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A B S T R A C T   

The ceRNA network, consisting of both noncoding RNA and protein-coding RNA, governs the 
occurrence, progression, metastasis, and infiltration of lung adenocarcinoma. Signatures 
comprising multiple genes can effectively determine survival stratification and prognosis of pa
tients with lung adenocarcinoma. To explore the mechanisms of lung adenocarcinoma progres
sion and identify potential biological targets, we carried out systematic bioinformatics analyses of 
the genetic profiles of lung adenocarcinoma, such as weighted gene co-expression network 
analysis (WGCNA), differential expression (DE) assessment, univariate and multivariate Cox 
proportional hazard regression models, ceRNA modulatory networks generated using the ENCORI 
and miRcode databases, nomogram models, ROC curve assessment, and Kaplan-Meier survival 
curve analysis. The ceRNA network encompassed 37 nodes, comprising 12 mRNAs, 22 lncRNAs, 
and three miRNAs. Simultaneously, we performed integration analysis using the 12 genes from 
the ceRNA network. Our findings revealed that the signature established by these 12 genes serves 
as an adverse element in lung adenocarcinoma, contributing to unfavorable patient prognosis. To 
ensure the credibility of our results, we used in vitro experiments for further verification. In 
conclusion, our study delved into the potential mechanisms underlying lung adenocarcinoma via 
the ceRNA regulatory network, specifically focusing on the PIF1 and has-miR-125a-5p axis. 
Additionally, a signature comprising 12 genes was identified as a biomarker related to the 
prognosis of lung adenocarcinoma.   

1. Introduction 

As cancer has the highest incidence and mortality rates worldwide, lung cancer (LC) will resulted in 131880 deaths among 235760 
patients in 2021, which has brought a huge burden to our society [1]. About 85% LC patients suffer from non-small-cell LC (NSCLC) 
[2], and the primary pathological form of LC is lung adenocarcinoma (LUAD; approximately 60%) [3,4]. Although many new 
treatments have been developed, patient prognosis remains poor [5]. Enhanced comprehension of the underlying signaling networks 
used in LUAD occurrence and progression is potentially beneficial in formulating highly efficacious therapies with enhanced prognosis 
as well as early diagnosis [6]. Therefore, in addition to common clinicopathological features, it is critical to develop novel bio
indicators for personalized hazard stratification of LUAD and prediction of patient survival. 

In the human genome, non-coding RNAs (ncRNAs) are more abundant than mRNA, and ncRNAs transcriptionally and post- 
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transcriptionally modulate transcript levels [7]. ncRNAs mainly function via miRNA response elements (MREs); they interact with 
MREs to form a competitive endogenous RNA (ceRNA) axis [8]. The ceRNA hypothesis states that ncRNAs absorb and bind miRNAs 
like sponges and regulate gene expression by inhibiting their ability to bind to mRNA [9]. Previous studies have reported that ceRNA 
networks regulate occurrence, metastasis, and outcomes of various cancers, namely LINC00665 and miR-98 networks in LC [10], 
OSTN-AS1 in breast cancer [11], FAS and HOTAIR in colorectal cancer [12,13], and LINC00301 in NSCLC [14]. However, their 
relationship to lung adenocarcinomas remains unclear. Therefore, we need to clarify their relationship to analyze the underlying 
signaling pathways that regulate the occurrence, development, and metastasis of lung adenocarcinoma. 

In recent years, many studies have reported the significance of survival stratification and prognosis prediction in patients with 
LUAD based on transcriptomic and genomic data [15–17]. However, owing to limited sample quantity and lack of independent 
verification, the signatures reported in these studies have not yet been put into clinical practice [18,19]. Today, large public databases 
containing sufficient gene profile information, such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), 
provide the possibility of developing more reliable prognostic signatures for LC. 

Herein, we employed GEO and TCGA gene profile datasets to develop a ceRNA modulatory axis that potentially impacts lung 
adenocarcinoma patient prognosis. We further used 12 genes in the ceRNA modulatory axis to construct prognosis-related signatures 
to predict LUAD. The ceRNA network and signature enable clinicians to evaluate the prognosis of patients with LUAD, providing hope 
for individualized treatment interventions. 

2. Materials and methods 

2.1. Patients 

All tumor and normal tissue specimens were acquired from LUAD patients at the Second Affiliated Hospital of Harbin Medical 
University. LUAD was confirmed in all participants by pathologists and clinicians. Following tumor surgical resection, paired tumor 
and adjoining normal tissues were harvested from all participants. Additionally, corresponding clinical data were also obtained from 
30 patients. This study was conducted with permission from the ethical committee of the participating hospital. 

2.2. Data downloading and processing 

All necessary data were acquired from a freely available online database. LUAD gene expression information was retrieved from the 
GEO database. The following data were included for analysis: 1. A minimum of 20 tumor and normal tissue specimens, and 2. cor
responding clinical information of patients; 3. The data has not been processed. The final datasets were GSE87340 (27 patients and 54 
samples) and GSE68571 (86 patients and 96 samples). Additionally, the count, Transcript per Kilobase per Million (TPM) gene 
expression and clinical information of LUAD were acquired from TCGA database, and 598 RNA-seq data, 522 clinical data, 19895 
mRNAs, 16784 lncRNAs, and 2197 miRNAs were obtained. 

Following retrieval from the GEO database, the data was adjusted and normalized using “limma” (R 3.54.2), and data was con
verted to log2. Data obtained from TCGA database received gene ID annotation via the GENCODE database, and only the gene with the 
highest expression level was reserved for genes with duplicate gene names. 

2.3. Screening of differentially expressed (DE) mRNA, lncRNA and miRNA 

DE LUAD mRNA, lncRNA, and miRNA in TCGA were assessed via “limma” (R 3.54.2). To achieve P values, we employed false 
discovery rate (FDR) to adjust multi-test statistical significances. In this study, the cut-off values for significantly DE genes were | 
log2FC |>1 and FDR<0.05. 

2.4. Analysis of weighted gene Co-expression network (WGCNA) 

WGCNA [20] is a robust biological technique that utilizes relationships between gene sets and phenotypes to identify highly related 
gene modules, candidate biomarker genes, and potential therapeutic targets. Herein, TCGA LUAD gene expression profiles were chosen 
to construct a weighted gene co-expression network (WGCN). Samples and genes were filtered and “WGCNA” (R 1.71) was employed 
for Pearson’s correlation computation between all gene pairs in chosen samples, and to generate the adjacency matrix. Subsequently, β 
= 10 (scale-free R2 = 0.90) was employed as a soft cut-off to generate a scale-free axis. To further screen for functional modules within 
the WGCN, topological overlap measure (TOM) was computed using an adjacency matrix. Based on the TOM values, the dynamic 
tree-building method was used to establish gene modules and screen module eigengenes (MEs). MEs represented the genetic profiles 
within modules. 

2.5. Enrichment analysis and single sample gene set enrichment assessment 

"ClusterProfiler” (R 4.4.4) was employed for GO functional enrichment and KEGG pathway enrichment assessments to predict the 
physiological roles of target genes. We conducted single sample gene set enrichment analysis (ssGSEA) using “gsva” in “GSVA” (R 
1.44.3), and calculate the standardized enrichment score of the gene set in each patient. 
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2.6. Generation of ceRNA modulatory axis 

The miRcode database (http://www.mircode.org/index.php) with different lncRNA interactions of miRNAs and finding TCGA 
difference expression in LUAD data lncRNA overlapping lncRNA, the final lncRNA-miRNA relationship pair was obtained. The ENCORI 
(https://starbase.sysu.edu.cn/index.php) [21] database was employed to estimate the miRNAs of target genes and establish 
mRNA-miRNA relationship pairs. 

Overlapping miRNAs shared between lncRNA-miRNA and mRNA-miRNA association pairs with DE miRNAs were used to confirm 
the final mRNA, lncRNA, and miRNA regulatory axis. 

2.7. Cell lines and culture 

Human LUAD cell lines (HCCB27, HCC-1438, NCI–H460, A549, SW 1573, COR-L23, and NCI–H810) and a normal lung epithelial 
cell line (BEAS-2B) were acquired from American Type Culture Collection (ATCC, Manassas, VA, USA). The LUAD cell lines were 
grown in Ham’s F–12K medium (Jiangsu Kaiji Biotechnology Co., Ltd., Tokyo, Japan) or RPMI-1640 medium (Gibco Laboratories, 
Grand Island, NY, USA), and BEAS-2B cells in DMEM Medium (Gibco Laboratories). 

Fig. 1. The study design.  
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2.8. Total RNA Extraction and Quantitative Real-Time PCR (qRT-PCR) 

Total RNA isolation from 30 matched LUAD and non-cancerous tissues employed RNA-easy Isolation Reagent (No. RC105-12, 
Vazyme, China). Thereafter, qRT-PCR was conducted using HiScript III first-strand immunohistochemistry (IHC) and ChamQTM 
Universal SYBR® qPCR Master mix (No. Q635-04, Vazyme), as per kit directions. 

2.9. Immunohistochemistry 

IHC was performed as described previously. The anti-SST rabbit polyclonal antibody (cat. No. ab187326; 1:100 dilution; Abcam, 
UK) was combined with tissue section, prior to an overnight incubation at 4 ◦C, followed by PBS wash, and a 30-min incubation in 
biotinylated secondary antibody (Cat. No. 111-024-005, 1:1500 dilution; Jackson ImmunoResearch, USA) at room temperature (RT), 
prior to a 5-min exposure to diaminobenzidine at R. To generate the negative control, the aforementioned steps were taken PBS and not 
primary antibody. 

2.10. Western blotting assay and cell counting kit-8 (CCK-8) assay 

Using Western blot, we determined target protein expression levels. The blots were incubated with an antibody against PIF1 (Cell 
Signaling Technology, #4903S) overnight at 4 ◦C. The CCK-8 assay (Beyotime, Shanghai, China) was employed for cell proliferation 
assessment, according to a specific protocol. The uncropped versions were provided in Supplementary Material. 

2.11. Statistical analysis 

"Surv_cutpoint” in “survminer” (R 0.4.9) calculated the optimal truncation value, and group patients Kaplan-Meier survival curves 
were plotted between various patient groups using “surviver” and “survival” (R 3.3-1). Significant differences were determined using 
log-rank test. "pROC” (R 1.18.0) was employed for ROC curve assessment, “rms” (R 6.3-0) for nomogram model and calibration curve 
generation, and “ggplot2” (R 3.4.3) for drawing. 

In this study, all data analyses utilized R 4.2.0 and the web-based analytical tool “Xiantao Academic.” Unless specified, all statistical 
analyses were bilateral and significance was determined at P < 0.05. 

Fig. 2. Identification of tumor-related genes. A, network topology scale-free fitting index acquired from soft cut-off analysis; B, hierarchical cluster 
assessment for co-expression clusters detection using a corresponding color code. Individual color indicates a single module in the WGCNA- 
generated gene co-expression network; C, correlation between genes in different modules and tumor samples or normal samples; D, character
istic gene connectivity: red and blue represent positive and negative associations, respectively; E, assessment of gene relevance and module 
membership in the blue module; F, gene heatmap in the blue module. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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3. Results 

3.1. Construction of WGCN 

A schematic of our research design is shown in Fig. 1. To detect the functional modules of LUAD, we used the LUAD data from TCGA 
for WGCNA. According to the data filtered by median absolute deviation (MAD), we screened 4974 genes whose expression levels were 
in the top 25% of MAD to construct the WGCNA network. First, an appropriate soft threshold was selected according to R2 = 0.9, and 
the relation matrix was established according to β = 10 (Fig. 2a). Subsequently, the relation matrix was converted to an adjacency 
matrix, prior to the usage of power-exponential weighting to generate a scale-free axis. Finally, using the adjacency matrix, a TOM 
matrix was developed to compute the TOM dissimilarity between genes (disTOM), and a gene feature module was established. Twelve 
gene feature modules were obtained (Fig. 2b–d). 

Correlation analysis of the gene modules with clinical phenotypes was performed, and the correlation coefficients of each module 
with phenotypes were calculated (Fig. 2e). We found that the blue module, containing 365 genes, had the highest correlation with the 
clinical phenotype compared to the other modules (R = 0.44, Fig. 2f). Hence, we chose the blue module for further assessment. 

3.2. DE analysis at transcriptome level 

We used “DESeq2” (R) to evaluate the DE mRNA data of normal lung tissue samples and LUAD samples in TCGA. Based on the 
threshold criteria, we screened 1911 strongly DE downregulated mRNA and 3531 strongly DE upregulated mRNA (Fig. 3a). We 
mapped some DE mRNA and found that their mRNA expression levels were significantly different between normal and tumor samples 
(Fig. 3b). 

Fig. 3. Identify differentially expressed (DE) genes. A-C, respectively, are the volcanic maps of DE mRNA, lncRNA, and miRNA in lung adeno
carcinoma, red represents the strongly elevated gene, blue represents strongly diminished gene; D-F, are heatmaps of 100 significantly DE mRNA, 
lncRNA, and miRNA, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Simultaneously, the DE lncRNAs in normal lung tissue and LUAD samples in TCGA was analyzed. We found that 1100 significantly 
DE downregulated lncRNAs and 3690 significantly differentilly expressed upregulated lncRNAs (Fig. 3c). The profiles of some DE 
lncRNAs in normal and tumor specimens are shown in Fig. 3d. 

In addition, DE miRNA analysis in LUAD and normal tissue specimens from TCGA confirmed 158 significantly downregulated 

Fig. 4. Identify tumor genes associated with prognosis. A, the Venn diagram shows the intersection of significantly elevated and diminished genes in 
lung adenocarcinoma and tumor-associated genes in the blue module; B, Upset maps showed the intersection of strongly elevated genes and strongly 
diminished genes with tumor-associated genes in blue modules. C, forest maps show risk ratios for tumor-related genes. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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miRNAs and 185 significantly upregulated miRNAs (Fig. 3e). We visualized the expression levels of several DE miRNAs (Fig. 3f). 

3.3. Confirming prognosis related mRNA based on Cox proportional hazard regression model 

By crossing 5442 significantly DE genes and 365 tumor-related genes in the blue module, we identified 12 significantly DE 
downregulated genes and 128 significantly DE upregulated genes (Fig. 4a and b). 

Among tumor related DE genes, to further identify the genes associated with LUAD prognosis, we performed a univariate Cox 
proportional hazard regression model. Based on our analysis, the hazard ratios (HR) of the 32 genes were highly significant (Fig. 4c). 
Majority gene HRs were >1, suggesting the possibility of these genes as candidate prognostic indicators which enhance tumor 
development and progression. 

3.4. Exploring the axis of gene regulation 

To further analyze the mechanisms of the 32 genes in the ceRNA regulatory network, we used multiple databases to predict the 
miRNAs and lncRNAs associated with the 32 genes. Through the intersection of 32 genes and mRNA in the ENCORI database, it was 
found that 30 genes are related to miRNA in the ENCORI database (Fig. 5a); Simultaneously, 4790 DE lncRNAs were predicted by 
miRNAs in the miRcode database, and 189 lncRNAs were found to be associated with miRNAs through the intersection of lncRNAs 
(Fig. 5b). 

Finally, we found that 13 DE miRNAs may interact with mRNA and lncRNAs by correlating the miRNAs that existed together in the 
two databases and crossing them with the significantly DE miRNAs in TCGA (Fig. 5c). 

The univariate risk model suggested that 22 of the 189 lncRNAs are intricately linked to LUAD prognosis (Fig. 5d); Three of the 13 
miRNAs were related to LUAD prognosis. Interestingly, the univariate risk model showed that all three miRNAs were beneficial for 
patient prognosis (Fig. 5e). 

3.5. Functional enrichment analysis of ceRNA network nodes 

After selecting 22 lncRNAs and 3 miRNAs using the univariate Cox proportional hazard model, we found that only 12 of the 30 

Fig. 5. Identify the nodes of the ceRNA axis. A, venn diagram shows the intersection of mRNA in the ENCORI database and 32 genes in lung 
adenocarcinoma; B, venn diagram revealing the intersection of lncRNA in miRcode database and lncRNA differentially expressed (DE) in lung 
adenocarcinoma; C, venn diagram revealing the intersection of lncRNA-miRNA axis, mRNA-miRNA, and DE miRNAs in lung adenocarcinoma; D, 
forest maps of 22 lncRNAs single-factor Cox proportional risk models; E, forest maps of three miRNA single-factor Cox proportional risk models. 
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genes were associated with the 22 lncRNAs and 3 miRNAs. 
To elucidate the physiological roles of tumor-related genes, we conducted GO functional enrichment analysis of the 12 tumor- 

related genes. In BP, we found that these genes are related to the cell proliferation process (Fig. 6a), such as DNA replication, DNA 
conformity change, DNA duplex unwinding, and G2/M transition of mitotic cell cycle, including nuclear chromosome, mitochondrial 
nucleus, central region, and replication fork (Fig. 6b). Enrichment analysis results related to MF are also displayed (Fig. 6c), such as 
DNA helix activity, ATP-dependent activity, acting on DNA, cobalamin binding, and oligopeptide binding. In the GO enrichment 
analysis circle, we observed that PIF1 existed at the BP, CC, and MF levels (Fig. 6d–f), suggesting that this gene may strongly contribute 
to LUAD occurrence, development, and prognosis. 

3.6. The 12 genes-based ceRNA modulatory axis 

We generated a ceRNA modulatory axis using the 12 mRNA, 22 lncRNAs, and three miRNAs (Fig. 7a). The network showed their 
regulatory relationships in detail, including 17 mRNA-miRNA relationship pairs and 29 lncRNA-miRNA regulatory axes. In addition, 
the nodes of the network included 19 significantly upregulated lncRNAs, three significantly downregulated lncRNAs, one significantly 
downregulated miRNA, two significantly upregulated miRNAs, and 12 significantly upregulated genes (Fig. 7b–d). 

Among the 12 genes, PIF1 simultaneously enriched three levels of biological function in LUAD (Fig. 6d–f). PIF1 is also highly 
expressed in LUAD tissue, and the Kaplan-Meier survival curve indicates that PIF1 is a risk factor (Fig. 7e); the area under the ROC 
curve (AUC) of this gene was 0.91 (AUC = 0.91, Fig. 7f), indicating that PIF1 has good predictive potential for the prognosis of patients 
with LUAD. Therefore, we investigated the mechanisms regulating the PIF1 axis. Among the three miRNAs that have a regulatory 
relationship with PIF1, only has-miR-125a-5p exhibited excellent predictive impact on LUAD patient prognosis (AUC = 0.90, Fig. 7g 
and h), and was expressed at low levels in patients with LUAD. PIF1 and has-miR-125a-5p have opposite regulatory effects on LUAD, 
suggesting that has-miR-125a-5p may modulate LUAD development and progression by inhibiting the function of PIF1. 

3.7. Construction of the prognosis related signature 

To explore the comprehensive effect of these 12 genes on the prognosis of LUAD, we further analyzed these 12 genes as signatures. 
Based on “GSVA,” (R) we conducted ssGSEA on the signature, and calculate the normalized enrichment scores (NESs) of the signature 
in each patient. 

First, we built a nomogram model of the NES-based signature (Fig. 8a). Unsurprisingly, the NES contents of signature was nega
tively linked to the patient survival. Furthermore, the best NES-based cutoff value was computed, and patients were participated into 
elevated- and reduced-scoring cohorts. Kaplan-Meier survival curve assessment revealed that patients with elevated scores exhibited 
worse overall survival (OS), indicating that enhanced NESs might be a possible risk factor for patients (Fig. 8b). To evaluate signature 
accuracy in estimating patient outcome, we conducted ROC curve analysis. Our findings suggested that the AUC was 0.61, demon
strating that the signature accurately predicted patient outcome (AUC = 0.61, Fig. 8c). 

Fig. 6. GO enrichment assessment of tumor-associated genes. A-C, histograms derived from enrichment analysis of 12 tumor-associated genes, 
including BP, CC, and MF terms; D-F, circles of enrichment assessment of 12 tumor-associated genes including BP, CC, and MF terms. Left half of the 
circle represents gene name, and is categorized via logFC from bottom to top, the right half of the circle represents term name, and the line between 
the gene and term represents genes that exist on the term. 
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Additionally, we assessed the association between NESs and clinicopathological features (Fig. 8d). Male patients had higher NES 
levels. There were also significant differences in NESs among the different pathological stages of the tumor. The NESs of stage III/IV 
disease patients were elevated, compared to those of stage I/II disease patients, which further confirmed the poor prognosis of stage 
III/IV disease patients. T, N, and M stages showed similar results. 

Finally, we analyzed the signature in the GSE87340 and GSE68571 datasets to verify its universal applicability. First, we calculated 

Fig. 7. Assessment of the ceRNA modulatory axis. A, ceRNA network integrating data from mRNA, lncRNA, and miRNA, the diamond indicates 
mRNA, triangle indicates lncRNA, ellipse indicates miRNA, red indicates enhanced RNA, and blue indicates diminished RNA; B, the boxplot shows 
the expression difference of 12 mRNA in the ceRNA axis; C, boxplot revealing the difference of three miRNA expressions in the ceRNA axis; D, the 
box plot depicting the expression difference of 22 lncRNAs in the ceRNA network; E, PIF1 survival curve analysis; F, ROC curve analysis of PIF1 (p =
0.0045); G, has-miR-125a-5p survival curve analysis; H. ROC curve analysis of has-miR-125a-5p (p = 0.0017). (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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the NESs for each patient in the cohort and constructed a nomogram. It can be seen that the NESs of the signature is negatively related 
to patient survivability (Fig. 8e). Kaplan-Meier survival curve assessment revealed that patients with elevated scores exhibited worse 
OS duration, which may be a potential risk factor (Fig. 8f, Supplementary fig. 1A). T o elucidate signature accuracy in estimating 
patient outcome, we conducted ROC curve analysis. Our findings suggested that the AUC is 0.65 and 0.64, suggesting that the signature 
has an excellent predictive impact on patient outcomes (Fig. 8g, Supplementary fig. 1B). In conclusion, the analysis of the GSE87340 
and GSE68571 datas ets showed that this signature has stable predictive efficacy and can better predict the LUAD patient prognosis. 

3.8. Verification of signature-associated gene expressions in lung adenocarcinoma samples and cells 

To further confirm signature accuracy, we obtained clinical data and corresponding tissue samples from 30 patients. Patients were 
stratified according to tumor location, and patient demographics is presented in Supplementary table 1. Weexamined the 12 signature 
gene expressions in clinical samples from LUAD patients using qRT-PCR (Fig. 9a). We revealed that the 12 gene expressions were 
higher in LUAD tissues. The 12 gene expressions were further validated in multiple LUAD cell lines and normal lung epithelial cells 
(Fig. 9b). 

In previous studies, we found that PIF1 may be strong modulators of lung adenocarcinoma. Immunohistochemical analysis of LUAD 
and normal tissue samples showed that PIF1 was highly expressed in the tumor tissues. (Fig. 9c). Next, we explored the functional role 
of PIF1 in HCC827 and NCI–H810 cell lines. As depicted in Fig. 9d, the PIF1 expression was significantly reduced after transfection of 
si-PIF1 in HCC827 and NCI–H810 cell lines. The CCK-8 assay revealed that compared to the control group, the growth rate of the 
HCC827 and NCI–H810 cell lines transfected with si-PIF1 significantly decreased (Fig. 9e). HCC827 and NCI–H810 cells were chosen 
for additional assessment because PIF1 contents were highest among these cells. The reduction efficiency was assessed via knocking 
down PIF1 with siRNA and performing western blotting (Fig. 9f). Similar to prior data, the PIF1 contents decreased in HCC827 and 

Fig. 8. Establishment and verification of prognostication related signatures. A, calculate the standardized signature enrichment score and generate 
a nomogram model; B, we separated patients into enhanced and reduced score cohorts, based on the optimal threshold value for the standardized 
enrichment score. Then, performed survival analysis; C, signature ROC curve analysis (p = 0.0006); D, the boxplot shows the differences between 
standardized enrichment scores of different pathological stages, T stages, N stages, M stages, and gender; E-G, respectively, are the nomogram 
model, survival curve and the signature ROC curve in the data set GSE87340 (p = 0.0326). 
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NCI–H810 cells transfected with siRNA. 

4. Discussion 

Similar to majority tumors, LUAD development and progression are multi-gene, multi-variable, multi-stage processes [22,23]. 
Understanding the associated network underlying the occurrence and development of LUAD is essential to the establishment of 
efficacious intervention methods and providing a basis for its early diagnosis [24]. Herein, we employed WGCNA to identify 

Fig. 9. The 12 gene expressions in human tissue specimens and cell lines. A, qRT-PCR-based evaluation of the 12 gene expressions in lung 
adenocarcinoma patients. B, RT-qPCR detection of mRNA expression of 12 genes in lung adenocarcinoma cell lines. C, immunohistochemistry-based 
evaluation of PIF1 expression in lung adenocarcinoma patients. D, PIF1 was downregulated in cell lines using siRNAs. E, the proliferation of cells 
transfected with siRNA against PIF1 were measured using CCK8 assays. F, western blot-based verification of PIF1 expression in cell lines, the 
uncropped versions were provided in supplementary material. 
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bioindicators related to the pathogenesis of LUAD. Using the LUAD genetic profile in TCGA, we identified 12 gene modules in the 
WGCNA network, among which the blue module was strongly linked to LUAD (p < 0.001). Simultaneously, we conducted DE as
sessments involving mRNA, lncRNA, and miRNA expression profiles of patients with LUAD in TCGA to identify DE genes. We next 
constructed a univariate Cox proportional risk model based on DE tumor-related genes and identified genes related to prognosis. In 
addition, the ceRNA axis was generated through the association analysis of DElncRNA and DEmiRNA in the ERCORI and miRcode 
databases. The network had 37 nodes, including 12 mRNA (PIF1, DONSON, MMACHC, TWNK, PGM2L1, NCAPD2, ARNTL2, CDCA7, 
FIGNL1, STRIP2, PSAT1 and SKP2), 22 lncRNAs (SMAD5-AS1, WT1-AS, LINC00221, TDRG1, TTLL10-AS1, CLDN10-AS1, 
LGALS8-AS1, LINC00466, LINC00115, GRM7-AS3, SOX21-AS1, TTC3-AS1, KCNQ5-AS1, UBE2Q1-AS1, HAR1B, NALCN-AS1, CAS
K-AS1, POU6F2-AS2, KCNQ1DN, HNF1A-AS1, DENND5B-AS1, and KCNQ1OT1), and 3 miRNAs (miR-590 5p, has-miR-125a-5p and 
has-miR-17-5p). 

Functional enrichment analyses of 12 genes suggested that PIF1 is critical for LUAD development and progression and participates 
in multiple carcinogenesis-related pathways, such as DNA replication, DNA duplex unwinding, ATP-dependent activity, and DNA and 
ATP hydrogenation activity. In our study, PIF1 was highly expressed in LUAD. The prognosis correlation analysis results indicated that 
PIF1 is a risk factor for LUAD, which is not conducive to patient prognosis. 

The PIF1 protein family was first discovered in Saccharomyces cerevisiae; its main members regulates mitochondrial DNA 
recombination and gene stability [25]. Subsequently, PIF1 was reported to function as a helicase in nuclear DNA replication [26,27]. 
Recent evidences revealed that PIF1 is also a major contributor to cancer; for example, PIF1 influences cervical cancer cell proliferation 
and apoptosis by affecting TERT [28]. In addition, PIF1 regulates LUAD development and progression through a ceRNA modulatory 
axis. Ting et al. reported that CircNEIL3 upregulates PIF1 expression by inhibiting miR-1184, thereby mediating focal death and 
affecting radiotherapy in LUAD [29]. Previous studies reported that miR-125a-5 regulates the progression of LUAD via various 
ceRNA-related axes. Gao.et al. found that the oncogene P35B is regulated by microRNA-125a-5p in LC [30], and miR-125a-5p affects 
the carcinogenic effects of NF-κB signaling pathway in LUAD by inhibiting the upregulation of TMPRSS4. 

In this study, we established a ceRNA regulatory axis for PIF1 and has-miR-125a-5p, which regulate LUAD by mediating the 
function of lncRNAs. Based on the modulatory role of PIF1 and has-miR-125a-5p in LUAD, we suggest that the PIF1 and has-miR-125a- 
5p regulatory network strictly controls LUAD progression, invasion, and metastasis. Finally, we constructed a signature related to 
LUAD prognosis using the 12 genes. The results of systematic analysis and verification showed that this signature was superior at 
predicting patient outcome. The establishment of this signature provides clues for the prognosis, targeted molecular therapy, and 
clinical diagnosis of LUAD. 

Our research has limitations. First, our assessment utilized previously published information. Thus, our retrospective analysis 
necessitates and prospective evaluation and validation. Second, to predict the LUAD prognosis using the 12-gene signature as a 
predictive factor, we must be cautious of potential overfitting. To ensure the accuracy of this signature in prognosis prediction, it will 
be crucial to address and mitigate any overfitting issues in our future research; Third, we have thus far conducted only preliminary 
experimental verification. Moving forward, it is imperative to devise a more robust and scientifically rigorous plan to validate the 
analysis results, which will help clarify the potential molecular mechanisms underlying LUAD. 

5. Conclusion 

In summary, our study identified 12 genes associated to LUAD prognosis using comprehensive bioinformatic analyses. This 
signature of 12 genes is a promising biomarker candidate for assessing the prognosis of patients with LUAD. Furthermore, we 
established a ceRNA regulatory network centered on these 12 genes. Notably, our findings highlight the significant involvement of the 
PIF1 and has-miR-125a-5p regulatory axis in the development, progression, and prognosis of lung adenocarcinoma. 
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