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Abstract 30 

BACKGROUND: Transcranial magnetic stimulation (TMS) interventions could feasibly treat 31 

stroke-related motor impairments, but their effects are highly variable. Brain state-dependent 32 

TMS approaches are a promising solution to this problem, but inter-individual variation in lesion 33 

location and oscillatory dynamics can make translating them to the poststroke brain challenging. 34 

Personalized brain state-dependent approaches specifically designed to address these 35 

challenges are therefore needed.   36 

 37 

METHODS: As a first step towards this goal, we tested a novel machine learning-based EEG-38 

TMS system that identifies personalized brain activity patterns reflecting strong and weak 39 

corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. 40 

Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG 41 

training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS 42 

during classifier-predicted personalized CST states.  43 

 44 

RESULTS: MEP amplitudes elicited in real-time during personalized strong CST states were 45 

significantly larger than those elicited during personalized weak and random CST states. MEP 46 

amplitudes elicited in real-time during personalized strong CST states were also significantly 47 

less variable than those elicited during personalized weak CST states. Personalized CST states 48 

lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. 49 

Individual participants exhibited unique differences in spectro-spatial EEG patterns between 50 

personalized strong and weak CST states.  51 

 52 

CONCLUSION: Our results show for the first time that personalized whole-brain EEG activity 53 

patterns predict CST activation in real-time in healthy humans. These findings represent a 54 

pivotal step towards using personalized brain state-dependent TMS interventions to promote 55 

poststroke CST function.  56 

 57 

Keywords: motor cortex, brain stimulation, transcranial magnetic stimulation, 58 

electroencephalography, machine learning 59 
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Introduction   61 

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that could 62 

feasibly treat a variety of psychiatric and neurological disorders, including depression (George 63 

et al., 1995, 2010) obsessive-compulsive disorder (Mantovani et al., 2006; Tendler et al., 2021) , 64 

memory deficits (Freedberg et al., 2022; Solé-Padullés et al., 2006; Wang et al., 2014), 65 

cognitive decline (Luber & Lisanby, 2014), and motor impairments caused by neurological 66 

damage (Bunday & Perez, 2012; Di Lazzaro et al., 2008; Du et al., 2016; Jo & Perez, 2020). 67 

Early studies showed that TMS interventions delivered to the sensorimotor cortex can alter 68 

corticospinal tract (CST) transmission (Huang et al., 2005; Pascual-Leone et al., 1995, Chen et 69 

al., 1998). Given the mechanistic role of the CST in voluntary upper extremity movement 70 

(Lemon, 2008) and the prognostic utility of CST integrity in predicting poststroke upper extremity 71 

motor recovery (Stinear et al., 2007), TMS interventions that upregulate CST transmission could 72 

feasibly improve voluntary motor function in individuals with stroke-related disruption of the 73 

CST. However, it has recently become apparent that the effects of TMS interventions on CST 74 

transmission are highly variable both within and between individuals (Hamada et al., 2013; 75 

López-Alonso et al., 2014), such that conventional TMS interventions do not reliably upregulate 76 

CST transmission even in healthy adults.   77 

 78 

TMS applied over the sensorimotor cortex trans-synaptically activates CST neurons (Di Lazzaro 79 

& Ziemann, 2013; Hoogendam et al., 2010; Mills et al., 1992), resulting in a peripheral muscle 80 

response termed a motor-evoked potential (MEP). The peak-to-peak amplitude of an MEP 81 

reflects the magnitude of CST activation at the precise moment of TMS delivery. Yet, MEP 82 

amplitudes dynamically fluctuate over time, even when keeping other parameters such as 83 

stimulation location and intensity constant (Jung et al., 2010; Kiers et al., 1993). Such dynamic 84 

fluctuations can be attributed in part to variability in subthreshold depolarization of CST neurons 85 

and cortical interneurons synapsing onto them (Di Lazzaro & Ziemann, 2013; Ziemann et al., 86 

1996). Consistent with this notion, accumulating evidence has shown that CST activation 87 

depends on ongoing sensorimotor oscillatory activity at the time of stimulation (Berger et al., 88 

2014; Bergmann et al., 2019; Hussain et al., 2019; Ozdemir et al., 2022; Suresh & Hussain, 89 

2023; Wischnewski et al., 2022; Zrenner et al., 2018), including sensorimotor rhythm phase 90 

(Bergmann et al., 2019; Wischnewski et al., 2022; Zrenner et al., 2018), sensorimotor rhythm 91 

power (Hussain et al., 2022; Madsen et al., 2019), and interactions between them (Hussain et 92 

al., 2019b; Ozdemir et al., 2022; Suresh & Hussain, 2023). For example, TMS more strongly 93 

activates the CST during sensorimotor mu rhythm trough than peak phases (Bergmann et al., 94 
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2019; Wischnewski et al., 2022; Zrenner et al., 2018), and this effect is strongest during periods 95 

of high mu rhythm power (Hussain et al., 2019; Ozdemir et al., 2022; Suresh & Hussain, 2023). 96 

These studies raise the possibility that delivering TMS interventions during mu trough phases 97 

could enhance their efficacy. Indeed, EEG-triggered repetitive TMS interventions delivered 98 

during sensorimotor rhythm mu trough phases increase CST transmission, while identical 99 

interventions delivered during mu peak phases weakly depress it (Baur et al., 2020; Zrenner et 100 

al., 2018). Thus, coupling TMS interventions to brain activity patterns (i.e., brain states) 101 

reflecting strong CST activation could potentiate their therapeutic effects in individuals with 102 

poststroke motor impairments.  103 

 104 

Although several studies have shown that TMS more strongly activates the CST during 105 

sensorimotor mu rhythm trough than peak phases, the magnitude of this effect varies across 106 

studies (Bergmann et al., 2019; Hussain et al., 2019b; Madsen et al., 2019b; Wischnewski et al., 107 

2022; Zrenner et al., 2018), suggesting that mu phase-dependent variation in CST activation 108 

exhibits substantial inter-individual variability even in healthy adults. Furthermore, translating 109 

real-time, mu phase-dependent TMS approaches from the healthy to the poststroke brain can 110 

be challenging (Hussain et al., 2020). Because stroke survivors are a highly heterogeneous 111 

population, each stroke survivor has a unique pattern of motor impairment and recovery-related 112 

adaptive plasticity (Delvaux et al., 2003; Grefkes & Ward, 2014; Jones, 2017; Lotze et al., 2012; 113 

Luft et al., 2004; C. Stinear, 2010) that could alter sensorimotor rhythm characteristics and their 114 

relationship to CST activation. Lesion-related volumetric brain loss in each stroke survivor is 115 

also unique, such that the mapping of brain activity to EEG scalp signals varies across stroke 116 

survivors (Lopez-Larraz et al., 2017; Park et al., 2016). Personalized brain state-dependent 117 

TMS approaches specifically designed to address these issues are therefore needed.   118 

 119 

Consistent with this need, we developed and tested a novel machine learning-based EEG-120 

triggered TMS system that identifies and targets personalized whole-brain activity patterns 121 

reflecting time windows when TMS either strongly or weakly activates the CST (i.e., 122 

personalized strong or weak CST states) in healthy adults. We first acquired a single training 123 

dataset for each participant which included EEG and EMG recorded during single-pulse motor 124 

cortex (M1) TMS. We then used this dataset to build a personalized classifier that discriminates 125 

between EEG activity patterns during which TMS elicited either a large or small MEP. Finally, 126 

we tested this personalized classifier by evaluating MEP amplitudes during real-time, EEG-127 

triggered TMS targeting personalized strong, weak, and random CST states. Our results show 128 
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that this system can accurately identify and target personalized whole-brain EEG activity 129 

patterns corresponding to strong and weak CST activation in real-time. These findings represent 130 

a key step towards using personalized, machine learning-driven brain state-dependent TMS 131 

interventions to promote poststroke CST function and motor recovery.  132 

 133 

Methods 134 

Data acquisition  135 

Participants. 21 healthy adults participated in this single-session study, which involved single-136 

pulse transcranial magnetic stimulation (TMS) during 62-channel electroencephalography 137 

(EEG) and bipolar EMG recordings from the left first dorsal interosseous (L. FDI) and left 138 

abductor pollicis brevis (L. APB) muscles. Of these participants, one was excluded due to EMG 139 

signal corruption, and one was excluded due to excessively noisy EEG signals. Thus, our final 140 

sample size was N=19 (15 F, 4 M, age = 20.8 ± 0.7 [standard error of the mean; SEM] years). 141 

This study was approved by the Institutional Review Board at the University of Texas at Austin, 142 

and all participants provided their written informed consent prior to participation.  143 

 144 

Experimental design. After experimental setup was complete, the TMS stimulation location and 145 

intensity were empirically determined for each participant (see TMS). Then, participants 146 

completed a 5-minute EEG recording while resting quietly with their eyes open. After resting 147 

EEG, 6 blocks of 100 single brain state-independent TMS pulses at 120% of resting motor 148 

threshold (RMT) were delivered to the scalp motor hotspot for the L. FDI muscle while EEG and 149 

EMG were recorded. Resulting EEG and EMG data were used to build a personalized classifier 150 

that could discriminate between whole-brain EEG activity patterns during which TMS strongly 151 

activated the CST (i.e., strong CST states) or weakly activated it (i.e., weak CST states), as 152 

measured via L. FDI motor-evoked potential (MEP) amplitudes. Afterward, this classifier was 153 

used to deliver real-time, single-pulse brain state-dependent TMS to the scalp hotspot for the L. 154 

FDI during strong and weak CST states at two different stimulation intensities (120% and 110% 155 

RMT). For comparison, single-pulse brain state-independent TMS was also applied to the scalp 156 

hotspot for the L. FDI at these same intensities (i.e., random CST states). Throughout the 157 

experimental session, MEPs were recorded from both the L. FDI and L. APB muscles. See 158 

Figure 1A for a visual depiction of the experimental timeline.  159 
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 160 
 161 

Figure 1. Experimental timeline and machine learning analysis pipeline. A) Experimental 162 
timeline. All procedures were completed within a single session. B) Personalized machine 163 
learning classifier analysis pipeline.  164 
 165 

EEG and EMG acquisition. 62-channel EEG signals were recorded at 5 kHz (low-pass hardware 166 

filtering cutoff frequency: 1250 Hz, 0.001 µV resolution) using TMS-compatible amplifiers 167 

(NeurOne Tesla, Bittium Biosignals, Finland). EEG impedances were maintained below 10 kΩ. 168 

Bipolar EMG signals were also recorded from the L. FDI and L. APB muscles at 5 kHz (low-169 

pass hardware filtering cutoff frequency: 1250 Hz, 0.001 µV resolution) using Ag-AgCl adhesive 170 

electrodes arranged in a belly-tendon montage.  171 

 172 

TMS. The scalp hotspot was identified over the hand representation area of the right motor 173 

cortex as the site at which suprathreshold single-pulse TMS elicited the largest MEPs within the 174 

L. FDI as well as a focal muscle twitch. Then, the RMT was determined using a threshold-175 

tracking software tool (MTAT 2.0; Awiszus, 2011). RMT was on average 66 ± 2.3% (range = 51 176 

– 84) of maximum stimulator output. To maximize trans-synaptic activation of corticospinal tract 177 
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(CST) neurons, TMS was delivered using a figure-of-eight coil held at ~45 degrees relative to 178 

the mid-sagittal line (Mills et al., 1992); Deymed Diagnostic, XT100, biphasic pulse shape). Coil 179 

position accuracy was monitored online using frameless neuronavigation (BrainSight, Rogue 180 

Research, Inc.).   181 

 182 

Personalized offline machine learning classification. We acquired a single TMS-EEG-EMG 183 

training dataset from each participant by delivering 6 blocks of 100 single TMS pulses to the 184 

scalp hotspot for the L. FDI muscle at 120% RMT during EEG and EMG recordings (inter-185 

stimulus interval = 3 s + random jitter). Participants rested quietly with their eyes open during 186 

TMS delivery and were provided with short rest breaks between blocks. After acquiring this 187 

training dataset, participants rested while a personalized machine learning classifier was built. 188 

The purpose of this classifier was to discriminate between whole-brain EEG activity patterns 189 

during which TMS either strongly or weakly activated the CST, indexed by L. FDI MEP 190 

amplitudes. EEG and L. FDI EMG data were preprocessed using custom-written scripts utilizing 191 

the FieldTrip toolbox (Oostenveld et al., 2011) while machine learning classification was 192 

performed using custom-written scripts utilizing the MVPA-Light toolbox (Treder, 2020). Both 193 

toolboxes operated in the MATLAB environment.  194 

 195 

Continuous bipolar EMG data for the L. FDI muscle were divided into segments (-0.100 to 196 

+0.400 s relative to each TMS pulse). We then calculated the root-mean-square (RMS) value 197 

for each L. FDI EMG pre-stimulus EMG segment (-0.100 to -0.025 s relative to each TMS 198 

pulse). Trials contaminated by voluntary muscle activation were identified as those for which 199 

pre-stimulus RMS values exceeded a participant-specific threshold, defined as the mean of pre-200 

stimulus L. FDI EMG RMS values + 2 * the standard deviation of pre-stimulus L. FDI EMG RMS 201 

values. On average, 2.3 ± 0.4% of all trials (range = 0.2 – 6.8%) were contaminated by 202 

voluntary muscle activation per participant. Then, each L. FDI EMG segment was used to 203 

calculate peak-to-peak L. FDI MEP amplitudes. To ensure that our classification approach 204 

captured trial-by-trial variability in L. FDI MEP amplitudes rather than slow fluctuations in CST 205 

activation that can occur with repeated application of single-pulse TMS (Pellicciari et al., 2016), 206 

the resulting time course of L. FDI MEP amplitudes was demeaned and linearly detrended, z-207 

transformed, and then rescaled to range between 0 and 1. These steps were performed 208 

separately for all L. FDI MEPs not contaminated by voluntary muscle activation per block. 209 

Transformed L. FDI MEPs were then combined across blocks and dichotomized into categories 210 

that reflected strong activation of the CST (i.e., L. FDI MEPs with amplitudes larger than or 211 
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equal to the median L. FDI MEP amplitude) or weak activation of the CST (i.e., L. FDI MEPs 212 

with amplitudes smaller than the median L. FDI MEP amplitude). These categories were used 213 

as class labels during subsequent offline classification.    214 

 215 

Continuous 62-channel EEG data were divided into segments (-[0.500 + x] to -[0 + x] ms before 216 

each TMS pulse, where x reflects the technical delay of the real-time EEG streaming and 217 

analysis system; see Real-time EEG analysis and personalized brain state-dependent TMS). To 218 

ensure accurate real-time performance, the technical delay was calculated at the beginning of 219 

each experimental session and individually adjusted per session. Technical delays were on 220 

average 43.6 ± 1.3 (range = 39 - 59) ms. Segmented EEG data were re-referenced to the 221 

common average reference, demeaned, linearly detrended, and downsampled to 1 kHz.  222 

 223 

For personalized machine learning classification, we used Linear Discriminant Analysis (LDA) 224 

with 5-fold stratified cross-validation. As applied here, LDA is a supervised machine learning 225 

algorithm that identifies the hyperplane which best separates whole-brain EEG brain activity 226 

patterns during which TMS either strongly or weakly activated the CST (i.e., strong or weak CST 227 

states, respectively), as indexed by L. FDI MEP amplitudes. We applied a modified version of 228 

our previously published personalized classification approach (Hussain et al., 2022) to 229 

preprocessed EEG data and L. FDI MEP amplitude class labels.  230 

 231 

Trials were randomly divided into folds. For each fold, classifiers were trained on the training 232 

dataset (80% of trials) and tested on the testing dataset (20% of trials). We first applied common 233 

spatial filter analysis (CSP; Blankertz et al., 2008) to the preprocessed EEG timeseries data. 234 

CSP is a signal processing approach that improves the discriminability of two classes of EEG 235 

signals by maximizing the variance of EEG data corresponding to one class and minimizing the 236 

variance of EEG data corresponding to the other class. CSP as applied here generates 237 

subcomponents that reflect spatially filtered EEG timeseries data corresponding to each class. 238 

For each fold, CSP spatial filters were calculated using the training dataset and then applied to 239 

the testing dataset to avoid information leakage that could bias classification results. All 62 240 

subcomponents generated by CSP were retained and spectrally decomposed using Welch’s 241 

method (4-35 Hz with 0.25 Hz resolution). Power spectra obtained for each CSP subcomponent 242 

were then summarized by calculating mean spectral power values for each of five canonical 243 

frequency bands, including theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta1 (13-20 244 

Hz) and beta2 (20-35 Hz). Overall, this approach generated five power spectral features for 245 
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each of the 62 CSP subcomponents, resulting in a total of 310 power spectral features per 246 

participant.  247 

 248 

After calculating all features for each fold, we next optimized the number of features included in 249 

each participant’s personalized classifier. This was done by first ranking all 310 features in order 250 

of the strength of their statistical dependency with L. FDI MEP classes using the chi-square 251 

method (Hussain et al., 2022). Here, the negative log of the chi-squared test’s p-value for each 252 

feature was taken as its feature score, with higher scores reflecting features that more strongly 253 

covary with L. FDI MEP classes. We then used grid search to optimize two aspects of each 254 

participant’s classifier: feature number (1 to 310) and regularization rate (100 linearly spaced 255 

values from 1× 10−10 to 1). During grid search, we iteratively trained multiple classifiers using all 256 

possible combinations of feature numbers (with features added in order of importance) and 257 

regularization rate values. Overall, this grid search approach produced 31,000 trained classifiers 258 

per fold. For each fold, we applied all classifiers trained on the training dataset to the testing 259 

dataset. Here, we identified each classifier’s most confident predictions from the testing dataset 260 

by calculating the distance of each trial’s prediction from the model’s hyperplane (i.e., each 261 

trial’s d-value, with larger d-values indicating more confident predictions). A prediction was 262 

labeled confident if the absolute value of its d-value was within the top 50% of that class’s set of 263 

d-values. In contrast, a prediction was labeled under-confident if the absolute value of its d-264 

value was in the bottom 50% of that class’s set of d-values. Confident strong CST state 265 

predictions (predictions of large L. FDI MEP amplitudes) were labeled 2, confident weak CST 266 

state predictions (predictions of small L. FDI MEP amplitudes) were labeled 1, and under-267 

confident predictions were labeled 0. We then calculated each classifier’s prediction 268 

performance using the F1 score, focusing only on high confidence predictions. The F1 score is 269 

the harmonic mean of precision and recall and was chosen to maximize the number of true 270 

positives (i.e., accurate weak CST state predictions) and minimize the number of false 271 

negatives and false positives (i.e., inaccurate strong or weak CST state predictions). We then 272 

averaged F1 scores across folds and identified the best performing classifier with the fewest 273 

features and highest regularization rate. This resulted in selection of one personalized ensemble 274 

classifier with 5 LDA models embedded within it (i.e., one per fold). F1 scores were on average 275 

0.68 ± 0.01 when considering only high confidence predictions and 0.63 ± 0.01 when 276 

considering all predictions. See Figure 1B for a visual depiction of the personalized classification 277 

analysis pipeline. 278 

 279 
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Real-time EEG analysis. After identifying each participant’s best-performing personalized 280 

ensemble classifier, we used this classifier to identify EEG activity patterns predicting strong 281 

and weak CST activation in each participant in real-time. To achieve this, continuous 62-282 

channel EEG was recorded and streamed to a Dell workstation PC (10 cores, Intel i9 processor, 283 

16 GB RAM, 1 TB Solid State Drive) at 1 kHz using LabStreamingLayer 284 

(https://github.com/sccn/labstreaminglayer; Kothe et al., 2024). This workstation was configured 285 

to perform real-time EEG analysis in MATLAB version 2020a using a combination of custom-286 

written scripts, FieldTrip, and MVPA-Light Toolboxes.  287 

 288 

After being streamed to the workstation PC, EEG data were buffered into overlapping 500 ms 289 

windows. Overlap between consecutive windows determined by the technical delay of the real-290 

time EEG streaming and analysis system (with overlap equal to [500ms - technical delay]). 291 

Buffered data were downsampled to 1 kHz, re-referenced to common average reference, 292 

demeaned, and linearly detrended.  Preprocessed data were used to obtain 62 CSP 293 

subcomponents per fold using the same CSP parameters used for that participant’s optimized 294 

ensemble classifier. This approach produced 5 distinct versions of 62 time-resolved CSP 295 

subcomponents (i.e., one per fold). Then, each fold’s CSP subcomponents were used to 296 

calculate power spectral features for that fold using the same approach implemented during 297 

offline classification. For each fold, the relevant features were selected and used to classify the 298 

current EEG segment, resulting in five separate class predictions for each segment. Then, each 299 

EEG segment’s predictions were labeled as confident or under-confident using the same 300 

procedures applied during offline classification. To obtain a single prediction for each EEG 301 

segment, all five predictions were combined using majority voting. If all five predictions were 302 

under-confident or a tie occurred, no prediction was made. The label produced by the majority 303 

of the five classifiers was chosen as the label for that EEG segment, indicating either a strong 304 

CST state, a weak CST state, or no prediction. When 10 consecutive confident predictions of 305 

the desired CST state occurred, TMS was triggered. For some participants, 10 consecutive 306 

confident strong and/or weak CST states could not be detected in real-time (2 participants for 307 

strong states at 120% and 110% RMT, 1 participant for weak states at 110% RMT). In these 308 

scenarios, TMS was triggered upon 10 consecutive confident or under-confident predictions of 309 

the desired CST state.  310 

 311 

Real-time personalized single-pulse brain state-dependent TMS. TMS was delivered to the L. 312 

FDI scalp hotspot and MEPs were recorded from the L. FDI and L. APB muscles. 25 pulses 313 
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were applied per CST state (strong or weak) and stimulus intensity (110% and 120% RMT) in a 314 

blocked manner (minimum interstimulus interval = 3 s + random jitter). In practice, interstimulus 315 

intervals were on average 10.0 ± 0.9 and 7.0 ± 0.6 s for strong and weak CST states, 316 

respectively.  For comparison, we also delivered conventional brain state-independent TMS 317 

(i.e., during random CST states) at the same two intensities (interstimulus interval = 3 s + 318 

random jitter). Overall, we obtained personalized brain state-dependent MEP amplitudes from 6 319 

blocks of single-pulse TMS for each participant. The order of targeted CST states was 320 

counterbalanced across participants. However, stimulation intensities were always tested in the 321 

same order, with 120% RMT followed by 110% RMT.   322 

 323 

Data analysis  324 

Evaluation of CST state targeting accuracy. After data acquisition was complete, we evaluated 325 

the ability of our EEG-triggered TMS system to accurately identify and deliver TMS during pre-326 

defined CST states in real-time. To achieve this, we first divided EEG data obtained during real-327 

time personalized single-pulse brain state-dependent TMS into segments (-[0.500 + x] to -[0 + x] 328 

ms before each TMS pulse, where x reflects the session-specific technical delay of the real-time 329 

EEG streaming and analysis system). We then applied the same EEG preprocessing, CSP, 330 

spectral decomposition, and classification procedures used when performing real-time EEG 331 

analysis to these segments, thus mimicking our real-time CST state prediction analysis 332 

procedure in an offline analysis environment. For each participant, this approach resulted in a 333 

series of predictions made by the offline application of each participant’s personalized ensemble 334 

classifier per CST state and stimulation intensity. Then, EEG segments for which the prediction 335 

made by the real-time and offline application of each participant’s personalized ensemble 336 

classifier were identical were labeled as accurate. For each participant, the percentage of 337 

accurate CST states targeted per state and intensity was calculated.  338 

 339 

Analysis of MEP amplitudes and variability. Continuous L. FDI and L. APB EMG data obtained 340 

during real-time, personalized single-pulse brain state-dependent TMS were divided into 341 

segments (-0.100 to +0.400 s relative to each TMS pulse). Pre-stimulus EMG data (-0.100 to -342 

0.025 relative to each TMS pulse) obtained from each muscle were demeaned and linearly 343 

detrended. Then, a discrete Fourier transform-based filter was used to attenuate line noise and 344 

its harmonics within these pre-stimulus signals. For each muscle, the RMS value for each trial’s 345 

processed pre-stimulus EMG signal was calculated. Then, peak-to-peak MEP amplitudes were 346 

calculated for each muscle. Trials for which peak-to-peak MEP amplitudes could not be reliably 347 
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calculated were excluded from analysis (average = 7.2 ± 3.3% of all trials, range = 0 – 43.3%). 348 

For each participant, trial-by-trial MEP amplitudes were normalized to the mean of all MEP 349 

amplitudes elicited from that muscle at that stimulation intensity. We also evaluated MEP 350 

amplitude variability by calculating the coefficient of variation of all remaining MEP amplitudes 351 

per CST state, intensity, and muscle for each participant.   352 

 353 

Characterization of CST state duration. To characterize the mean duration of personalized 354 

strong and weak CST states, we applied each participant’s personalized ensemble classifier to 355 

their resting EEG data obtained at the beginning of the experimental session. We selected the 356 

first 3 minutes of each participant’s resting EEG data and divided these data into consecutive, 357 

500 ms overlapping segments (overlap = 50 ms). EEG segments were then analyzed using the 358 

same preprocessing, CSP, spectral decomposition, and classification procedures applied during 359 

real-time EEG analysis. We then calculated the average duration of each CST state, including 360 

strong CST states, weak CST states, and under-confident states. We also calculated the 361 

average time between consecutive similar states (i.e., the inter-state interval) and the 362 

percentage of time that each CST state was present.  363 

 364 

Performance of non-personalized classifiers. After data acquisition was complete, we evaluated 365 

the performance of a single, general classifier trained using data from TMS-EEG-EMG training 366 

datasets combined across all participants using similar procedures as that described for 367 

personalized classification (see Personalized offline machine learning classification above). To 368 

create training datasets, TMS-EEG-EMG data were compiled across N-1 participants (N = 369 

sample size of 19). Testing datasets contained TMS-EEG-EMG data from the remaining held 370 

out participant. That is, we performed k-fold cross-validated grid search with k equal to N-1. 371 

Given that each fold’s testing set represented an individual participant, F1 performance values 372 

were calculated for each fold and then compiled across participants.  373 

 374 

Pre-stimulus spectro-spatial EEG patterns for personalized strong and weak CST states. We 375 

also characterized differences in pre-stimulus EEG brain activity patterns present during 376 

classifier-predicted strong versus weak CST states using 500 ms pre-stimulus EEG segments (-377 

[0.500 + x] to -[0 + x] ms before each TMS pulse, where x reflects the session-specific technical 378 

delay of the real-time EEG streaming and analysis system). All analyses were performed at the 379 

individual participant level. After segmenting EEG data, the same EEG preprocessing 380 

procedures used during real-time EEG analysis were applied. All channels of preprocessed 381 
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EEG data were then spectrally decomposed using Welch’s method using the same parameters 382 

used during real-time EEG analysis. The resulting power spectra at each channel were natural 383 

log-transformed and averaged across each CST state. The difference between power spectra 384 

obtained during strong and weak CST states at each channel was then calculated, and these 385 

differences were binned by 1 Hz. This procedure generated a participant-specific matrix of 386 

power spectral differences at each channel and frequency. To obtain a group-level 387 

representation of differences in power spectra at each channel between CST states, we 388 

averaged these matrices across participants.  389 

 390 

Statistical analysis  391 

All statistical analyses were performed using RStudio. Alpha was equal to 0.05 for all 392 

comparisons, and all data are expressed as mean ± SEM.  393 

 394 

CST state targeting accuracy. For each state and stimulation intensity, the percentage of trials 395 

during which real-time, personalized brain state-dependent TMS accurately targeted the desired 396 

CST state were compiled across participants and compared to theoretical chance (0.5) using 397 

separate single-sample, right-tailed Wilcoxon signed-rank tests after confirming deviations from 398 

normality using the Shapiro-Wilk test.  399 

 400 

MEP amplitudes. We evaluated real-time personalized brain state-dependent variation in MEP 401 

amplitudes regardless of the intensity used (110% and 120% RMT) or muscle from which they 402 

were recorded (L. FDI and L. APB) using a trial-by-trial linear mixed-effects model. This model 403 

included natural-log transformed MEP amplitudes as the response variable, STATE, 404 

INTENSITY, MUSCLE, and their two- and three-way interactions as fixed effects, pre-stimulus 405 

background RMS EMG and inter-stimulus interval as continuous covariates, and PARTICIPANT 406 

as random intercept. Model fits were visually inspected using histograms of residuals and 407 

quantile-quantile plots. The significance of fixed effects was determined using likelihood ratio 408 

tests. Significant fixed effects were evaluated further using pairwise post hoc comparisons. All 409 

post hoc comparisons were adjusted for multiple comparisons using the False Discovery Rate 410 

correction (Benjamini & Hochberg, 1995). Given that we trained personalized classifiers using L. 411 

FDI amplitudes elicited at 120% RMT, we also performed planned pairwise comparisons 412 

between CST states for this muscle and intensity. 413 

 414 
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MEP variability. A linear mixed-effects model was also used to evaluate real-time personalized 415 

brain state-dependent MEP amplitude variability for both intensities (110% and 120% RMT) and 416 

muscles (L. FDI and L. APB). This model included natural-log transformed MEP amplitude 417 

coefficients of variation as the response variable, STATE, INTENSITY, MUSCLE, and their two- 418 

and three-way interactions as fixed effects, trial-averaged pre-stimulus background RMS EMG 419 

and trial-averaged inter-stimulus intervals as continuous covariates, and PARTICIPANT as the 420 

random intercept. Model fits were visually inspected using histograms of residuals and quantile-421 

quantile plots. The significance of fixed effects was determined using likelihood ratio tests. 422 

Significant fixed effects were further characterized via pairwise post hoc comparisons using the 423 

False Discovery Rate correction.  424 

 425 

Temporal characteristics of CST states. The mean duration of each state, the proportion of time 426 

spent in each state, and the time between consecutive similar states were each compared 427 

across CST states using separate Kruskal-Wallis rank sum tests for each response variable 428 

after confirming deviations from normality using the Shapiro-Wilk test. Pairwise post hoc 429 

comparisons were performed using two-sample, two-tailed Wilcoxon Signed Rank tests followed 430 

by correction for multiple comparisons using the False Discovery Rate correction.  431 

 432 

Comparing personalized and non-personalized classifier performance. F1 scores indicating 433 

personalized and non-personalized classifier performance were compared using two-sample, 434 

paired Wilcoxon Signed Rank tests after confirming deviations from normality using the Shapiro-435 

Wilk test.  436 

 437 

Relationships between personalized classifier performance and brain state-dependent variation 438 

in MEP amplitudes. For each participant, we calculated the percentage difference in MEP 439 

amplitudes elicited during strong versus weak CST states and strong versus random CST states 440 

at the same muscle and stimulation intensity used during classifier training (L. FDI MEP 441 

amplitudes at 120% RMT). These percentage difference values were then regressed against F1 442 

scores obtained from each participant’s personalized classifier using separate Spearman’s 443 

correlations after confirming deviations from normality using the Shapiro-Wilk test. 444 

 445 

Results 446 

CST state targeting accuracy 447 
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We first examined the ability of our machine learning-based EEG-triggered TMS system to 448 

identify personalized CST states in real-time by calculating the percentage of all trials during 449 

which it accurately targeted the desired CST state at each stimulation intensity (Figure 2). 450 

Targeting accuracy significantly exceeded chance for strong and weak CST states at 120% and 451 

110% RMT (p < 0.001 for all). For 120% RMT, targeting accuracy was on average 94.5 ± 1.1% 452 

and 89.5 ± 2.7% for strong and weak CST states, respectively. For 110% RMT, targeting 453 

accuracy was on average 95.1 ± 1.8% and 83.1 ± 6.3% for strong and weak CST states, 454 

respectively.  455 

 456 

 457 
 458 

Figure 2. Real-time personalized CST state targeting accuracy. Targeting accuracy of real-459 
time EEG-triggered TMS for personalized strong and weak CST states at 120% and 110% 460 
RMT. Asterisks reflect statistically significant comparisons between targeting accuracy and 461 
chance level for each combination of state and stimulation intensity. Squares denote group 462 
averages, dots denote data from individual participants, error bars denote SEM, and the dashed 463 
horizontal grey line denote the theoretical chance level (50%). 464 
 465 

MEP amplitudes 466 

After confirming accurate real-time targeting of personalized CST states, we next evaluated 467 

differences in MEP amplitudes elicited in real-time during personalized strong, weak, and 468 

random CST states regardless of the intensity used (110% and 120% RMT, Figure 3) or the 469 

muscle from which they were recorded (L. FDI and L. APB). A linear mixed-effects model 470 

revealed a significant main effect of STATE (likelihood ratio test: F = 11.7, p < 0.001), 471 
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INTENSITY (likelihood ratio test: F = 28.1, p < 0.001), and MUSCLE (likelihood ratio test: F = 472 

25.4, p < 0.001), as well as a significant two-way interaction between STATE and INTENSITY 473 

(likelihood ratio test: F = 5.7, p = 0.003). Post hoc pairwise comparisons revealed that at 120% 474 

RMT, MEPs elicited in real-time during personalized strong CST states were significantly larger 475 

than those elicited in real-time during personalized weak (p = 0.036) and random CST states (p 476 

< 0.001). At 120% RMT, MEPs elicited during personalized weak CST states were also 477 

significantly larger than those elicited during random CST states (p = 0.001). At 110% RMT, 478 

MEPs did not differ between personalized strong, weak, or random CST states (p > 0.33 for all). 479 

Planned comparisons for L. FDI MEPs elicited at 120% RMT showed that MEP amplitudes were 480 

larger during personalized strong than weak CST states and during personalized strong than 481 

random CST states (p < 0.03 for both) but did not differ between personalized weak and 482 

random CST states (p = 0.257). See Table 1 for percentage differences in MEP amplitudes 483 

elicited between states. 484 

 485 

 
Muscle 

 
Intensity 

Strong versus weak 
CST state  

Strong versus random CST  
state  

FDI 120% RMT 23.7 ± 7.5% 43.1 ± 17.5% 

FDI 110% RMT -3.0 ± 8.0% 12.0 ± 13.8% 

APB 120% RMT 21.3 ± 11.8% 60.9 ± 21.2% 

APB 110% RMT 13.2 ± 14.1% 48.6 ± 30.5% 

 486 
 487 
Table 1. Percentage difference in MEP amplitudes elicited during personalized strong versus 488 
weak CST states and personalized strong versus random CST states for each muscle and 489 
stimulation intensity.  490 
 491 
 492 
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 493 
 494 

Figure 3. MEP amplitudes elicited during personalized strong, weak, and random CST 495 
states in real-time. (A) MEP amplitudes recorded from the L. FDI and L. APB muscles during 496 
real-time, classifier-predicted personalized strong, weak, and random CST states at 120% and 497 
110% RMT. MEP amplitudes recorded from (B) L. FDI at 120% RMT, (C) L. FDI at 110% RMT, 498 
(D) L. APB at 120% RMT, (E) L. APB at 110% RMT. Triple asterisks reflect significant STATE x 499 
INTENSITY interaction. Single asterisks reflect significant pairwise post hoc comparisons for the 500 
STATE x INTENSITY interaction. Squares denote group averages, circles denote data from 501 
individual participants, and error bars reflect SEM.  502 
 503 

MEP variability 504 

We next examined MEP amplitude variability during personalized strong, weak, and random 505 

CST states by comparing coefficients of variation calculated from trial-by-trial MEP amplitudes 506 

across CST states at both intensities (120% and 110% RMT) and both muscles (L. FDI and L. 507 

APB, Figure 4). Linear-mixed effects models identified a significant main effect of STATE (F = 508 

3.36, p = 0.037), INTENSITY (F = 87.6, p < 0.001), and MUSCLE (F = 52.03, p < 0.001). Post 509 

hoc pairwise comparisons showed that MEP amplitude variability was significantly lower during 510 

personalized strong than weak CST states (p = 0.04). However, MEP amplitude variability did 511 

not differ between personalized weak and random CST states or between personalized strong 512 

and random CST states (p > 0.07 for both). MEP amplitudes elicited at 120% RMT were less 513 
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variable than those elicited at 110% RMT (p < 0.001) and MEP amplitudes recorded from L. FDI 514 

were less variable than those recorded from L. APB (p < 0.001).  515 

 516 

 517 
 518 

Figure 4. Variability of MEP amplitudes elicited during personalized strong, weak, and 519 
random CST states in real-time.  (A) Coefficients of variation calculated from trial-by-trial MEP 520 
amplitudes recorded from the L. FDI and L. APB muscles during real-time, classifier-predicted 521 
personalized strong, weak, and random CST states at 120% and 110% RMT. Coefficients of 522 
variation calculated from trial-by-trial MEP amplitudes recorded from (B) L. FDI at 120% RMT, 523 
(C) L. FDI at 110% RMT, (D) L. APB at 120% RMT, and (E) L. APB at 110% RMT. Triple 524 
asterisks reflect the significant main effects of STATE, MUSCLE and INTENSITY, and single 525 
asterisks reflect significant pairwise post hoc comparisons for the main effect of STATE. 526 
Squares denote group averages, circles denote data from individual participants, and error bars 527 
denote SEM.  528 
 529 

Temporal characteristics of CST states 530 

We also evaluated the temporal characteristics of personalized strong and weak CST states by 531 

applying each participant’s classifier to their resting EEG recording. When examining the 532 

percentage of time during which either strong, weak, or under-confident CST states were 533 

detected by personalized classifiers (Figure 5A), a Kruskal-Wallis test revealed a significant 534 

effect of STATE (p = 0.002). Post hoc pairwise comparisons showed that the proportion of time 535 

spent per state did not differ between strong and weak CST states (p = 0.125) but was 536 
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significantly lower for under-confident than weak or strong CST states (p < 0.027 for both). 537 

Overall, personalized strong CST states were present 33.6 ± 5.9% of the time, personalized 538 

weak CST states were present 48.4 ± 6.5% of the time, and under-confident CST states were 539 

present 17.8 ± 2.6% of the time.  540 

 541 

When evaluating the mean duration of strong, weak, or under-confident CST states detected by 542 

personalized classifiers (Figure 5B), a Kruskal-Wallis test did not show any significant effect of 543 

STATE. Personalized strong CST states lasted on average 0.89 ± 0.14 s, personalized weak 544 

CST states lasted on average 2.05 ± 1.15 s, and under-confident CST states lasted on average 545 

0.75 ± 0.06 s.  546 

 547 

When examining the mean time between consecutive strong, weak, or under-confident CST 548 

states detected by personalized classifiers (Figure 5C), a Kruskal-Wallis test did not reveal a 549 

significant effect of STATE. On average, 0.93 ± 0.16 s elapsed between consecutive strong 550 

CST states, 1.0 ± 0.45 s elapsed between consecutive weak CST states, and 1.97 ± 1.28 s 551 

elapsed between consecutive under-confident CST states.  552 

 553 

 554 
 555 
Figure 5. Temporal characteristics of personalized CST states present during resting 556 
EEG recordings. (A) Percentage of time spent in each CST state. (B) Average duration of each 557 
CST state. C) Time between consecutive CST states. Squares denote group averages, circles 558 
denote data from individual participants, and error bars denote SEM. Asterisks indicate 559 
significant post hoc pairwise comparisons between CST states.  560 
 561 

 562 

 563 
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Personalized versus non-personalized classifier performance 564 

Personalized classifier F1 values were on average 0.68 ± 0.01, while non-personalized classifier 565 

F1 values were on average 0.69 ± 0.01. F1 values did not differ across classifier types (p = 566 

0.33; see Supplementary Figure 1).  567 

 568 

Relationships between personalized classifier performance and brain state-dependent variation 569 

in MEP amplitudes  570 

Overall, L. FDI MEP amplitudes elicited at 120% RMT during personalized strong CST states 571 

were 23.7 ± 7.5% and 43.1 ± 17.5% larger than those elicited during personalized weak and 572 

random CST states, respectively (see Table 1). The percentage difference in MEP amplitude 573 

between CST states did not correlate with personalized F1 values (percentage difference 574 

between strong and weak CST states versus F1 values: R = 0.14, p = 0.56; percentage 575 

difference between strong and random CST states versus F1 values: R = 0.12, p = 0.63; see 576 

Supplementary Figure 2).  577 

 578 

Spectro-spatial characteristics of personalized CST states  579 

We characterized the spectro-spatial characteristics of pre-stimulus EEG activity present during 580 

real-time classifier-predicted personalized strong versus weak CST states. At the individual 581 

level, each participant exhibited qualitatively unique differences in pre-stimulus EEG power 582 

between personalized strong and weak CST states across the scalp (see Supplementary Figure 583 

3). For example, participant #13 showed higher right parieto-occipital alpha power during strong 584 

than weak CST states, while participant #14 exhibited higher right frontal beta power and lower 585 

whole-scalp theta power during strong than weak CST states.  At the group-level, right centro-586 

parietal alpha power and whole-scalp theta power were generally higher during personalized 587 

strong than weak CST states, and TP9 and TP10 showed stronger theta, alpha, and beta power 588 

during strong versus weak CST states.  589 

 590 
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 591 
Figure 6. Group-level differences in pre-stimulus spectro-spatial EEG patterns 592 
corresponding to personalized strong and weak CST states identified in real-time. Group 593 
average differences in natural log-transformed power between EEG activity during personalized 594 
strong and weak CST states. See Supplementary Figure 3 for individual participant data. Note 595 
that dark blue values reflect 0, which indicates no difference in power between states. 596 
 597 

Discussion 598 

In this study, we developed a first-of-its-kind machine learning-driven real-time EEG-TMS 599 

system that delivers TMS during personalized brain activity patterns reflecting strong and weak 600 

CST activation in healthy humans at rest. We report that this system accurately targets 601 

personalized strong and weak CST states, such that MEPs elicited during personalized strong 602 

CST states were significantly larger than those elicited during personalized weak and random 603 

CST states. Although this pattern of results was present for both L. FDI and L. APB muscles, it 604 

was only evident when evaluating the same stimulation intensity used to train personalized 605 

classifiers (i.e., 120% RMT). Additionally, personalized strong and weak CST states were 606 

present ~35% and ~50% of the time, respectively, and typically lasted for ~1-2 seconds. Group-607 

level spectro-spatial differences in pre-stimulus EEG activity showed that whole-scalp theta 608 

power and right centro-parietal alpha power were higher during personalized strong than weak 609 

CST states. Overall, our results demonstrate the feasibility and efficacy of real-time 610 

personalized brain state-dependent TMS targeting the human CST and are a key step towards 611 

future interventional studies using this novel decoding-based brain stimulation technique.  612 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.15.607985doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607985
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recent studies have shown that MEP amplitudes are ~10-20% larger during optimal than 613 

nonoptimal sensorimotor rhythm phases (Bergmann et al., 2019; Ozdemir et al., 2022; Suresh & 614 

Hussain, 2023; Zrenner et al., 2018), with some studies reporting no difference (Madsen et al., 615 

2019b). In the current study, we trained personalized classifiers to discriminate between EEG 616 

patterns during which TMS elicited large and small MEPs (i.e., personalized strong and weak 617 

CST states) using single-pulse TMS-EEG-EMG datasets acquired from L. FDI at 120% RMT. 618 

MEPs elicited in real-time at this same muscle and intensity were ~24% and ~43% larger than 619 

those elicited in real-time during corresponding weak and random CST states, respectively. The 620 

magnitude of state-dependent MEP amplitude variation observed here exceeds that reported in 621 

previous phase-dependent single-pulse TMS studies. MEPs elicited from the L. APB muscle at 622 

120% RMT showed a similar pattern of results (see Figure 4), indicating that classifiers trained 623 

to identify personalized strong and weak CST states generalize across intrinsic hand muscles. 624 

Given that the two muscles evaluated here are both functionally related (i.e., involved in 625 

grasping behaviors) and topographically adjacent within the sensorimotor cortex, the 626 

personalized CST states targeted here either capture dynamic fluctuations in excitability of 627 

functionally-coupled cortical muscle representations, spatially-coupled cortical muscle 628 

representations, or both. In contrast, classifiers trained using TMS-EEG-EMG datasets acquired 629 

at 120% RMT did not reliably elicit larger MEPs in real-time during personalized strong versus 630 

weak or random CST states at 110% RMT. That is, personalized classifiers did not generalize 631 

across stimulation intensities. This lack of generalization may be due to differences in the motor 632 

cortical interneuronal circuits activated by TMS at 120% and 110% RMT. Given that higher 633 

intensity TMS elicits a greater number of indirect waves as well as direct waves (Lazzaro et al., 634 

2014), the personalized EEG patterns identified from our training dataset may be specific to the 635 

precise combination of descending corticospinal volleys elicited at 120% RMT. Future studies 636 

could improve the flexibility and generalizability of machine learning-driven real-time EEG-TMS 637 

by training personalized classifiers on TMS-EEG-EMG datasets acquired from multiple muscles 638 

at multiple intensities.   639 

 640 

To date, studies examining brain state-dependency of CST activation have either not reported 641 

trial-by-trial variation in MEP amplitudes across different brain states (Bergmann et al., 2019; 642 

Hussain et al., 2019; Thies et al., 2018; Wischnewski et al., 2022; Zrenner et al., 2018) or 643 

identified no differences (Ozdemir et al., 2022). Here, we show brain state-dependency of MEP 644 

amplitude variability for the first time, reporting that trial-by-trial variation in MEP amplitudes is 645 

significantly lower during personalized strong than weak CST states. In addition to more 646 
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strongly activating the CST, these findings suggest that TMS also more consistently activates 647 

the CST when delivered during personalized strong CST states, which may benefit effect sizes 648 

of future TMS interventions targeting these states. Surprisingly, however, MEP amplitude 649 

variability did not differ between strong and random CST states, nor did it differ between weak 650 

and random CST states. This may be because we evaluated MEP amplitudes during random 651 

CST states using conventional brain state-independent TMS, rather than a mixture of high and 652 

low CST states. Consistent with reports that MEP amplitudes are less variable at higher 653 

stimulation intensities (Darling et al., 2006; Schaworonkow et al., 2019), we observed that MEPs 654 

were less variable at 120% than 110% RMT. Finally, MEPs recorded from L. APB were more 655 

variable than those recorded from L. FDI, likely because the scalp TMS site was optimized 656 

based on L. FDI rather than L. APB responses.   657 

 658 

The defining feature of brain state-dependent TMS interventions is that individual TMS pulses 659 

are only delivered when the desired brain activity pattern is detected in real-time. As a result, 660 

the brain states targeted by such interventions must occur frequently enough that the desired 661 

number of TMS pulses can be delivered within a feasible timeframe. When delivering real-time 662 

single-pulse TMS during personalized strong and weak CST states in the current study, inter-663 

stimulus intervals ranged on average between ~7-10 seconds. In addition to the frequency with 664 

which personalized CST states occurred, these inter-stimulus intervals are directly influenced by 665 

the minimum allowable inter-stimulus interval (here, 3 seconds) and the number of consecutive 666 

CST states our real-time EEG analysis system required before TMS delivery (here, 10 667 

consecutive states). To better quantify the temporal characteristics of personalized strong and 668 

weak CST states without these methodological constraints, we applied each participant’s 669 

personalized classifier to their resting EEG data using a sliding window approach. This analysis 670 

revealed that the temporal characteristics of personalized strong and weak CST states did not 671 

differ. On average, personalized strong and weak CST states were present 35-50% of the time 672 

and lasted for ~1-2 seconds; ~1 second elapsed between consecutive similar CST states. Thus, 673 

personalized strong and weak CST states appear to be sufficiently frequent and adequately 674 

prolonged to be targeted with repeated TMS pulses during an intervention. To finely tune inter-675 

stimulus intervals during TMS interventions, future studies can modify the number of 676 

consecutive CST states that the real-time EEG analysis algorithm must detect before triggering 677 

TMS pulses.  678 

 679 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.15.607985doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607985
http://creativecommons.org/licenses/by-nc-nd/4.0/


A major advantage of our approach is that it requires no prior knowledge regarding which EEG 680 

activity patterns reflect strong versus weak CST activation in each participant. To characterize 681 

the spectro-spatial EEG patterns present during personalized strong and weak CST states, we 682 

performed participant-specific contrasts between EEG power spectral activity recorded during 683 

real-time targeting of strong and weak states. Consistent with our personalized approach, these 684 

contrasts identified unique whole-scalp EEG activity patterns that discriminated between 685 

personalized strong and weak CST states in individual participants (see Supplementary Figure 686 

3 for details). Given that whole-scalp EEG signals likely capture the influence of long-range 687 

inter- and intra-hemispheric projections to motor cortical interneurons and CST neurons, whole-688 

scalp EEG may be particularly useful for identifying personalized CST states. For example, 689 

previous work suggests that long-range projections can modulate corticospinal output 690 

(Bestmann & Krakauer, 2015), including those originating from the supplementary motor area 691 

(Arai et al., 2012), premotor cortex (Münchau et al., 2002), dorsolateral prefrontal cortex (Hasan 692 

et al., 2013), and cerebellum and basal ganglia via thalamic nuclei (Sommer, 2003). Group-level 693 

spectro-spatial characteristics revealed that right centro-parietal alpha power and whole-scalp 694 

theta power were generally higher during personalized strong than weak CST states. The 695 

centro-parietal alpha activity identified in the current study is broadly consistent with recent 696 

reports that corticospinal output rhythmically fluctuates at alpha frequencies (Metsomaa et al., 697 

2021) and relates to alpha activity near the stimulated cortex and parieto-occipital regions 698 

(Ermolova et al., 2024). The consistency in these group-level findings across studies suggest 699 

that the use of personalized classifiers to identify strong and weak CST states may not be truly 700 

necessary, at least in healthy adults. To explore this possibility, we built a single non-701 

personalized classifier that could discriminate between strong and weak CST states using TMS-702 

EEG-EMG training datasets acquired from all participants. Surprisingly, the performance of 703 

personalized and non-personalized classifiers did not differ, suggesting that personalization may 704 

not be essential for brain state-dependent TMS in healthy adults. However, it is important to 705 

note that the non-personalized classifier was trained using substantially more data than 706 

personalized classifiers, which likely improved its performance. Further, this non-personalized 707 

classifier’s ability to accurately identify CST states in real-time remains untested. Finally, a key 708 

goal of brain state-dependent TMS is to improve the therapeutic efficacy of poststroke TMS 709 

interventions. Given the heterogeneity of lesion characteristics (Chen et al., 2000; Luft et al., 710 

2004; Shelton & Reding, 2001), recovery-related adaptive plasticity (Grefkes & Ward, 2014; 711 

Stinear et al., 2007), and alterations in sensorimotor oscillatory dynamics after stroke (Hussain 712 
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et al., 2020; Johnston et al., 2023; Lopez-Larraz et al., 2017), personalized classifiers may be 713 

essential for accurate poststroke brain state-dependent TMS.  714 

 715 

Limitations to this study also exist. First, therapeutic TMS interventions are often delivered over 716 

multiple days, but the between-day generalizability of personalized classifiers developed here 717 

has yet to be tested. Our method requires a large, participant-specific TMS-EEG-EMG training 718 

dataset to build each participant’s unique classifier and acquiring a new training dataset on each 719 

treatment day is likely not clinically feasible. However, between-participant generalization of 720 

machine learning classifiers used for brain-computer interfaces can be improved by using 721 

advanced statistical matching procedures that do not require any calibration for each participant 722 

(Kumar et al., 2024). Similar procedures could be applied to improve the between-day 723 

generalizability of personalized classifiers developed here. Second, some participants showed 724 

poor state targeting accuracy for weak CST states, suggesting that weak states may be less 725 

reliable than strong CST states. Although most therapeutic applications of the machine learning-726 

driven TMS approach developed here are likely to focus on increasing CST transmission by 727 

targeting strong CST states, the stability and persistence of weak CST states requires further 728 

investigation. Finally, the performance of the personalized classifiers developed here is lower 729 

than reported in conventional brain-computer interface paradigms but is consistent with multiple 730 

recent studies that used machine learning to identify EEG patterns reflecting strong and weak 731 

CST states, both from our group (Hussain et al., 2022) and others (Ermolova et al., 2024; 732 

Metsomaa et al., 2021). The overall higher performance of brain-computer interface classifiers 733 

compared to our approach likely relates to the volitional modulation of EEG signals in such 734 

contexts, typically via motor imagery (Perdikis & Millan, 2020; Tonin et al., 2022). Further, we 735 

observed that classifier performance did not correlate with the difference in CST activation 736 

between personalized strong and weak CST states. This lack of relationship may be caused by 737 

variation in spinal motoneuron depolarization that is not represented within EEG signals. 738 

Regardless, brain state-dependent TMS interventions are most effective when delivered during 739 

EEG activity patterns associated with large MEPs (Baur et al., 2020; Zrenner et al., 2018), 740 

indicating that MEP amplitude differences between targeted CST states are likely more 741 

important for inducing strong neuroplastic effects than classifier performance per se. 742 

 743 

In conclusion, here we demonstrate for the first time that personalized brain activity patterns 744 

reflecting strong and weak CST activation can be accurately captured in real-time using 745 

machine learning-driven whole scalp EEG-triggered TMS in healthy adults. Specifically, we 746 
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report that CST activation was greater during personalized strong than weak and random CST 747 

states and was also more consistent during personalized strong than weak CST states. 748 

Personalized strong and weak CST states lasted for ~1-2 seconds at a time and ~1 second 749 

elapsed between similar consecutive states, suggesting that personalized CST states could be 750 

repeatedly targeted with TMS during future interventional applications. Individual participants 751 

also exhibited unique spectro-spatial EEG patterns that differed between strong and weak CST 752 

states; these patterns are likely to be even more heterogeneous poststroke. Overall, our 753 

findings represent a key step towards using personalized brain state-dependent TMS 754 

techniques to characterize and promote poststroke CST function.  755 

  756 
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