog can estimate the number of distinct k-
mers in a set (Fig. 1b). HyperLogLog has recently been
implemented in the Dashing software for estimation of
genomic distances [2]. Similar to MinHash methods,
Dashing uses sketches to summarize genomes and calcu-
lates pairwise distances based on k-mer set cardinality.
HyperLogLog generally results in faster sketching and
greater accuracy compared to MinHash-based methods
[2]. In addition, HyperLogLog does not suffer from the
same performance degradation as MinHash when deal-
ing with varying set size. However, for distance estima-
tions HyperLogLog can be slower (compared with
BinDash). Another limitation is that Dashing cannot re-
port intersections (k-mers common between sets).
HyperLogLog is used by Khmer for counting distinct

k-mers in samples [32]. It has also been used by krake-
nUniq for metagenome classification, specifically to ap-
proximate how many unique k-mers are covered by
reads [25]. This improves upon the original classifier by
enabling distinction between false-positive and true-
positive database matches. The Meraculous assembler is
another example of bioinformatic software that has been
optimized using HyperLogLog; in this case, estimating
k-mer cardinality for informing Bloom filter size [66].

Considerations and variations
As already mentioned, the main limitation of HyperLo-
gLog is that it cannot accurately perform set intersection
or difference operations. These operations are better
suited to algorithms such as MinHash.
HyperLogLog currently has only a few implementa-

tions in genomics, with no variants that the author is
aware of. In the wider data science field there are vari-
ants such as HyperLogLog++, which has an updated bias
correction scheme [67], and the sliding HyperLogLog,
which is designed to operate on data streams [68].

Other algorithms
Several common set queries and the sketching algo-
rithms designed to approximate them have now been
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covered. There are many more algorithms not covered
which are already used in genomic research. For in-
stance, histogram similarity using histoksetch can clas-
sify microbiomes based on incomplete data streams [4].
Another histogram-based sketch is ntCard [35], which
uses a multiplicity table of hashed k-mers for estimating
k-mer coverage frequencies.
The Counting Quotient Filter [60] is a sketch for approxi-

mate membership and counting queries, with space usage
as good or better than CountMin sketch. The Counting
Quotient Filter is used by the Mantis software to index and
search sequence collections; the index being smaller and
faster than a sequence bloom tree [38]. It can also be used
for constructing weighted de Bruijn graphs [69].
K-mer substring space decomposition (KSSD) is a re-

cently proposed alternative to locality sensitive hashing
schemes (such as MinHash), which uses random k-mer
substring space sampling to generate sketches of gen-
omic sequences [39]. KSSD offers significant improve-
ments (both in terms of accuracy and resource usage)
over MASH screen for containment analysis but is cur-
rently restricted to use with long sequences (> 10 kbp)
as shorter sequences cannot undergo KSSD dimension-
ality reduction and still yield an informative sketch.
The field is constantly being augmented with new al-

gorithms and implementations. In an effort to keep a
current list of sketching algorithms for genomics, please
refer to the accompanying repository and file a pull re-
quest if tools are missing [40].

Workflows for genomics
Several workflows for genomics that utilize sketching al-
gorithms have been included in this article. These are
available (see “Availability of data and material” section)
and can be run interactively via Binder [8, 70]. These
workflows tackle the various stages of an outbreak inves-
tigation from a paper by Reuter et al. [71], which com-
pared whole genome sequence analysis of bacterial
isolates with standard clinical microbiology practice.
They demonstrated that genomics enhanced diagnostic
capabilities in the context of investigating nosocomial
outbreaks caused by multidrug-resistant bacteria. How-
ever, the authors relied on intensive analyses such as
genome assembly and phylogenetic tree construction.
Here, it is shown that sketching algorithms can replicate
their analyses in several minutes, using just 1 GB of
memory and not needing to store data on disk.
Workflow 1 demonstrates the use of Count-Min sketches

and Bloom filters for checking and improving sequence read
quality [30, 32], as well as showing how MinHash sketches
can be used to classify sequence data [22]. Workflow 2 per-
forms resistome profiling of bacterial isolates using Min-
Hash and Minimizers while sequence data are read from
online repositories [25, 28]. Workflow 3 replicates the

outbreak surveillance of Reuter et al. [71] using MinHash
distances to build a Newick tree that shared the same top-
ology as the phylogeny from the paper [1, 26]. Workflow 4
augments the analysis from the original paper by using the
Bloom filter-based BIGSI to identify additional isolates
matching the resistome profile of the outbreak bacteria [31].

Conclusions and future directions
Sketching clearly offers many benefits for genomic re-
search. It has been shown how sketches can compress,
index and search data, using a fraction of the resources
needed by other classes of algorithms. Sketching algo-
rithms are therefore a great approach for processing huge
amounts of genomic data while using basic hardware (e.g.
laptops). Sketching also has applications for data privacy,
whereby sketching effectively anonymizes confidential
data and enables remote analytics. For example, Balaur is
a read aligner that sketches data to preserve privacy before
outsourcing alignments to cloud compute [72].
Many exciting genomics applications for sketching are

beginning to be realized. As sketches are relatively stable
and very compact, they are excellent candidates for data-
base indexing and compression. This functionality is
already being used by projects such as sourmash, which
are able to provide indexed collections of reference se-
quences that are ready to be interrogated using user-
defined sketches [22]. This could allow you to download
any genome collection, sketching the download in real-
time and using this information to inform downstream
analysis, e.g. what genomes to write to disk or to analyze
on HPC. This real-time usability of sketches lends them
to machine learning applications. We recently showed
their utility as succinct representations of microbiome
data streams that can be used to predict information
about the samples [4, 73]. Sketching has clear potential
in real-time analytics, such as for monitoring sequencing
progress.
In response to the recent adoption of sketching algo-

rithms for genomics, this review has set out to cover
how these algorithms can be used to address some of
the challenges we are encountering as genomic data
sources continue to grow. Hopefully it has provided an
understanding of how sketching algorithms work, their
benefits and limitations and how sketching can be ap-
plied to existing genomic workflows. If you wish to con-
tinue reading more on the topic of sketching algorithms,
the excellent review that was recently published by Mar-
çais et al. [74] is recommended.
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