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ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa damages hosts
through the production of diverse secreted products, many of which are regulated
by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is fre-
quently mutated in clinical isolates from chronic infections, and loss of LasR function
(LasR�) generally impairs the activity of downstream QS regulators RhlR and PqsR.
We found that in cocultures containing LasR� and LasR� strains, LasR� strains hy-
perproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids
in diverse models and media and in different strain backgrounds. Diffusible QS auto-
inducers produced by the wild type were not required for this effect. Using tran-
scriptomics, genetics, and biochemical approaches, we uncovered a reciprocal inter-
action between wild-type and lasR mutant pairs wherein the iron-scavenging
siderophore pyochelin produced by the lasR mutant induced citrate release and
cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron en-
vironments, stimulated RhlR signaling and RhlI levels in LasR�but not in LasR�

strains. These studies reveal the potential for complex interactions between recently
diverged, genetically distinct isolates within populations from single chronic infec-
tions.

IMPORTANCE Coculture interactions between lasR loss-of-function and LasR� Pseu-
domonas aeruginosa strains may explain the worse outcomes associated with the
presence of LasR� strains. More broadly, this report illustrates how interactions
within a genotypically diverse population, similar to those that frequently develop in
natural settings, can promote unpredictably high virulence factor production.

KEYWORDS Pseudomonas aeruginosa, RhlR, citrate, intraspecies interactions, lasR,
pyochelin, quorum sensing

In chronic infections and healthy microbiomes, genetic diversity frequently arises and
persists within clonally derived microbial populations, and recent data highlight that

heterogeneity within a population can pose challenges to clearance and treatment
(1–4). Genotypic and phenotypic complexity is particularly well documented in the
chronic lung infections associated with the genetic disease cystic fibrosis (CF), and
studies have convincingly demonstrated that within a species, a common set of genes
is under selection across strains and hosts (5–11).

Loss-of-function mutations in Pseudomonas aeruginosa lasR (LasR�) are commonly
found in CF isolates and strains from acute infections and from environmental sources
(12–16). LasR participates in the regulation of quorum sensing (QS) in conjunction with
other transcription factors, including RhlR and PqsR (MvfR). These regulators have one
or more autoinducer ligands: 3-oxo-C12-homoserine lactone (3OC12HSL) for LasR,
C4-homoserine lactone (C4HSL) for RhlR, and hydroxy-alkyl-quinolones (pseudomonas
quinolone signal [PQS] and hydroxy-heptyl quinolone [HHQ]) for PqsR (17). In the
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regulatory networks described in widely used P. aeruginosa model strains, LasR is an
upstream regulator of RhlR and PqsR signaling, and together these regulators control
the expression of a suite of genes associated with virulence, including redox-active
small-molecule phenazines (18–20), cyanide (21), and rhamnolipid surfactants impor-
tant for surface motility, biofilm dispersal, and host cell damage (22–24).

Although LasR positively regulates virulence factors, and lasR loss-of-function mu-
tants have reduced virulence in infection models, LasR� strain culture positivity is
correlated with worse disease outcomes in acute and chronic infections (12, 13). There
are several possible explanations for this apparent contradiction. LasR� clinical isolates
(CIs) are frequently found among strains with functional LasR (LasR�) where exoprod-
ucts can be shared or signal cross-feeding can occur (14), and some LasR� clinical
isolates exhibit rewired QS regulation (25). Loss of LasR function also confers some
fitness advantages, including altered catabolic profiles (26) and enhanced growth in
low oxygen (27, 28), which may contribute to bacterial burden. Further, LasR� strains
can activate QS in response to specific fungal products (29) or culture conditions
(30, 31).

In addition to LasR status, iron acquisition strategies are often heterogeneous across
P. aeruginosa isolates. P. aeruginosa procures iron through the use of siderophores,
including pyochelin (32–34) and pyoverdine (35), from heme, or through a direct iron
uptake system (36–38). Although it is common to encounter P. aeruginosa strains with
loss-of-function mutations in genes required for biosynthesis of the high-affinity sid-
erophore pyoverdine, genes associated with use of pyochelin, heme utilization, and
ferrous iron import are generally intact (39–41). Iron limitation can deprioritize path-
ways that require abundant iron including the tricarboxylic acid (TCA) cycle (42), and
consequently Pseudomonas spp. and other organisms release metabolic intermediates,
such as citrate, that accumulate at iron-requiring steps (e.g., aconitase) (43, 44).

Here, we show that mixtures of P. aeruginosa LasR� and LasR� strains had en-
hanced production of QS-controlled factors across media, culture conditions, and strain
backgrounds. The unpredictably high levels of exoproducts in coculture were produced
by LasR� strains due to activation of RhlR, likely through increased C4HSL synthase
(RhlI) stability in LasR� strains. Our genetic, transcriptomic, and biochemical studies led
us to uncover a set of interactions in which production of the siderophore pyochelin by
ΔlasR cells induced citrate release by wild type (WT) but not by ΔlasR cells. We found
that citrate led to increased RhlI protein levels and RhlR activity in ΔlasR cells but not
in the WT. Together, these intraspecies interactions increased production of exoprod-
ucts known to cause host damage.

RESULTS
P. aeruginosa �lasR overproduces pyocyanin in coculture with the wild type.

We observed that mixtures of P. aeruginosa LasR� and LasR� strains had high levels
of total pyocyanin, a secreted, blue-pigmented phenazine. As shown in spot colonies of
the PA14 wild-type (WT), ΔlasR strain, and WT and ΔlasR strain cocultures (here,
WT/ΔlasR cocultures), the strain mixture showed increased blue pigmentation (Fig. 1A)
and a significant 4-fold induction of pyocyanin above the background relative to the
level with either strain alone (Fig. 1B). Phenazine-deficient derivatives, Δphz (ΔphzA1
ΔphzB1 ΔphzC1 ΔphzD1 ΔphzE1 ΔphzF1 ΔphzG1 ΔphzA2 ΔphzB2 ΔphzC2 ΔphzD2
ΔphzE2 ΔphzF2 ΔphzG2) and ΔlasR Δphz (ΔlasR ΔphzC1 ΔphzC2) strains, were also
included, and as expected, Δphz and ΔlasR Δphz cells showed no blue colony pigmen-
tation (Fig. 1A). The higher levels of pyocyanin in WT/ΔlasR cocultures relative to levels
in single-strain cultures were also observed on artificial sputum medium (ASM) and on
phosphate-buffered medium with or without amino acids, indicating that the phenom-
enon occurred under diverse conditions (see Fig. S1A in the supplemental material).
Cocultures of clonally derived LasR� and LasR� clinical isolates collected from single
respiratory sputum samples from chronically infected individuals with cystic fibrosis
(14) also had increased production of pyocyanin relative to monoculture levels when
LasR� and LasR� strains were grown together (Fig. S1B and C).
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To assess individual strain contributions to increased pyocyanin in WT/ΔlasR cocul-
tures, we replaced each strain with its phenazine-deficient derivative and measured
pyocyanin in coculture. When the ΔlasR strain was cultured with the phenazine
biosynthesis mutant Δphz strain (Δphz/ΔlasR coculture), we still observed increased
blue pigmentation and total pyocyanin at a level above that of either monoculture
(Fig. 1A and B). Surprisingly, pyocyanin production by Δphz/ΔlasR cocultures was
statistically higher than that of WT/ΔlasR coculture (Fig. 1B). In contrast, WT/ΔlasR Δphz
cocultures did not display the high-pyocyanin phenotype (Fig. 1A and B) and resem-
bled Δphz/ΔlasR Δphz cocultures, where no pyocyanin was produced. Collectively,
these data suggested that WT/ΔlasR cocultures produced more pyocyanin than either
monoculture alone and that the ΔlasR strain contributed the pyocyanin in coculture
(Fig. 1C).

That the levels of pyocyanin in WT/ΔlasR cocultures were higher than the level in
each strain alone was not dependent on the initial ratios of WT to ΔlasR cells (Fig. 1D).
We saw increased coculture colony pigmentation when the initial proportions of WT

FIG 1 The ΔlasR strain produces pyocyanin in wild-type/ΔlasR cocultures beyond monoculture concentrations. (A)
Representative images of the wild-type (WT) and ΔlasR strains and their phenazine-deficient derivatives (Δphz strains)
visualized from the bottom of a 96-well LB agar plate after 16 h growth as mono- and cocultures with 70:30 WT-to-ΔlasR
cell initial ratio. (B) Pyocyanin levels above background, defined as the average signal for the ΔlasR Δphz strain, quantified
for cultures described in panel A. ns, not significant; *, P � 0.05; ***, P � 0.0005; ****, P � 0.0001, as determined by ordinary
one-way analysis of variance with Tukey’s multiple-comparison test for n � 8 replicates on three different days. (C) Model
of pyocyanin production by the ΔlasR strain in coculture with the WT. (D) Representative pyocyanin production of the wild
type cocultured with the ΔlasR strain or the ΔlasR strain complemented with the lasR gene at the native locus (ΔlasR �
lasR strain) across several initial (designated by the subscript i) proportions on LB medium for 20 h. Three biological
replicates were included in at least 3 independent experiments. (E) Average final proportion of 3 replicate colony biofilms
quantified after 16 h growth for the WT strain and the ΔlasR strain cocultured with a WT strain tagged with lacZ in 3
independent experiments. Experimental setup was as described in panel D. *, P � 0.05; **, P � 0.005, as determined by
two-tailed t tests of paired ratios between att::lacZ/WT (control) and att::lacZ/ΔlasR cocultures at each initial ratio. All results
that reach significance are marked.

Mixed Genotype Coculture Promotes Virulence Factors ®

July/August 2020 Volume 11 Issue 4 e01865-20 mbio.asm.org 3

https://mbio.asm.org


cells were at 0.2, 0.3, 0.5, 0.7, and 0.8 of the initial inoculums, with the balance
comprised of ΔlasR cells (Fig. 1D).

No increase in pyocyanin was observed at any ratio when the WT was cocultured
with the ΔlasR complemented derivative strain (ΔlasR � lasR), indicating that the
phenomenon was dependent on the lasR mutation (Fig. 1D). To assess the relative
abundances of WT and ΔlasR cells in coculture, we competed each strain against a
neutrally tagged WT strain (PA14 att::lacZ). We found that ΔlasR cells increased in
proportion after 16 h of growth in colony biofilms regardless of the starting proportion
whereas the proportions of untagged WT cells remained stable (Fig. 1E). We have
previously shown that Anr activity is higher in ΔlasR strains and contributes to the
competitive fitness of the ΔlasR strain against WT P. aeruginosa in colony biofilms (27,
45), but Anr was not required for coculture pyocyanin production (Fig. S2).

Pyocyanin is a product regulated by quorum sensing (QS) through the transcription
factors LasR, RhlR, and PqsR (46–48), and because QS regulation is cell density depen-
dent, it was important to assess the coculture population size relative to that of the
monoculture. Total CFU counts did not increase in WT/ΔlasR mixed cultures relative to
the level for either strain alone (Fig. S1D). Instead, we found that WT/ΔlasR cocultures
had fewer CFU than WT monocultures on lysogeny broth (LB) medium (Fig. S1D). Taken
together, these data suggested that altered behavior, rather than cell number, con-
tributed to the increased phenazine profile of LasR� strains.

Independent of its ability to produce autoinducers, the WT promotes RhlR/I-
dependent signaling in a �lasR strain. In the canonical QS pathway, LasR regulates
both PqsR and RhlR, and mutants lacking either regulator in a WT background have
impaired pyocyanin production (49, 50). Both pqsR and rhlR were required in ΔlasR cells
for pyocyanin production in coculture with the WT (Fig. 2A). To determine if coculture
increased RhlR- or PqsR-dependent signaling in ΔlasR strains, we fused lacZ to the
promoters of rhlI and pqsA (PrhlI and PpqsA, respectively) which provide activity
readouts of each respective regulator (17). We examined the interactions between WT
and the ΔlasR strain in single-cell-derived colonies by spreading suspensions containing
�50 cells of WT with �50 cells of either a ΔlasR PrhlI-lacZ or ΔlasR PpqsA-lacZ strain on
LB agar containing the colorimetric �-galactosidase substrate 5-bromo-4-chloro-3-
indolyl-D-galactopyranoside (X-Gal). Intercolony distances and �-galactosidase activity
in ΔlasR strains were measured. We found that the rise in PrhlI-lacZ activity was
inversely correlated with the distance to a WT colony (Fig. 2B). Pearson correlation
analyses showed that 54% of the variability in ΔlasR PrhlI- lacZ strain activity could be
explained by changes in the distance to a WT colony (P value of � 0.0001). The
increased PrhlI-lacZ activity in the ΔlasR strain was not observed in the ΔlasR ΔrhlR
strain, and close proximity to another ΔlasR PrhlI-lacZ colony did not affect promoter
activity (Fig. 2B, inset). Because C4HSL (which is synthesized by RhlI) activates RhlR and
because proximity to the WT stimulated ΔlasR PrhlI-lacZ strain activity, we examined
the role of RhlI in the ΔlasR strain response. We observed that a ΔlasR ΔrhlI strain was
greatly impaired in the induction of pyocyanin upon coculture with the WT (Fig. 2A),
which suggests that WT production of C4HSL was insufficient to complement the ΔlasR
ΔrhlI strain and further posits activation of RhlR and C4HSL synthesis in ΔlasR strains.
Although PqsR was required in ΔlasR cells for coculture pyocyanin production, there
was no significant correlation with proximity to the WT for ΔlasR PpqsA-lacZ strain
activity (Fig. 2B). Collectively, these data indicated that a diffusible factor produced by
the WT stimulated RhlR-dependent signaling in the ΔlasR strain to induce downstream
production of RhlR- and PqsR-dependent factors.

Given differences in colony pigmentation between WT/ΔlasR ΔrhlR and WT/ΔlasR
ΔrhlI (Fig. 2A) cocultures, C4HSL cross-feeding between the WT and ΔlasR strain likely
occurred. Because C4HSL is diffusible and produced by WT cells, we tested the
hypothesis that C4HSL or other acyl-homoserine lactones (AHLs) produced by the WT
were necessary to induce RhlR-dependent activity in ΔlasR cells cocultured with the WT.
To test this hypothesis, we cocultured the ΔlasR strain with ΔrhlI cells or ΔlasI ΔrhlI cells
which lack both acyl-homoserine lactone synthases. Surprisingly, we found that like
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WT/ΔlasR cocultures, ΔrhlI/ΔlasR cocultures had higher levels of pyocyanin than mon-
ocultures (Fig. 2C). Similarly, ΔlasI ΔrhlI/ΔlasR cocultures had higher levels of pyocyanin
production than monocultures though the interaction was delayed by �24 h relative
to the interaction of the WT/ΔlasR cocultures (Fig. 2C). Consistent with the activity of
the ΔlasR PpqsA-lacZ strain, which was not induced in coculture with WT, the PQS-
deficient ΔpqsA strain supported high pyocyanin colony pigmentation in coculture with
ΔlasR cells after 24 h of extended incubation (Fig. 2C). The AHL-independent activation
observed in ΔlasI ΔrhlI/ΔlasR cocultures and the striking differences in pyocyanin
production observed between the strongly stimulating ΔrhlI/ΔlasR cocultures and the
weakly stimulating WT/ΔlasR ΔrhlI cocultures suggested that the ΔlasR strain may rely
more heavily on production of its own autoinducer for activation in coculture. Consis-
tent with this model, we found that the ΔlasR strain produces RhlR/RhlI (RhlR/I)-
dependent AHLs in coculture with an AHL-sensing reporter strain (i.e., ΔlasI ΔrhlI strain
with a lacZ promoter fusion to an AHL-responsive gene) (Fig. S3A and B). The dispens-
able contribution of WT-produced autoinducers implicated a novel signaling interac-
tion in coculture-dependent activation of RhlR/I activity in the ΔlasR strain (Fig. 2D).

To assess whether WT-induced RhlR activity in the ΔlasR strain was sufficient to elicit
other RhlR/I-controlled phenotypes in addition to pyocyanin production, we tested
whether coculture with LasR� strains enhanced swarming, a surface-associated motil-
ity which requires the production of RhlR-regulated rhamnolipid surfactants (51). While

FIG 2 P. aeruginosa WT induces RhlR/I-dependent pyocyanin production in ΔlasR cells even in the absence of WT
autoinducers. (A) Representative pyocyanin production by monocultures and WT cocultures (70% WT at time 0) of
ΔlasR and ΔlasR strain derivatives that are deficient in PQS or RhlR/I-dependent quorum sensing on LB medium
after 24 h growth. (B) Promoter activity of the ΔlasR PpqsA-lacZ (gray) and ΔlasR PrhlI-lacZ (black) strains, quantified
by relative pixel intensity of single-cell-derived ΔlasR colonies grown near unmodified WT colonies. Solid best-fit
nonlinear lines are for visualization. The inset shows representative colonies for RhlR-dependent ΔlasR PrhlI-lacZ
strain activity in monoculture and coculture with the WT (red circles). The experiment was repeated with 2
replicates on at least 3 independent days. (C) Representative monoculture and ΔlasR coculture images for the
ΔpqsA, ΔrhlI, and ΔlasI ΔrhlI mutants on LB medium after 24 h and 48 h. (30% ΔlasR cells at time 0). (D) Model of
AHL-dependent and -independent induction of RhlR/I-dependent activity and phenazine production in ΔlasR cells
grown in coculture with the WT.
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the rhamnolipid-defective mutant ΔrhlA, ΔlasR, and ΔlasR ΔrhlR strains were unable to
swarm, cocultures of the ΔlasR strain with the ΔrhlA strain swarmed considerably. The
phenomenon was dependent on RhlR as the ΔrhlA/ΔlasR ΔrhlR cocultures did not
swarm (Fig. S4). Altogether, these data implicated broad activation of RhlR-mediated QS
in LasR� strains cocultured with LasR� P. aeruginosa.

Pyochelin production by �lasR cells is required for coculture interactions. With
evidence indicating that induction of RhlR activity in ΔlasR cells can occur in both
mixed-strain spot colonies and adjacent colonies independent of autoinducer cross-
feeding, we sought to gain further insight into the mechanisms that underlie the
WT-ΔlasR cell interactions. We investigated the transcriptomes of the lasR mutant in
coculture with either the WT or itself via RNA sequencing (RNA-seq). We grew ΔlasR
colony biofilms on LB medium physically separated from a lawn of either the ΔlasR or
WT strain by two filters with 0.22-�m pores to prevent mixing of genotypes while
allowing for the passage of small molecules. In order to examine ΔlasR strain transcrip-
tional profiles, RNA was extracted from cells within the ΔlasR colony biofilms grown on
the topmost filter for 16 h (Fig. 3A). As expected, no lasR reads were detected in our
sequencing data to suggest that the wild type was sufficiently excluded by filter
separation. Expression levels of a total of 199 genes in the ΔlasR strain were higher, and
those of 198 genes were lower by a |log2(fold change)| of �1 with a P value of �0.05,
in coculture with the WT than levels in the ΔlasR strain alone (Table S1). Gene Ontology
(GO) term analyses through PantherDB (52) indicated that the upregulated gene set
was significantly overrepresented in two pathways related to siderophore biosynthesis:
the pyoverdine biosynthetic process and salicylic acid biosynthetic process (an up-
stream precursor of pyochelin) with �44- and �77-fold enrichment, respectively (P
values of �0.005). Twenty-eight out of the 33 genes in the pyochelin and pyoverdine
siderophore biosynthesis- and acquisition-related GO families were significantly up-
regulated in ΔlasR cells upon coculture with the WT (Fig. 3B) (i.e.,|log2(fold change)| of
�0 with a P value of �0.05). Other low-iron-responsive genes were differentially
expressed, including the has genes involved in heme uptake and antABC genes
(Table S1). While we observed stimulation of rhlI promoter activity and increased
production of RhlR-regulated products, we did not see a broad transcriptional pattern
indicative of RhlR activation at this early time point (Table S1), and this point is
discussed below.

Given that siderophore biosynthesis genes were upregulated in ΔlasR cells cocul-
tured with WT cells, we qualitatively examined production of fluorescent pyoverdine
and pyochelin siderophores in monocultures and cocultures. To determine the contri-
bution of both pyoverdine and pyochelin by the ΔlasR strain to fluorescence, genes
required for pyoverdine biosynthesis (ΔlasR ΔpvdA strain), pyochelin biosynthesis (ΔlasR
ΔpchE strain), or both pathways (ΔlasR ΔpvdA ΔpchE strain) were disrupted (Fig. 3C).
Increased fluorescence attributable to both pyoverdine and pyochelin in coculture was
due to siderophore production by ΔlasR strains, consistent with the RNA-seq data, as
the increased fluorescence in WT/ΔlasR cocultures was lost in coculture when the ΔlasR
strain was replaced with a ΔlasR ΔpvdA, ΔlasR ΔpchE, or ΔlasR ΔpvdA ΔpchE mutant.
While cocultures of the WT and the pyoverdine-deficient derivative ΔlasR ΔpvdA strain
(i.e., WT/ΔlasR ΔpvdA coculture) showed increased pyocyanin production relative to
that of either monoculture, the ΔlasR ΔpchE and ΔlasR ΔpvdA ΔpchE strains did not
promote pyocyanin production in coculture with the WT, as observed by colony
pigmentation (Fig. 3D). The decrease in ΔlasR strain-derived pyocyanin was not due to
decreased fitness as disruption of pvdA and pchE individually in ΔlasR cells had no effect
on the final proportions; in contrast, the ΔlasR ΔpvdA ΔpchE strain had a significant
defect in competitive fitness compared to the fitness of the ΔlasR parental strain
(Fig. S5). These data suggested that pyochelin played a role in the coculture interaction.
To test this model, we complemented the pyocyanin defect in the siderophore-
deficient ΔpvdA �pchE/ΔlasR �pchE coculture with pyochelin-containing extracts from
cultures of ΔpvdA cells which cannot produce pyoverdine or control extracts from
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siderophore-deficient ΔpvdA ΔpchE cultures (Fig. S6A gives supernatant absorption
spectra). The two extracts were analyzed using a chrome azurol S (CAS) assay (53) to
confirm that chelator activity was present in the ΔpvdA cell supernatant extracts but not
in extracts from ΔpvdA ΔpchE cultures (Fig. S6B). Medium supplemented with
pyochelin-containing extracts, but not siderophore-free extracts, restored pyocyanin
production in ΔpvdA ΔpchE/ΔlasR ΔpchE cocultures (Fig. 3E), lending further support to
the idea that pyochelin was required for coculture interactions. Consistent with this
requirement, iron supplementation suppressed siderophore production, as expected,
and diminished coculture pyocyanin in WT/ΔlasR cocultures (Fig. 3F) alongside a

FIG 3 Biosynthesis of the coculture-induced iron scavenging siderophore pyochelin is required in the ΔlasR strain
for pyocyanin production when it was cultured with the wild type (WT). (A) Scheme for the collection of RNA from
ΔlasR colony biofilms grown above a lawn of ΔlasR or WT cells. DE, differential expression. (B) Volcano plot showing
differential expression (log2) for ΔlasR cells grown over WT relative to ΔlasR cells grown over ΔlasR on the x axis;
the y axis shows the �log10 P value for the difference between sample types. Genes involved in pyoverdine (blue)
and pyochelin (green) iron acquisition systems are indicated. ccmC and ccmF (indicated with arrows) of the
pyoverdine GO term are involved in c-type cytochrome biosynthesis, and strains with knockouts of these genes are
reported to produce more pyochelin. (C) Monocultures and WT cocultured with ΔlasR strains deficient in
pyoverdine (ΔpvdA) and/or pyochelin (ΔpchE) biosynthesis. Colonies were visualized under UV light in order to see
fluorescent siderophores. Images are representative of at least 3 independent experiments. (D) Pyocyanin pro-
duction visualized for the colonies shown in panel C. (E) Representative pyocyanin production by siderophore-
deficient strains grown in mono- and coculture on LB medium or on LB medium with pyochelin-containing extract
(�PCH). Colonies were grown in a 12-well plate with a 2-ml total volume and imaged after 24 h. (F) Mixed colony
biofilms of wild-type and ΔlasR strains grown on LB medium (�) or LB medium supplemented with either 10 or
100 �M FeSO4 visualized under ambient (top) and UV (bottom) light. (G) Model showing that pyochelin (PCH)
production by the ΔlasR strain is required for WT/ΔlasR coculture phenazines.
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decrease in ΔlasR strain RhlR/I-dependent AHL activity in coculture with the AHL-
sensing reporter strain (Fig. S3C and D). Collectively, these data support a model in
which pyochelin production by the ΔlasR strain is induced and required for pyocyanin-
promoting interactions with the WT through initiation of a low-iron response (Fig. 3G).

In coculture with the WT, the �lasR strain responds to citrate, a pyochelin-
inducible metabolite. Many of the upregulated genes in the ΔlasR strain upon
coculture with the WT have annotations related to organic acids, such as anthranilate
and citrate (Table S1 and Fig. S7A). Several lines of evidence suggest that anthranilate
was not the factor that stimulated RhlR activity and pyocyanin production in cocul-
ture. First, anthranilate supplementation (up to �15 mM) did not alter ΔlasR strain
phenazine production (Fig. S7B). Further, cocultures of the ΔlasR mutant with the
anthranilate synthase mutant ΔphnAB strain, with reduced extracellular anthranilate
(Fig. S7C), or with the ΔpqsA mutant (Fig. 2C), which accumulates it (54), did not alter
coculture phenazine production. Anthranilate is also generated from tryptophan ca-
tabolism through the kynurenine pathway (55). Given that coculture pyocyanin pro-
duction could occur in the absence of exogenous amino acids (Fig. S1A), we concluded
that the kynurenine pathway was likely not involved. Together, these data suggested
that anthranilate was not a stimulating metabolite.

In light of the observation that 20% of the most strongly differentially expressed
genes [|log2 (fold change)| of �2 with a P value of �0.05] were implicated in citrate
sensing, transport, catabolism, and anabolism, as annotated by UniProt (56) and www
.pseudomonas.com (57), we looked at all genes with annotations related to citrate to
identify broad expression patterns (Fig. 4A). Among the genes induced in ΔlasR/WT
cocultures [|log 2 (fold change)| of �0 with a P value of �0.05] were genes annotated
as citrate responsive or playing roles in citrate sensing and transport or metabolism,
with the most strongly upregulated citrate genes involved in sensing, transport, and
catabolism specifically (Fig. 4B).

We measured citrate in the supernatants of WT and ΔlasR LB cultures based on the
following observations: (i) ΔlasR strains induced low-iron-responsive genes when
grown near the WT but not itself; (ii) ΔlasR strain pyochelin production was necessary
for coculture interactions that led to increased pyocyanin; (iii) citrate sensing and
catabolism genes were induced in ΔlasR cells by the presence of WT cells; and (iv)
numerous microbes, including Pseudomonas putida, were shown to secrete citrate and
other organic acids when iron limited (44, 58–60). Citrate was detected in both WT and
ΔlasR strain LB culture supernatants (Fig. 4C), and amendment with extracts containing
50 �M pyochelin increased extracellular citrate concentrations by �2-fold in WT cul-
tures compared to levels in cultures supplemented with extracts lacking pyoverdine
and pyochelin, with a much smaller stimulation in ΔlasR cultures under the same
conditions (Fig. 4C). This suggested that WT-produced citrate may be involved in
WT/ΔlasR coculture interactions and that citrate release was enhanced by pyochelin
produced by the ΔlasR strain.

Citrate induces RhlR-dependent activity and RhlI levels in a ClpX protease-
dependent manner in �lasR cells. To determine if citrate was sufficient to stimulate
RhlR activity in ΔlasR cells, we analyzed its effects on rhlI promoter fusion activity,
colony morphology, and RhlI protein levels. We found that citrate increased rhlI
promoter activity (PrhlI) in ΔlasR cells and that its effects were dependent on the
presence of RhlR (Fig. 5A). Citrate was sufficient to promote increases in colony
pigmentation and colony smoothness, previously characterized to be RhlR-mediated in
ΔlasR cells (29) (Fig. 5A, inset). In contrast, citrate caused a small but significant
reduction in WT PrhlI activity compared to that the LB control (Fig. 5A).

To determine if RhlI protein levels were influenced by citrate, we utilized an
arabinose-inducible rhlI-hemagglutinin (HA) construct to assess RhlI protein levels and
stability in the absence and presence of citrate independent of RhlR transcriptional
control. RhlI-HA was functional as swarming defects of the ΔrhlI mutant were comple-
mented upon expression of RhlI-HA but not by the empty vector (Fig. 5B, inset). RhlI-HA
protein levels were 3-fold higher in the ΔlasR strain upon citrate supplementation than
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in the controls (Fig. 5B). Consistent with the absence of an increase in rhlI promoter
activity in WT strains (Fig. 5A), RhlI-HA protein levels were not higher with citrate in the
ΔlasR complemented strain (ΔlasR � lasR strain) (Fig. 5B). The differential responses to
citrate were also observed in LasR� and LasR� pairs of clinical isolates (CIs). LasR� CIs
from acute (strain 388D) and chronic (strain DH2415) infections had RhlI-HA levels 1.4-
and 1.7-fold higher, respectively, in the presence of citrate (Fig. 5C), whereas alterations
in RhlI-HA protein levels in LasR� CIs from acute (strain 550A) or chronic (strain
DH2417) infections were not observed (Fig. 5D). Through this work, we successfully
identified citrate as a molecule in coculture that specifically promoted RhlI protein
levels in LasR� strains, but not in LasR� strains, by posttranscriptional control. In an
attempt to identify transporters involved in the ΔlasR strain response to citrate and/or
other coculture metabolites, we deleted two organic acid transporters: dctA (61) and
PA14_51300 (62) in the ΔlasR strain background. We found that the ΔlasR ΔdctA strain
showed induction of pyocyanin when it was cocultured with the WT and that induction
was dependent on RhlR (Fig. S7D). Similar results were obtained with the ΔlasR

FIG 4 Citrate release by WT is induced by pyochelin exposure. (A) Subset of expression data in ΔlasR cocultures
(Fig. 3A shows the setup) for genes annotated as being involved in citrate sensing, transport, catabolism,
anabolism, and those shown to be responsive to citrate. (B) Volcano plot of expression data of ΔlasR cocultures with
each point representing the log2(ΔlasR cells grown on WT/ΔlasR cells grown on ΔlasR cells) expression and
–log10(P value) of a single gene. Genes shown in panel A are highlighted in color. (C) Citrate concentrations in
supernatants from wild-type and ΔlasR stationary-phase cultures after growth in LB medium supplemented with
extracts containing 50 �M pyochelin (PCH�) or an equal volume of control extracts (PCH�). A representative
experiment with four biological replicates repeated 3 independent days is shown. ***, P � 0.0005; ****, P � 0.0001,
as determined by two-tailed t tests of paired ratios.
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ΔPA14_51300 strain (Fig. S7E), suggesting that these transporters were not required for
the interaction, perhaps due to redundant functions of other proteins or the involve-
ment of other import mechanisms.

The temporal pattern of activation and the stimulation of RhlI-HA in the absence of
RhlR control suggested that the RhlI protein may precede signal amplification via the

FIG 5 Citrate induced RhlR-dependent rhlI promoter activity and stabilized RhlI protein in LasR� strains in a
ClpX protease-dependent manner. (A) �-Galactosidase activity for ΔlasR, ΔlasR ΔrhlR, and wild-type strains
harboring att::PrhlI-lacZ on LB medium with or without 20 mM citrate at 24 h. Each point is the average of three
biological replicates from 3 to 4 independent experiments. ns, not significant; *, P � 0.05; **, P � 0.005, as
determined by one-way analysis of variance with Dunnett’s multiple hypotheses correction of the indicated
comparisons. The inset (Ai) shows a representative image of ΔlasR colony morphology on LB medium with and
without 20 mM citrate at 24 h. (B) RhlI-HA protein signal normalized to Revert total protein stain (LiCor) on
LB medium with and without 20 mM citrate for the ΔlasR strain and lasR complemented at the native locus
(ΔlasR strain). ns, not significant; *, P � 0.05; **, P � 0.005, as determined by analysis of variance with Dunnett’s
multiple hypothesis correction for n � 3 biological replicates performed on three independent days. The inset
(Bi) illustrates that plasmid-borne RhlI-HA, but not the empty vector (EV), complemented an ΔrhlI mutant for
swarming. (C) RhlI-HA protein levels on LB medium with and without 20 mM citrate of LasR loss-of-function
(LasR�) clinical isolates (CIs) from acute corneal (388D) and chronic CF (DH2415) Infections. *, P � 0.05, as
determined by two-tailed t tests of paired ratios for n � 3 experiments for each isolate. (D) RhlI-HA protein
levels on LB medium with and without 20 mM citrate of an LasR� acute corneal CI (550A) of the same
multilocus sequence type as 388D and LasR� chronic CF CI (DH2417) from which DH2415 evolved. ns, not
significant as determined by two-tailed t tests of paired ratios for n � 3 experiments for each isolate. nd, not
detected. (E) Representative image and quantification of replicates for the anti-HA antibody analysis of ΔlasR
and ΔlasR clpX Tn::M strains carrying a plasmid expressing RhlI-HA or an empty vector (pRhlI-HA or pEV,
respectively) grown in LB medium with or without 20 mM citrate. *, P � 0.05. as determined by two-tailed t
tests of paired ratios for n � 3 replicates from 3 independent days.
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QS transcriptional network. This would be consistent with a primary effect on post-
transcriptional modulation of RhlI-mediated RhlR activity, as has been reported previ-
ously to occur through an RhlS small RNA (sRNA)-dependent mechanism (63); however,
we found no apparent difference in RhlS expression levels in our RNA-seq reads in
coculture. To begin to unravel the mechanisms by which citrate promoted RhlR/I-
dependent signaling and RhlI stability in ΔlasR cells, we analyzed the role of two
proteases previously found to target and degrade RhlI (i.e., Lon and ClpXP) (64). Given
that knockouts of Lon protease have a less substantial rise in RhlR/I expression in ΔlasR
strains than in the WT (65), we focused on the role of ClpXP in ΔlasR cells. We found that
citrate induction of RhlI-HA protein levels in the ΔlasR strain relative to that in the LB
control was dependent on functional ClpX protease (Fig. 5E). More specifically, when
ClpX, a protease shown to degrade RhlI, is nonfunctional (i.e., ΔlasR clpX::TnM strain),
RhlI-HA levels did not increase on LB plus citrate relative to that of the LB control, unlike
the level in the ΔlasR strain comparator (Fig. 5E). Under LB culture conditions, RhlI-HA
levels were 3.20- � 2.1-fold higher in the ΔlasR clpX::TnM strain than in the ΔlasR strain,
which mirrors the 3-fold induction observed for the ΔlasR strain on LB medium with or
without citrate. Under citrate-supplemented conditions, no significant difference in
RhlI-HA levels was observed for the ΔlasR clpX::TnM relative to that in the ΔlasR strain
(fold change of 1.01 � 0.53). In other words, as previously noted for WT strains, ClpX
may degrade RhlI in ΔlasR cells and play a role in the ΔlasR cell response to citrate. The
distinct responses and mechanisms identified between LasR� and LasR� strains under
iron limitation and exposure to the low-iron-associated molecules, citrate and pyoche-
lin, enabled increases in antagonistic factors beyond monoculture levels as an emer-
gent property of P. aeruginosa intraspecies interactions.

DISCUSSION

In this study, we described an emergent outcome of coculturing LasR� and LasR�

strains of P. aeruginosa in which their interactions promoted the toxic exoproducts
pyocyanin and rhamnolipids (Fig. 6 provides a model). We determined that, in cocul-
ture, the ΔlasR strain produces the siderophore pyochelin and that exogenous pyo-
chelin induced citrate release more strongly in the WT than in ΔlasR strain. Citrate
increased RhlI protein levels and induced RhlR-dependent activity only in ΔlasR cells
and not WT cells (Fig. 6). Western blot analyses of RhlI-HA expressed from a regulated
promoter led us to propose that the increase in RhlR-dependent signaling is due to
decreased degradation of RhlI by ClpXP, a known negative regulator of RhlI (65, 66), or
through other mechanisms of posttranscriptional regulation. The differences in sidero-
phore production, citrate release, and RhlR/I-dependent activation between P. aerugi-
nosa LasR� and LasR� strains in coculture reflect the pronounced differences between

FIG 6 Model for wild-type and ΔlasR coculture interactions. ΔlasR strain-produced pyochelin promotes
citrate release in the wild type (1). Citrate (and diffusible autoinducer) released by the wild type in
coculture stimulates RhlR/I-dependent activity in a ΔlasR strain (2). Citrate stabilizes RhlI protein in ΔlasR
cells potentially through a ClpXP protease-dependent mechanism (3), which ultimately promotes the
production of antagonistic factors like pyocyanin toxin and rhamnolipid surfactant above monoculture
levels (4).
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strains that drive QS reactivation. Previous studies have shown that LasR� strain colony
morphology and phenazine production change in the presence of other species such
as Candida albicans (29) and Staphylococcus aureus (see Fig. 3B in reference 67), and
future work will determine if pyochelin and citrate also participate in these interspecies
interactions as many microbial interactions have been shown to be influenced by iron
availability (68–71). Furthermore, the induction of RhlR activity that can occur in
late-stationary-phase ΔlasR cultures (30, 72) may relate to changes in iron or TCA cycle
intermediates. While we found that WT-produced autoinducers, including 3OC12HSL,
C4HSL, and PQS, were not required for coculture stimulation, they clearly contributed
to the enhanced RhlR-dependent activity, which is consistent with intercolony QS
interactions demonstrated previously (73).

The stimulatory relationship between LasR� and LasR� strains was remarkably
stable as it was observed when strains were mixed within single spot colonies (Fig. 1A)
and when strains were separated by either filters (Fig. 3) or millimeter distances on an
agar plate (Fig. 2B). The LasR�/LasR� interactions occurred across distinct media (see
Fig. S1A in the supplemental material), among genetically diverse LasR� and LasR�

clinical isolates (Fig. S1B), and over a wide range of relative proportions of each type
(Fig. 1C). Of note, colonies inoculated at a 80:20 WT-to-ΔlasR cell ratio had more zones
with the lasR mutant-associated phenotypes described as sheen and lysis than colonies
with a 20:80 WT-to-ΔlasR cell ratio (Fig. 1C). At both ratios, ΔlasR cell numbers increased
slightly relative to level of the wild type (Fig. 1D). We propose that the reduced
appearance of sheen and lysis in mixed colonies inoculated with more ΔlasR cells
reflects a requirement for a sufficient proportion of ΔlasR cells to initiate the WT-ΔlasR
cell interactions that activate RhlR and restore a more WT-like phenotype to LasR�

cells. Furthermore, if RhlR signaling is not fully activated in ΔlasR cells, there may be
regions of increased ΔlasR cell killing via WT-produced factors such as cyanide (74).

The consequences of this intraspecies interaction may explain the worse outcomes
exhibited by patients in which LasR� strains are detected (13), but future studies that
include genotypes, monoculture and coculture phenotypes, and longitudinal outcome
data will be required. RhlR plays other important roles in host interactions (75) which
may benefit P. aeruginosa LasR� strains. The observation that rhlR mutants are rare in
natural isolates and that LasR� strains with active RhlR are virulent (25, 76) underscores
the relevance of this mechanism and highlights the importance of understanding how
microbial interactions influence RhlR activity.

As studies of inter- and intraspecies interactions progress, it is becoming increas-
ingly clear that the environment can dictate the outcome of microbial interactions (77).
In fact, even the importance of QS regulation for fitness depends on nutrient sources
and conditions (78, 79). As ΔlasR cell-produced pyochelin was a key component of the
interaction and as pyochelin production is repressed under conditions of excess iron, it
was not surprising that iron supplementation suppressed the interaction (Fig. 3F and
Fig. S3C and D) without significantly altering the final colony CFU count or strain ratios
relative to those of the LB control (Fig. S4). Siderophore-mediated iron uptake is often
required in vivo (34, 80, 81) due to iron sequestration by host proteins (82–85); thus, in
vivo settings may support these interactions.

Interestingly, pyoverdine, the higher-affinity siderophore, was not required for the
coculture response, mirroring findings that genes for biosynthesis of pyoverdine, but
not pyochelin, are commonly disrupted in isolates from chronic CF patients (39–41). In
the absence of pyoverdine (i.e., the ΔlasR �pvdA strain), we observed more pyocyanin
in coculture with the WT than with the ΔlasR strain (Fig. 3D), and we speculate that this
is due to increased pyochelin production by ΔpvdA cells, but future studies will be
required to test this model. It was interesting to find that in WT/ΔlasR coculture,
heme-related proteins, hasAP, hasS, and hasD, were among the top eight most-
upregulated genes by the ΔlasR strain because the presence of lasR mutants and heme
content are both reported biomarkers of disease progression in CF patients (13, 86).
Coculture-induced lasR mutant phenotypes may link these two correlative observa-
tions.
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Citrate, a TCA intermediate released under iron limitation as a result of overflow
metabolism (43, 44, 60, 87), can be used by P. aeruginosa and other microbes for iron
acquisition due to its iron chelating properties (88). The increased siderophore produc-
tion by ΔlasR cells in coculture likely reflects different metabolic strategies between
genotypes. Ongoing work will investigate the mechanisms that drive differences in
metabolism and iron requirements in order to determine how these differences shape
microbial and host interactions. It is likely that Crc-mediated catabolite repression is
involved in the response to citrate and the control of RhlI levels (64, 66). That a
mechanism exists for the induction of RhlR-mediated QS in response to citrate secreted
when iron is limiting dovetails with reports of increased expression of the P. aeruginosa
QS regulon in low iron in LasR� cells (89–91). This coordinate regulation may aid in iron
acquisition as QS-controlled phenazines, such as pyocyanin, reduce poorly soluble Fe3�

to Fe2� and facilitate its uptake via the Feo system (92). Additionally, rhamnolipids have
been employed for iron remediation (93, 94), which suggests that their surfactant
activity may increase P. aeruginosa substrate iron uptake in part through hydroxy-alkyl-
quinolone-dependent mechanisms (95).

Given that anthranilate did not alter ΔlasR colony morphology or phenazine pro-
duction, we did not further investigate anthranilate as a cross-fed metabolite involved
in WT-ΔlasR cell interactions. We speculate that the increased expression of anthranilate
catabolism genes in coculture may be more reflective of increases in RhlR activity than
increased exposure to anthranilate given reports highlighting RhlR activation of antABC
and catABC anthranilate catabolism genes (59).

As the presence of heterogeneous genotypes within single-species populations
becomes increasingly appreciated, it is important to understand how commonly en-
countered genotypes interact to influence population-level behavior. Other work
shows that cocultures can influence the survival of other genotypes (96, 97). Here, we
show that intergenotype interactions lead to increased RhlR-dependent signaling in
LasR� strains. It is likely that a wide array of such interactions has yet to be uncovered.

MATERIALS AND METHODS
Strains and growth conditions. Strains used in this study are listed in Table S2 in the supplemental

material. Bacteria were maintained on LB (lysogeny broth) medium with 1.5% agar. Saccharomyces
cerevisiae strains for cloning were maintained on yeast-peptone-dextrose (YPD) medium with 2% agar.
With the exception of pyochelin complementation experiments, which were performed in 12-well dishes
with a 2-ml total volume containing 50 �M pyochelin (or an equal-volume negative-control extract),
colony biofilm assays were performed in 100-mm petri dishes with a 25-ml total volume. Where stated,
a 20 mM concentration of the indicated metabolite was added to the medium (liquid or molten agar).
Planktonic cultures were grown on roller drums at 37°C. Artificial sputum medium (ASM) was made as
described previously (27).

Competition assays. Competition assays were performed to determine the relative fitness of P.
aeruginosa mutants. Strains to be competed were grown overnight and adjusted to an optical density at
600 nm (OD600) of 1. Competing strains were combined with the PA14 att::lacZ strain in a 1:1 ratio unless
otherwise stated. Following a 15-s vortex, 5 �l of the combined suspension was spotted on LB agar. After
16 h, colony biofilms (and agar) were cored, placed in 1.5-ml tubes with 500 �l of LB, and agitated
vigorously for 5 min using a Genie Disruptor (Zymo). This suspension was diluted, spread on LB plates
supplemented with 150 �g/ml 5-bromo-4-chloro-3-indolyl-D-galactopyranoside (X-Gal) using glass
beads, and incubated at 37°C until blue colonies were visible (�24 h). The numbers of blue and white
colonies per plate were counted, and the final proportions were recorded. Each competition was run in
triplicate on 3 separate days.

Additional methods. See Text S1 in the supplemental material for methods describing plasmid
construction, pyocyanin quantification, colony proximity image analysis, swarming, RNA collection and
processing, pyochelin extraction and quantification, citrate quantification, �-galactosidase quantification,
Western blotting, and acyl-homoserine lactone activity assays.

Data availability. Data for RNA-seq analysis of P. aeruginosa ΔlasR grown on the ΔlasR or WT strain
in coculture has been uploaded to the Gene Expression Omnibus (GEO) repository (https://www.ncbi
.nlm.nih.gov/geo/) under accession number GSE149385.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.03 MB.
FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 0.1 MB.
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FIG S3, PDF file, 2.4 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 0.1 MB.
FIG S6, PDF file, 0.1 MB.
FIG S7, PDF file, 0.5 MB.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, DOCX file, 0.1 MB.
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