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Abstract

Notch is a cell-surface receptor that controls cell fate decisions and is regulated by O-glycans 

attached to epidermal growth factor-like (EGF) repeats in its extracellular domain. Protein O-

fucosyltransferase 1 (Pofut1) modifies EGF repeats with O-fucose and is essential for Notch 

signaling. Constitutive activation of Notch signaling has been associated with a variety of human 

malignancies. Therefore, tools for inhibiting Notch activity are being developed as cancer 

therapeutics. Towards this end, we screened L-fucose analogs for their effects on Notch signaling. 

Two analogs, 6-alkynyl and 6-alkenyl fucose, were substrates of Pofut1 and were incorporated 

directly into Notch EGF repeats in cells. Both analogs were potent inhibitors of binding to and 

activation of Notch1 by Notch ligands Dll1 and Dll4, but not by Jag1. Mutagenesis and modeling 
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studies suggest that incorporation of the analogs into EGF8 of Notch1 markedly reduces the ability 

of Delta ligands to bind and activate Notch1.

Introduction

The Notch signaling pathway is highly conserved across all metazoa and plays important 

roles in cell fate determination during development and in adult tissue homeostasis1,2. In 

mammals there are four Notch receptor homologs (Notch1–4) and five Notch ligands: 

Jagged (Jag) 1, 2 and Delta-like (Dll) 1, 3 and 42. Notch signaling is initiated upon binding 

of Notch ligand to Notch receptor leading to a cascade of events that ultimately culminates 

in the cleavage of the Notch intracellular domain (NICD) by γ-secretase. NICD then 

translocates to the nucleus, where it regulates transcription of target genes3.

Given the critical role that Notch plays in tissue development and maintenance, it is not 

surprising that dysregulation of Notch signaling leads to several human disorders. Excessive 

Notch signaling has been implicated in a wide range of human cancers including cervical, 

renal, lung, hepatocellular, hematologic, and neurologic malignancies4–6. Initial efforts to 

inhibit Notch signaling in treatment of these cancers has focused largely on the development 

of γ-secretase inhibitors (GSIs), small molecules that prevent NICD cleavage. 

Unfortunately, this strategy has not been successful to date, largely due to dose limiting side 

effects7. Alternative anti-Notch therapeutic strategies now in development include use of 

monoclonal antibodies targeting either specific Notch homologues8 or Notch ligands9–11, 

with the hope that these may prove more selective and less toxic.

The Notch extracellular domain (NECD) consists of up to 36 tandem epidermal growth 

factor-like (EGF) repeats including those that interact directly with ligands12,13. EGF repeats 

with appropriate consensus sequences are post-translationally modified with O-glycans, 

initiated by O-fucose, O-glucose, or O-GlcNAc14,15. Protein O-fucosyltransferase 1 (Pofut1) 

is responsible for the transfer of O-fucose to EGF repeats with an O-fucose consensus 

sequence and is an essential component of Notch signaling in all contexts examined to 

date16. Members of the Fringe family of enzymes extend the O-fucose modification by 

adding GlcNAc to further regulate Notch activity17,18.

We hypothesized that inhibition or interference with the normal O-fucosylation process 

might lead to the development of Notch inhibitors. Recent work has demonstrated that 

peracetylated fucose derivatives are metabolized to their corresponding GDP-fucose analogs 

within cells by exploiting a fucose salvage pathway19–21. Previous reports suggest that some 

of these analogs cause feedback inhibition of the de novo biosynthesis of GDP-fucose, 

reducing fucosylation of target glycans and proteins and resulting in their altered 

behavior19,20. In contrast, our group has shown that peracetylated 6-alkynyl fucose, is 

converted to the corresponding GDP-fucose analog becoming a substrate of Pofut1, which 

efficiently transfers it to Notch EGF repeats22.

Here, we report the synthesis of a panel of fucose analogs and show that some inhibit Notch 

activity. Peracetylated versions of selected inhibitory analogs were converted to GDP-fucose 

analogs within mammalian cells. Fucose analogs incorporated by Pofut1 into Notch EGF 
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repeats disrupted Delta-, but not Jagged-induced Notch signaling. Our data further suggest 

that fucose analog incorporation caused steric clashes with Delta ligands, but not with Jag1, 

and was responsible for inhibition of Notch signaling. Finally, these inhibitory fucose 

analogs were used to block Notch dependent T-cell differentiation. Fucose analogs thus 

represent a novel tool for the inhibition of Notch signaling.

Results

Fucose analogs inhibit Notch signaling in Zebrafish

We generated a panel of GDP-fucose derivatives (Compounds 1–8, Figure 1a) and 

corresponding peracetylated fucose analogs (Compounds 9–16, Figure 1b; Supplementary 

Results, Supplementary Figure 1a) with different substituents at the 6-carbon position of L-

fucose (Supplementary Figure 1b). To screen for fucose analogs with an inhibitory effect on 

Notch signaling, we utilized transgenic Zebrafish Tg(Tp1bglob:eGFP)um14 embryos 

expressing a Notch reporter transgene (GFP under the control of elements responsive to 

NICD)23. GFP fluorescence induced by activation of the Notch reporter serves as a sensitive 

and specific reflection of Notch signaling intensity and was used to monitor Notch signaling 

at 48 hours post fertilization, a developmental period when activation by Delta ligands 

predominates in Zebrafish. GDP-fucose analogs were injected into the yolk sac of embryos 

at the one cell stage, bypassing the fucose salvage pathway. As fertilized eggs begin to 

develop, they engulf materials from the yolk sac including GDP-fucose analogs and other 

nutrients. The analogs in our panel had a range of effects on Notch signaling. As expected, 

untreated and natural GDP-fucose (1) treated embryos expressed relatively high levels of 

GFP indicating robust Notch signaling (Figure 1c). Inhibition of GDP-fucose biosynthesis 

by knocking down GDP-mannose-4,6-dehydratase (gmds MO)24 served as a positive control 

for Notch signaling inhibition due to reduced fucose on Notch (Figure 1c, bottom left panel). 

GDP-fucose analogs 2 and 5 did not cause any substantial reduction in Notch signaling 

compared to negative controls. By contrast, compounds 7 and 8 caused a partial reduction in 

GFP levels, whereas compounds 3, 4 and 6 with the C-6 ethynyl, ethenyl or OH substituents 

respectively, had the greatest inhibitory effect, almost entirely eliminating the GFP Notch 

reporter signal (Figure 1c).

Fucose analogs are added to EGF repeats by Pofut1

Based on previous literature describing the importance of fucose for Notch activation16,25, 

and the effects of sugar analogs in other systems19,20,26–28, we hypothesized that one of two 

possible mechanisms may explain inhibitory activity of synthetic GDP-fucose analogs on 

Notch signaling (Figure 1c); either the analogs inhibit the fucosyltransferase activity of 

Pofut1 resulting in unmodified EGF repeats, or the analogs are transferred by Pofut1, and 

when incorporated into EGF repeats, interfere with Notch signaling. To address this 

question, we incubated HEK293T cells expressing EGF1–18 of Notch1 with peracetylated 

versions of the fucose analogs (Figure 1b, Supplementary Figure 1a), which are more readily 

taken up by cells than the GDP-fucose analogs in cell culture19,20. The success of this 

approach requires that a peracetylated analog be taken up by cells, efficiently converted to 

the corresponding GDP derivative, and transported into the endoplasmic reticulum 

(Supplementary Figure 1c) for utilization by Pofut119,20. In Zebrafish embryos (Figure 1c), 
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we injected GDP-fucose analogs directly into the yolk, thereby bypassing the need for 

conversion of the analogs to their corresponding GDP derivatives.

Using mass spectral glycoproteomic methods, we confirmed that HEK293T cells treated 

with compounds 10 and 11 (the peracetylated versions of 3 and 4, respectively) did not act 

as inhibitors of Pofut1, but were transferred by Pofut1 onto Notch1 EGF repeats. Extracted 

ion chromatograms (EICs) were generated to compare the relative amounts of ions 

corresponding to the fucose analog and fucose-modified glycoforms of a peptide from 

Notch1 EGF6 that contains an O-fucose consensus sequence (Figure 2, see Supplementary 

Figure 2 for mass spectra). In the sample treated with peracetylated fucose (9), this peptide 

is nearly completely modified with fucose (Figure 2a). In the samples treated with 

compounds 10 and 11, the fucose analogs were incorporated into Notch1 EGF repeats at 

high stoichiometry (Figure 2b–c). Significantly, there was essentially no signal for 

unmodified peptide, confirming that the analogs do not inhibit Pofut1 activity. Instead, the 

analogs nearly completely replaced natural fucose on the peptide. Similar analyses of 

EGF1–18 produced in cells expressing Lfng demonstrated that EGF repeats modified with 

analogs 10 and 11 were also efficiently elongated with GlcNAc in cell culture by Lfng 

(Figure 2d–f), showing that incorporation of these fucose analogs did not interfere with 

Fringe N-acetylglucosaminyltransferase activity. Elongation to the tri- and tetra-saccharide 

were also unaffected by fucose analog incorporation (Figure 2d–f). All other peptides with 

O-fucose modification sites on Notch1 EGF repeats that were identified by mass 

spectrometry were similarly modified with these fucose analogs (Supplementary Note 1).

None of the other peracetylated fucose analogs corresponding to those evaluated in Figure 

1c were incorporated into Notch1 EGF repeats, nor did they inhibit fucose incorporation 

(Supplementary Figure 3). Compound 6 had a strong inhibitory effect when injected into 

Zebrafish embryos (Figure 1c), but lack of incorporation of the peracetylated version 

(Compound 14) suggests that it was not efficiently converted to the corresponding GDP-

fucose analog in cells. Compound 13 has been reported to have an inhibitory effect on other 

fucosyltransferases19,20. This compound was efficiently incorporated into Notch1 EGF 

repeats but did not inhibit incorporation of fucose, demonstrating it is also a substrate and 

not an inhibitor of Pofut1 (Supplementary Figure 3). However, it had no significant effect on 

Notch signaling in a cell-based co-culture reporter assay, consistent with the Zebrafish 

embryo data using the GDP version of this sugar analog (Figure 1c, compound 5). 

Compound 17, a previously described inhibitor of fucosyltransferases19, also had no effect, 

suggesting it does not inhibit Pofut1 activity (Supplementary Figure 3a). Consistent with the 

lack of incorporation into Notch1 EGF repeats or inhibition of fucose incorporation, we 

observed no effect of any of these compounds (compounds 12–17) on Notch signaling in a 

co-culture reporter assay (Supplementary Figure 3b). Thus, we focused on compounds 10 
and 11 as potential candidates for development of inhibitors of Notch signaling in vivo.

Compounds 10 and 11 inhibit Dll-induced Notch signaling

To further evaluate the effect that incorporation of inhibitory fucose analogs into Notch EGF 

repeats has on Notch signaling, we used a cell-based co-culture Notch reporter assay where 

Dll1 and Jag1 activated Notch1 to nearly identical levels relative to controls (Supplementary 
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Figure 4a). Treatment with peracetylated fucose (9) served as a control and did not inhibit 

Notch signaling under any of the tested conditions (Figure 3). In contrast, treatment with 

fucose analogs 10 and 11 reduced Dll1-induced Notch1 signaling to background levels 

(Figure 3a). Similarly, Dll4-induced Notch1 and Dll1- and Dll4-induced Notch2 signaling 

were all significantly inhibited by compounds 10 and 11 relative to DMSO and compound 9 
treated controls (Figure 3b, d, e). Interestingly, fucose analogs 10 and 11 had no significant 

effect on Jag1-induced Notch signaling (Figure 3c, f). Thus, analogs 10 and 11 preferentially 

inhibit Notch activation from Dll ligands. Both of these inhibitors were effective at 

nanomolar concentrations (Supplementary Figure 4b) and only caused a minimal reduction 

in cell surface expression of Notch1 (Supplementary Figure 4c). Fucose analogs did not 

significantly affect the proliferation rate of cells used in these assays over the time period 

experiments were conducted (Supplementary Figure 4d).

As reported previously, activation of Notch1 or 2 by Dll1 and Dll4 is enhanced by Lfng, 

whereas Notch1 or 2 activation by Jag1 is reduced29–31. Since Lfng transfers GlcNAc to 

both analogs 10 and 11 (Figure 2), we examined whether Lfng had the same effects on 

Notch activation when Notch was carrying these analogs (Supplementary Figure 5). In the 

presence of analogs 10 and 11, co-expression of Lfng in Notch receptor-expressing cells 

enhanced Notch activation by Dll1 or Dll4 (Supplementary Figure 5a, b, d, e), and reduced 

Notch activation by Jag1 (Supplementary Figure 5c, f), consistent with the effects of Lfng on 

Notch receptors modified with natural fucose.

Notch ligand-receptor binding correlates with signaling

A flow cytometry based Notch ligand binding assay was used to determine if the decreased 

Notch signaling caused by fucose analogs 10 and 11 was a result of reduced ligand-receptor 

binding. Binding experiments with Dll1 and Dll4 correlated well with Notch signaling data. 

Dll1-Notch1 binding was reduced to background levels after treatment with compounds 10 
and 11 (Figure 4a). Dll1-Notch2, Dll4-Notch1 and Dll4-Notch2 binding were all 

significantly reduced, but to a lesser extent (Figure 4b, d, e). All four Dll-Notch binding 

interactions were partially rescued by Lfng (Supplementary Figure 6a, b, d, e), similar to the 

effect of Lfng in Notch signaling assays. These data suggest that reduced ligand-receptor 

binding is substantially responsible for the effects of inhibitory fucose analogs on Dll-

induced Notch signaling.

As we and others have reported, the extent of Jag1 binding levels does not necessarily 

correlate with signaling intensity30–32. Relative to DMSO and compound 9 treated controls, 

compounds 10 and 11 caused a modest reduction in Jag1 binding to Notch1 and Notch2 

(Figure 4c, f). This reduction in binding did not correlate with a significant effect of these 

inhibitors on Jag1-induced Notch signaling, although Jag1-induced signaling was generally 

slightly reduced (Figure 3c, f). As previously reported30–32, Lfng caused a slight increase in 

Jag1-binding for DMSO controls as well as analog 9, 10 and 11 treated samples 

(Supplementary Figure 6c, f). These results provide further support for the idea that Jag1-

mediated Notch activation is dependent on more than just ligand binding as measured in a 

flow cytometry binding assay30–32.
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Fucose analogs on ligands do not affect Notch activity

In the co-culture Notch reporter assay, both ligand-expressing cells and Notch receptor-

expressing cells were exposed to the same treatment conditions, and ligands also contain 

EGF repeats modified with O-fucose33,34. Thus, we assessed if exposure of the ligand-

expressing cells to these conditions reduced their ability to induce Notch signaling and 

thereby contributed to the inhibitory effects of O-fucose analogs 10 and 11. This was tested 

in a reverse binding assay, in which cells overexpressing full-length Dll1 grown in the 

presence of each experimental compound were assessed for their ability to bind a soluble 

ligand-binding fragment of the Notch1 ECD that was generated with natural fucose. None of 

the treatment conditions caused any significant change in the ability of Dll1 to bind NECD 

(Supplementary Figure 7a–b). In addition, we used a plate-coating assay, in which plates 

were coated with Notch ligands generated with natural fucose. Notch1 reporter cells were 

plated onto the plate-bound ligands and incubated with fucose analogs. The results showed 

the same pattern of inhibition of Notch signaling as in the co-culture Notch reporter assay, 

where cells expressing both Notch ligands and receptors were exposed to fucose analogs 

(Supplementary Figure 7c). Taken together, these data strongly support the hypothesis that 

the incorporation of compounds 10 and 11 into EGF repeats of Notch receptors, not into 

EGF repeats of Notch ligands, is responsible for their inhibitory effect.

Fucose analogs on Notch1 EGF8 inhibit Notch signaling

Recent mutagenesis and structural studies13,31,35 have demonstrated that the O-fucose 

residues on EGF8 and EGF12 are both directly involved in Notch-ligand interactions. In 

order to gain further insights into the mechanism by which compounds 10 and 11 inhibit 

Notch signaling, we generated Notch1 mutants in which the O-fucose modification sites in 

EGF8, EGF12 or both had been eliminated. We hypothesized that if these fucose analogs 

interfere with binding to Delta-like ligands when incorporated at either EGF8 or EGF12, 

then eliminating the O-fucose modification at these sites by mutagenesis might relieve the 

inhibition. Since treatment with 50 μM analogs completely inhibited Dll1-mediated Notch1 

activation (Figure 3a), we used a lower concentration to achieve partial inhibition in these 

studies (100 nM, Supplementary Figure 4b). As expected, elimination of fucose at these 

sites caused a substantial reduction in Dll1-induced Notch signaling in natural fucose, while 

the EGF8/12 double mutant had essentially no activity (Figure 5a). Treatment with 100 nM 

compounds 10 and 11 caused a further decrease in Notch signaling, indicating that 

incorporation of the analogs at either of these individual sites was not solely responsible for 

the inhibitory effects of the fucose analogs. Normalizing Notch activity to the DMSO-treated 

control for each mutant allowed us to compare the relative decrease caused by each analog 

with each mutant (Figure 5b). Interestingly, the EGF8 mutant partially rescued inhibition by 

compounds 10 and 11, but the EGF12 mutant was inhibited as potently as wild type Notch1.

Similar experiments using Dll4 as the activating ligand also demonstrated that O-fucose on 

EGF8 and EGF12 are important for optimal Notch1 activation in the absence of analogs 

(Figure 5a), but the effect was smaller than for Dll1. As with Dll1, elimination of the fucose 

site on EGF8 partially rescued Notch1 inhibition by compounds 10 and 11 compared with 

controls (Figure 5c), while mutation of the EGF12 fucose site had no significant effect on 

the ability of the analogs to inhibit signaling. The EGF8/12 double mutant had a similar 
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effect to the EGF8 single mutant. These data suggest that incorporation of fucose analogs at 

EGF8 play an important role in mediating the inhibitory effects of fucose analogs 10 and 11, 

but incorporation of these analogs at some of the other 18 O-fucose sites on Notch1 must 

also be important.

Since fucose analogs 10 and 11 result in reduced binding to Delta-like ligands (Figure 4), we 

predict that the presence of the analogs on EGF8 interferes with binding to Delta-like 

ligands more than to Jag1 (Figure 5d). Although no current structure contains Notch1 EGF8 

co-crystallized with a Delta-like ligand, the recent structure of Notch1 EGF8–12 co-

crystalized with Jag1 revealed that the O-fucose residues on EGF8 and 12 are directly 

involved in interactions with Jag135. Modeling of the fucose analogs into this structure 

revealed no steric clash between Notch1 and Jag1 at either EGF8 or EGF12, consistent with 

lack of effect of the analogs on Jag1-mediated Notch1 activation (Supplementary Figure 8a). 

Similar modeling supported the absence of a steric clash between fucose analogs at EGF12 

and Dll4, consistent with our mutagenesis data (Supplementary Figure 8b). Confirmation 

that the presence of the analogs at EGF8 causes a steric clash with Delta-like ligands awaits 

a co-crystal structure with these ligands.

Compound 10 inhibits T-cell differentiation

To assess the functional consequences of remodeling Notch glycosylation, we investigated 

the impact of fucose analog 10 on Notch-dependent T-cell differentiation in a co-culture 

assay. LSK (Lineage−Sca1+ckit+) bone marrow stem cells isolated from mice heterozygous 

or wild type for all three Fringe enzymes36 were overlaid on OP9-GFP stromal cells alone or 

OP9-GFP cells expressing Dll1 (OP9-Dll1) or Dll4 (OP9-Dll4) to promote differentiation 

(Fringe heterozygous mice do not exhibit haploinsufficiency36). Both OP9-Dll1 and OP9-

Dll4, but not OP9 alone, promoted differentiation to CD25+ T-cell progenitors of LSK cells 

grown in the control compound 9 (Figure 6a). However, after treatment with compound 10, 

neither Dll1 nor Dll4 promoted T-cell differentiation (Figure 6). This same result was 

obtained when co-cultures were incubated with 1 μM DAPT to inhibit Notch signaling (data 

not shown).

Discussion

We demonstrate here that certain fucose analogs serve as inhibitors of Notch signaling, 

preferentially inhibiting Notch activation from Delta-like ligands. To our knowledge, these 

are the first examples of small molecule, ligand-specific inhibitors of Notch1 that have been 

reported. The peracetylated analogs are converted to GDP-fucose analogs intracellularly 

(Supplementary Figure 1c), utilized as substrates by Pofut1, and incorporated into Notch 

EGF repeats at high stoichiometries. Further, Lfng can transfer GlcNAc to incorporated 

fucose analogs and alter their effect on Notch signaling strength. Here, we posit that this 

type of manipulation of Notch receptor glycosylation will lead to a better understanding of 

exactly how glycan modifications alter Notch functions. This may then be directly applied 

toward the development of novel strategies for manipulating Notch signaling in functional 

processes such as T-cell differentiation or cancer cell proliferation.
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Interestingly, the effects of these inhibitory fucose analogs (10 and 11) had different effects 

on the various Notch-ligand interactions assessed. Among Delta ligands, we saw complete 

inhibition of Dll1-Notch1 signaling, but only partial inhibition of Dll4-Notch1, Dll1-Notch2, 

and Dll4-Notch2 signaling. Based on previous reports showing that the Dll1-Notch1 

interaction is relatively weaker than the other interactions we examined30,37, our observation 

suggests that the observed inhibitory effect is more potent in the setting of lower receptor-

ligand affinity complexes. A similar hypothesis might also explain why elongation by Lfng, 

which has been shown to enhance receptor-ligand affinity30, is able to partially rescue the 

inhibitory effect of these analogs. The added GlcNAc forms stabilizing bonds between 

Notch ligand and receptor13, which offsets some of the destabilizing effect of the fucose 

analogs.

Despite somewhat reduced binding affinity in the presence of inhibitory fucose analogs, 

Jag1-induced Notch signaling was relatively unaffected by these compounds. This could be 

due to a slightly different signaling mechanism, which does not necessarily correlate with 

binding affinity and may involve differences in the formation of the catch-bonds recently 

demonstrated to form between Notch1 and ligands under pulling force35. Dll1-mediated 

signaling is more sensitive to changes in glycosylation of Notch receptors than Jag1-

mediated signaling in several contexts31,38. Here we suggest that variation in steric 

interactions between receptor and ligand plays a substantial role in controlling these 

differences and that we can take advantage of these differences to generate ligand specific 

inhibitors.

Our data also indicate that incorporation of fucose analogs 10 and 11 at EGF8 plays an 

important role in mediating their inhibitory effects, while EGF12 is less important. This 

suggests that O-fucose on EGF8 plays an important role at the interface of Dll1 or Dll4 and 

Notch1 binding. Thus, incorporation of an additional carbon on C6 of fucose at EGF8 is 

predicted to cause a steric clash with Delta-like, but not Jag ligands (Figure 5d). Consistent 

with the steric clash model, smaller modifications at C6 (i.e. the fluoro group in compounds 

5 or 13) did not alter Notch activity in either Zebrafish or mammalian cell systems, even 

though this analog was efficiently incorporated into Notch 1 EGF repeats by Pofut1 

(Supplementary Figure 3). Larger groups (i.e. compounds 6, 7 and 8) also inhibited Notch 

activation in the Zebrafish system as would be expected (Figure 1c), but the peracetylated 

versions of these compounds (compounds 14, 15 and 16) were not incorporated into Notch1 

EGF repeats (Supplementary Figure 3), so could not be analyzed further. Structural 

modeling also suggests that the additional carbons on compounds 10 and 11 incorporated at 

EGF8 and EGF12 do not cause any steric interference between Notch1 and Jag1 

(Supplementary Figure 8a) or Notch1 EGF12 and Dll4 (Supplementary Figure 8b), 

supporting our steric clash hypothesis (Figure 5d). It is important to note that incorporation 

at EGF8 is still only partially responsible for the decrease in Delta-like-mediated Notch1 

signaling caused by analogs 10 and 11. Others have shown that mutations13 and glycan 

modifications30,31,39 on Notch EGF repeats outside of the ligand binding domain also affect 

Notch function. It is possible that the presence of fucose analogs outside of the ligand-

binding domain might cause conformational changes in Notch that destabilize Notch-ligand 

interactions.
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The combined data show that peracetylated fucose analogs are taken up by cells, converted 

to their corresponding GDP-fucose derivatives and incorporated into Notch EGF repeats by 

Pofut1, and that elongation of fucose by Lfng is not affected by the presence of these groups 

at the 6-carbon position (Figure 2, Supplementary Note 1). Although compound 6 inhibited 

Notch signaling in Zebrafish embryos, its peracetylated counterpart (14) was not 

incorporated into EGF repeats (Supplementary Figure 3a). This was likely due to failure of 

this compound to be utilized by the fucose salvage pathway. Similarly, peracetylated 

versions of compounds 2, 7 and 8 (compounds 12, 15 and 16) were not incorporated into 

Notch EGF repeats in cell culture. Compound 17, an established fucosyltransferase inhibitor, 

did not affect normal Notch fucosylation. This may be explained by the cePofut1-GDP-

fucose co-crystal structure showing that the hydroxyl group on the second position carbon 

plays a critical role in the binding and transfer of GDP-fucose40.

Previous work from our laboratory demonstrates that fucose analogs such as 10 are poorly 

incorporated into N-glycans22. Prior work has also shown that altered N-glycan structures on 

Notch do not affect its ability to be activated by ligand17. Additionally, we have previously 

shown that changes to O-fucose modifications within EGF repeats behave independently of 

enzymes responsible for the addition of O-glucose or O-GlcNAc to these to EGF 

repeats31,41,42. Therefore, we conclude that the incorporation of fucose analogs into Notch 

EGF repeats directly results in decreased ligand-induced Notch signaling and that the effects 

of these fucose analogs are unlikely to have been caused by an indirect effect on other 

glycan modifications within Notch ligands and receptors.

We were able to use the inhibitory fucose analogs to inhibit T-cell differentiation, a 

functional process with a well-established dependence on Dll-mediated Notch signaling43. 

This supports the idea that these inhibitors do in fact have a Notch specific effect that can 

cause functional changes in biological processes. The importance of uncontrolled Notch 

signaling in the etiology of human malignancy has stimulated intense interest in 

development of Notch inhibitors as novel cancer therapeutics. While many Notch-mediated 

cancers rely on ligand independent Notch signaling44, there have been reports suggesting 

that overexpression of individual Notch activating ligands45,46 and Pofut147–49 also 

contribute to cancer development. Here, we demonstrate that fucose analogs can be used as 

inhibitors of Dll-mediated Notch signaling. Similar strategies might be utilized for 

development of cancer therapeutics in the future.

Online Methods

Zebrafish embryo experiments

All zebrafish (Danio rerio) were maintained following standard procedures and embryos 

were staged as previously described50. AB and casper fish [roya9;mitfaw2 (AB)]51 were used 

as wild type fish. The SuH:GFP transgenic line [Tg(TP1bglob:gfp)um13]23 was maintained 

in an AB background. The towhead (twd)rw685 mutant24 was maintained by intercross. Only 

healthy Zebrafish larva with normal shape and behavior, as judged by pre-established 

criteria50, were analyzed. Larvae were assigned randomly to treatment conditions. The gmds 

Morpholino was used at 2 ng per embryo, as previously described24. GDP-fucose and GDP-

fucose analogs were re-suspended in pure water at 20–60 mM and 60 pmol of each analog 
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was injected into embryos at the 1-cell stage. After reaching the desired developmental 

stages (48 hpf), embryos were mounted to the desired position in 1.5% methyl-cellulose in 

E3 medium. Images were taken using an Olympus SZ16 fluorescent dissecting microscope 

and Microfire digital camera (Olympus). Images were taken using the same exposure time 

and lighting intensity settings to ensure that the GFP signal for all images are comparable. 

To ensure that each embryo had one allele of GFP-Notch reporter, heterozygous or 

homozygous [Tg(TP1bglob:gfp)um13] fish were crossed to wild type AB fish. The progeny 

were collected and injected as described above. At 48 hpf, GFP-positive embryos were 

collected and each fish was put into one well of a 96-well plate. A group of 60 embryos was 

treated for each condition. The final number of survived Zebrafish larva ranged from 23 to 

48 due to different fertilization rates. Since the treatments of different GDP-fucose analogs 

created 100% penetrance, no statistical methods were used to determine required sample 

size. All Zebrafish maintenance and usage was performed with the full compliance of ethical 

regulation and was approved by the Institutional Animal Care and Use Committee (IACUC) 

of Albert Einstein College of Medicine.

Expression Constructs

Mouse Notch1 (mNotch1) expression plasmid containing EGF1–18 with C-terminal Myc-

His6 tags (pSecTag2, Invitrogen) was described previously52. The plasmid expressing full-

length mNotch1 (mN1; pcDNA1-mN1-myc) was generously provided by Dr. Jefferey 

Nye53. The plasmid expressing full-length mNotch2 (mN2; pTracer-CMV-mN2-Flag) was 

kindly provided by Dr. Shigeru Chiba54. Fringe plasmids SEAP (EV) and Lfng-AP were 

previously described17. The TP-1 luciferase reporter construct (Ga981-6) was a gift form Dr. 

Georg Bornkamm and the gWIZ β-galactosidase construct was from Gene Therapy Systems. 

A plasmid expressing GFP (pEGFP-N1) was from Clontech. Note that “N1” in this plasmid 

name refers to a Not1 restriction site following the GFP coding region.

Cell culture

HEK293T and NIH3T3 cells (NIH3T3 CRL-1658) cells were obtained from the American 

Type Culture Collection (ATCC)(Manassas, VA). These cells were authenticated and tested 

for mycoplasma contamination by ATCC at the time of purchase. L cells stably expressing 

Jagged1 (Jag1) or Delta-like 1 (Dll1) were a gift of Dr. Gerry Weinmater (UCLA). MS5 

cells stably expressing Delta-like 4 (Dll4) were a gift from Dr. Stephen Blacklow. HEK293T, 

NIH3T3, L cells, and MS5 cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM)(Invitrogen) supplemented with 10% bovine calf serum.

Production of fucose-modified mouse Notch1 EGF 1–18

HEK293T cells were co-transfected with plasmids encoding mouse N1 EGF1–18-MycHis 

(2 μg) and either SEAP (EV) or Lfng-AP (Lfng) (1 μg) in a 10 cm plate containing 8 mL 

media using 18 μl of PEI reagent (polyethyleneimine)55 mixed with 300 μl of OPTI-MEM 

(Invitrogen). Media was changed to OPTI-MEM containing 50 μM of the appropriate fucose 

analog after 6 hours. Four days later the media was collected and protein was purified using 

Ni-NTA resin (Qiagen) and eluted with 250 mM imidazole as described previously56.
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Glycoproteomic analysis of mouse Notch1 EGF1–18

Affinity-purified protein from each culture condition was reduced, alkylated and digested 

(in-gel) with trypsin, chymotrypsin or V8 as described previously52,56. The resulting 

peptides were analyzed by nano LC-MS/MS using Agilent nano-HPLC-CHIP system 

coupled to a model 6340 Ion Trap mass spectrometer as described52,56. Analysis of 

glycopeptides modified with some analogs (compounds 12, 15 and 16) was performed on a 

Thermo-Fischer Q-Exactive Plus coupled to an EasyNano-LC. O-Fucosylated peptides were 

identified by neutral loss searches and semi-quantitative Extracted Ion Chromatograms 

(EICs) of selected ions were generated to compare relative amounts of relevant glycoforms 

of each peptide52,56. EICs were smoothed using a Gaussian algorithm.

Cell-based co-culture Notch reporter assay

NIH3T3 cells (0.5 × 105 cells/well) were seeded in a 24-well tissue culture plate and co-

transfected with 0.1 μg of pcDNA1-mN1-myc or pTracer-mN2-Flag, and either 0.05 μg of 

SEAP (EV) or Lfng-AP (Lfng) plasmid (0.1 μg Lfng-AP was used in Dll1-N2 experiments 

to better evaluate the effects of Fringe), along with 0.12 μg of TP-1 luciferase Notch 

signaling reporter construct and 0.06 μg of gWIZ β-galactosidase construct for transfection 

efficiency normalization using Lipofectamine 2000 (Invitrogen), according to the 

manufacture’s instructions. After 4 hours, media were changed to media containing the 

appropriate peracetylated fucose analog (50 μM, unless otherwise specified) or DMSO. 

Then L cells stably expressing Jag1 or Dll1, or MS5 cells stably expressing Dll4, were 

overlaid on the NIH3T3 transfectants at a density of 1.5 × 105 cells/well. Cells were lysed 

after an additional 24 hour culture and luciferase and β-galactosidase assays were performed 

based on the manufacturer’s instructions (Luciferase Assay system, Promega) as described 

previously52,57. Three biological replicates were performed in at least two independent 

experiments (total n≥6, as indicated in figure legends).

Notch ligand coated plate induction assay of Notch signaling

24-well tissue culture plates were coated with Dll1-Fc (R&D Systems, 3970-DL-050), Dll4-

Fc (Sino Biological, 10171-H02H-50) or Jag1-Fc (R&D Systems, 599-JG-100) (4 μg/mL 

per well for each ligand) in PBS for 2 hours at room temperature. NIH3T3 cells (0.5 × 105 

cells/well) were plated in ligand-coated wells and incubated overnight. Transfection of 

control and Notch reporter constructs, media changes, β-galactosidase, and luciferase 

reporter assays were carried out, as above. Three biological replicates were performed for 

each condition (n=3).

Cell surface N1 expression

HEK293T cells were co-transfected 1.5 μg of either EV or pcDNA-N1-MycHis, and 0.4 μg 

of GFP (pEGFP-N1) in a 3.5 cm plate using PEI transfection reagent. After 4 hours in 

culture, media was changed to media containing 50 μM of the appropriate peracetylated 

fucose analog or DMSO. At 28–30 h post-transfection, the cells were dissociated with cold 

PBS pH 7.4 containing 1% bovine serum albumin (BSA) and resuspended in binding buffer 

(1 mM CaCl2, 1% BSA and 0.05% NaN3 in Hanks’ balanced salt solution pH 7.4 (Gibco)). 

Cells were incubated with 100 μl of anti-mN1 (ECD) antibody (R&D systems, AF5267) at 
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10 μg/ml for 1 h at 4 °C. Cells were washed with binding buffer and then incubated with PE-

anti-sheep IgG (1:100; Santa Cruz, SC-3757) for 30 min at 4 °C. After two washes with 

binding buffer, the cells then were analyzed with a FACSCalibur (BD, Bioscience) flow 

cytometer. The gate was set to collect the GFP positive population of 30,000 events for each 

sample and analyzed using FlowJo software (ver. 9.4.10). Three independent experiments 

were performed for each condition (n=3).

Cell-based Notch ligand binding assay

HEK293T cells (8.5 × 105 cells/well) were seeded in a 3.5 cm culture plate and co-

transfected with 1.5 μg of pcDNA1-mN1-myc, 0.4 μg of GFP and 0.75 μg of either SEAP 

(EV) or Lfng-AP (Lfng) using PEI reagent. After 4 hours in culture, media was changed to 

media containing 50 μM of the appropriate peracetylated fucose analog or DMSO. Cells 

were dissociated 24–28 hours post-transfection with cold PBS pH 7.4 containing 1% BSA. 

Cells were then resuspended in binding buffer. Dll1-Fc (R&D Systems, 3970-DL-050), 

Dll4-Fc (Sino Biological, 10171-H02H-50) or Jag1-Fc (R&D Systems, 599-JG-100) (each 

at 0.5 μg/mL) were pre-clustered with fluorescent secondary antibody PE-goat anti-mouse 

IgG (1:100; Invitrogen, P-852) or PE-anti-human IgG (1:100; Jackson Immuno Research, 

109155-098) for 30 min at 4 °C. Cells were incubated with clustered ligands at 4 °C. After 1 

h, the cells were washed twice with binding buffer and analyzed using a FACSCalibur (BD, 

Bioscience) flow cytometer. The gate was set to collect 30,000 GFP-positive events for each 

sample and analyzed using FlowJo software (ver. 9.4.10). Experiments were performed at 

least three independent times (n≥3, as indicated in figure legends).

For reverse binding assays, HEK293T cells were transfected with 1.5 μg of full-length 

mDll1 (pTracer) and 0.4 μg of GFP, as above. Cells were dissociated and incubated with 0.5 

μg/mL of soluble Notch1-Fc chimera, containing EGF repeats 1–13 (R&D Systems, 5267-

TK-050), for 1 hour. Cells were washed in binding buffer and incubated with PE-anti-human 

IgG (1:100; Jackson Immuno Research, 109155-098). Cells were then washed twice and 

analyzed, as above. Three independent experiments were performed for each condition 

(n=3). See Supplementary Figure 9a for typical gating strategy used for these experiments.

Mutagenesis of O-fucosylation sites in mouse Notch1

O-Fucosylation site mutants at EGF repeats 8, 12, or both of the pcDNA1-mN1myc plasmid 

were provided by Dr. Shinako Kakuda31. Mutations were designed to eliminate the modified 

residue (threonine to valine) within the O-fucosylation consensus sequence, Cxxxx(S/T)C58. 

The mutants were confirmed by DNA sequencing.

Purification of LSK cells from Bone Marrow

LSK cells were purified from bone marrow of FVB littermates, 2 males and 2 females, 

chosen at random. Another experiment was performed with an FVB female heterozygous for 

each of three Fringe genes (Lfng, Mfng and Rfng)36. Mice were housed in a barrier facility, 

allowed to eat and drink ad libitum, and used in experiments at 8–10 weeks of age. All 

experiments were performed with permission from the Albert Einstein Institutional Use and 

Animal Care Committee. Since only FVB mice were used, no blinding was performed. 

Briefly, bone marrow cells were prepared by crushing the femur, tibia, hips and vertebrae of 
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FVB mice in cold Flow Buffer (PBS pH 7.4 lacking cations, containing 4% FBS and 100 

U/ml penicillin/streptomycin). Cells were incubated in 5 ml RBC lysis buffer (0.15 M 

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.2–7.4) for 3 min before adding 40 ml Flow 

Buffer. After centrifugation at 1200 rpm for 10 min at 4 °C, cells were counted using a 

Coulter counter. Approximately 1.5 × 108 cells were incubated with 3 μl FcR blocking 

solution (rat-anti-mouse CD16/CD32) in 250 μl Flow Buffer on ice for 15 min and then 

depleted of Lineage+ cells using biotin-conjugated antibodies against B220 (1:100; clone 

RA3-6B2), CD11b (1:500; clone M1/70), Gr-1 (1:500; clone RB6-8C5), CD4 (1:200; clone 

GK1.5), CD8α (1:200; clone 53-6.7), CD3ε (1:100; clone 145-2C11), Ter119 (1:100; clone 

TER-119), and CD19 (1:100; clone 6D5) (all biotinylated antibodies were from Biolegend) 

in a final volume of 300 μl Flow Buffer. After 30 min on ice, cells were washed with 10 ml 

cold Flow Buffer and the pellet resuspended in 9 ml cold Flow buffer to which 1 ml anti-

biotin microbeads (Life Technology) was added. After rotation for 30 min at 4 °C, bead-

coated cells were removed by magnetic separation. Lineage-depleted cells were incubated 

with anti-Sca-1-PE (1:50; Biolegend, clone D7), anti-cKit-APC (1:50; BD Pharmingen, 

clone–1B8) and streptavidin-PE-Cy7 (1:200; Biolegend) in a final volume of 300 μl Flow 

Buffer. After 30 min on ice, cells were washed with 10 ml cold Flow buffer, the pellet 

resuspended in 300 μl Flow Buffer containing 4,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI; 1:1000). Live, DAPI-negative, Lin−Sca1+cKit+ (LSK) cells were 

collected by cell sorting using a Aria flow cytometer (BD Biosciences), and analyzed using 

FlowJo™ (FlowJo, LLC) software. See Supplementary Figure 9b for gating strategy used 

for these experiments.

LSK cell differentiation assay

OP9-GFP, OP9-Dll1 and OP9-Dll4 cells59 were kindly provided by Cynthia Guidos and 

were cultured in α-Minimum Essential Medium (MEM, Gibco), supplemented with 10% 

FBS (Hyclone), 100 U/mL penicillin/streptomycin. OP9-GFP, OP9-Dll1 and OP9-Dll4 cells 

were plated in 24-well plates (Corning) in 1 ml MEM, supplemented with 20% heat-

inactivated FBS (Hyclone), 100 U/mL penicillin/streptomycin and 25 ng/ml Amphotericin B 

(Gibco), to achieve ~90% confluency after 24 hour. Co-cultures were initiated by overlaying 

LSK cells (3 × 103 per well) in 1 ml MEM containing 5 ng/mL Flt3-L and 1 ng/mL IL-7 

(both from Preprotech, Rocky Hill, NJ). Compound 9 or 10 in DMSO was added to co-

cultures to a final concentration of 25 μM and an equal volume of DMSO was added to 

control wells. Plates were incubated at 37 °C in a humidified atmosphere with 5% CO2. 

Every 2 days, half the medium was refreshed to maintain the final concentration of DMSO, 

9 or 10. On day 8, co-cultures were harvested by forceful pipetting, filtered through a 40 

micron cell strainer, and centrifuged at 1200 rpm for 5 min at room temperature. Cell pellets 

were fixed in 4% paraformaldehyde (PFA) in PBS (pH 7.4, lacking cations) for 15 min at 

room temperature, and stored at 4 °C. For flow cytometry, fixed cells were washed with 1 ml 

cold FACS binding buffer (FBB; Hanks’ balanced salt solution (HBSS), 2% BSA, 0.05% 

sodium azide, pH 7.2–7.4) by centrifugation for 5 min at 1200 rpm. Cells were resuspended 

in 90 μl FBB containing 1 μl Fc block (rat-anti-mouse CD16/CD32), and incubated for 15 

min on ice. Antibody diluted in FBB (10 ml final volume) was added, and the tube was 

incubated for 30 min at 4 °C. To detect differentiated T-cells, CD44-PE (1:200; clone-IM7, 

eBioscience) and CD25-PerCPCy5.5 (1:200; clone-PC61.5, eBioscience). Cells were 
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washed twice in 1 ml FBB and transferred to a 5 ml Polystyrene round bottom tube in 250 μl 

FBB. Immunofluorescence of GFP-negative (non-stromal) cells was analyzed using 

FACSCalibur (BD Biosciences), and data were analyzed using FlowJo software (FlowJo, 

LLC). One of four FVB mice gave reduced numbers of CD25+ cells and is not included in 

the analysis shown in Figure 6. However, when the data were normalized to DMSO control, 

the results for the 4 mice were qualitatively similar (compound 9 (Ac-GDP-Fuc) averaged 

0.97+/−0.15 for Dll1 and 1.11+/−0.11 for Dll4 and compound 10 averaged 0.0+/−0.002 for 

Dll1 and 0.01+/−0.003 for Dll4. See Supplementary Figure 9c for gating strategy used for 

these experiments.

Statistical Analysis

For signaling and binding assays two-way ANOVAs were used to assess significance. 

Tukey’s post-hoc test was used to evaluate differences between individual treatment 

conditions. Statistically identical conditions were grouped together in graphs. Sidak’s 

multiple comparisons test was used to evaluate significance between −Fng and +Lfng 

conditions. Student t-tests were used to assess significance for T-cell differentiation assays. 

All statistical tests were carried out using Prism 7 software (Graphpad).

Structural modeling of O-fucose analogs

Models of fucose analogs were generated in Maestro (Schrödinger Release 2017-1: Maestro, 

Schrödinger, LLC, New York, NY, 2017) and superimposed onto the fucose modifications of 

Notch1 EGF8 and EGF12 in the Notch1-Jag1 complex structure (PDB ID 5UK5). Structural 

analyses, atomic distance measurements, and figure generation were performed in Pymol 

(The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.).

Data Availability

The data that support the findings of this study are available from the corresponding 

author(s) upon reasonable request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effects of fucose analogs on Notch signaling in Zebrafish embryos
(a) Numbered structures of GDP-fucose analogs screened as potential inhibitors of Notch 

signaling in Zebrafish. (b) Peracetylated fucose analogs selected for further analysis in cell-

based assays. See Supplementary Figure 1a for structures of other peracetylated fucose 

analogs. (c) Transgenic Zebrafish embryos expressing a GFP fluorescent Notch signaling 

reporter showed that some injected GDP-fucose analogs, indicated in each panel, reduced 

Notch signaling. Knock down of GDP-mannose-4,6-dehydratase (gmds MO) to inhibit 

endogenous GDP-fucose biosynthesis was used as a positive control for the effect of 

eliminating Notch O-fucosylation and Notch signaling. Scale bar represents 0.5 mm.
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Figure 2. Peracetylated fucose analogs are efficiently incorporated into Notch EGF repeats and 
elongated by Lfng
EGF1–18-MycHis from mNotch1 was transfected into HEK293T cells expressing no Fng 

(a–c) or Lfng (d–f) and the cells were grown in the presence of compounds 9 (a, d), 10 (b, 

e), or 11 (c, f) for 72 hours. Purified EGF1–18-MycHis was digested and subjected to nano-

LC-MS/MS analysis. (a–c) Extracted ion chromatograms (EIC) of the ions corresponding to 

glycoforms (see key) of this peptide show efficient incorporation of the corresponding 

compounds. (d–f) Similar experiments in the presence of Lfng demonstrate elongation of 

fucose analogs with GlcNAc. See Supplementary Figure 2 for corresponding mass spectra 

and Supplementary Note 1 for m/z ratios used to generate EICs.
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Figure 3. Peracetylated fucose analogs inhibit Dll1- and Dll4- but not Jag1-induced Notch 
signaling
NIH3T3 cells expressing mNotch1 (a–c) or mNotch2 (d–f) were co-cultured with cells 

expressing Dll1 (a, d), Dll4 (b, e), or Jag1 (c, f) in the presence of peracetylated fucose 

analogs (compounds 9, 10, 11). Cells transfected with empty vector (EV) were used as a 

negative control and cells grown in DMSO were a positive control for Notch signaling. All 

experiments were performed three independent times, and data represents nine biological 

replicates (n=9). All plots represent mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, Tukey 

post-hoc test, adjusted p values.

Schneider et al. Page 20

Nat Chem Biol. Author manuscript; available in PMC 2018 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Compounds 10 and 11 inhibit Notch-Dll ligand binding
Notch ligand binding experiments were performed to measure the effect of fucose analogs 

on the ability of mNotch1 (a–c) or mNotch2 (d–f) transfectants to bind soluble Dll1-Fc (a, 

d), Dll4-Fc (b, e), or Jag1-Fc (c, f) using cell-based flow cytometry assays. EV transfected 

cells were used as a negative control and cells cultured in the presence of DMSO served as a 

positive control. Six independent experiments were performed for all samples (n=6). All 

plots represent mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, Tukey post-hoc test, adjusted 

p values.
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Figure 5. Incorporation of fucose analogs at EGF8 of Notch1 plays an important role in Dll1 and 
Dll4-mediated Notch activation
(a) Notch1 activation assays using Dll1-Fc (left) or Dll4-Fc (right) as activating ligands 

coated on plates showing the effect of mutations at EGF8, 12 or both on Dll1 and Dll4-

induced Notch1 signaling. Relative Luciferase Unit (RLU) normalized to wild type (WT) 

Notch1. (b) Plate coating Notch1 activation assays using Dll1-Fc as activating ligand in the 

presence of DMSO (control) or 100 nM of the indicated compound. RLU for all constructs 

(WT and mutants) in DMSO was normalized to 1. (c) Plate coating assays for Dll4-induced 

signaling using 50 μM fucose analogs. The EGF8/12 double mutant was also tested. RLU 

for all constructs was normalized to the DMSO control. Box and whisker plots represent six 

biological replicates (n=6). *p<0.05, **p<0.01, ***p<0.001, Tukey post-hoc test, adjusted p 

values. (d) Model figure for fucose analog mediated inhibition of Notch1 activation. 

Elimination of the O-fucose site on EGF8, but not EGF12, partially rescues fucose analog 

inhibition of Notch1 activation by Dll1 suggesting that binding sites corresponding to O-

fucose on EGF12 are tolerant of the additional C6 carbon in compounds 10 and 11. In 

contrast, the binding site on Dll1 is not tolerant of the additional carbon at EGF8, creating a 

steric clash, resulting in the observed decreased activation of Notch1. Additional sites 

contain O-fucose consensus sequences and are modified with O-fucose (red ovals), but 

contribute little to Notch1-ligand interactions compared to EGF8 and EGF1231.
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Figure 6. Fucose analog 10 inhibits the development of T-cell progenitors
Representative flow cytometric profiles of cells produced from bone marrow LSK cells co-

cultured with OP9-GFP, OP9-Dll1 or OP9-Dll4 stromal cells in the presence of DMSO, 

compound 9 or compound 10 for 8 days. (a) Production of CD25+ T-cell progenitors was 

evaluated by the expression of CD44 and CD25. (c) Percentage of CD25+ T-cells from mice 

with a profile typical of panel a (n=3). Mean ± SEM, each symbol represents average data 

from duplicate wells of LSK cells from one mouse. Data shown are representative of three 

experiments performed in duplicate. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, 

unpaired two-tailed Student’s t-test.
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