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Human leukocyte antigen (HLA) are essential components of the immune system that
stimulate immune cells to provide protection and defense against cancer. Thousands
of HLA alleles have been reported in the literature, but only a specific set of HLA
alleles are present in an individual. The capability of the immune system to recognize
cancer-associated mutations depends on the presence of a particular set of alleles,
which elicit an immune response to fight against cancer. Therefore, the occurrence of
specific HLA alleles affects the survival outcome of cancer patients. In the current study,
prediction models were developed, using 401 cutaneous melanoma patients, to predict
the overall survival (OS) of patients using their clinical data and HLA alleles. We observed
that the presence of certain favorable superalleles like HLA-B∗55 (HR = 0.15, 95% CI
0.034–0.67), HLA-A∗01 (HR = 0.5, 95% CI 0.3–0.8), is responsible for the improved
OS. In contrast, the presence of certain unfavorable superalleles such as HLA-B∗50
(HR = 2.76, 95% CI 1.284–5.941), HLA-DRB1∗12 (HR = 3.44, 95% CI 1.64–7.2) is
responsible for the poor survival. We developed prediction models using key 14 HLA
superalleles, demographic, and clinical characteristics for predicting high-risk cutaneous
melanoma patients and achieved HR = 4.52 (95% CI 3.088–6.609, p-value = 8.01E-15).
Eventually, we also provide a web-based service to the community for predicting the risk
status in cutaneous melanoma patients (https://webs.iiitd.edu.in/raghava/skcmhrp/).

Keywords: cutaneous melanoma, survival analysis, HLA, superalleles, Hazard ratio, regression, machine learning,
prognosis

INTRODUCTION

The HLA complex is the highly polymorphic genetic region located on chromosome 6, precisely
in the 6p21.3 region (Beck and Trowsdale, 2000; Choo, 2007). Major histocompatibility complex
(MHC) encodes more than 200 immune-related genes, from which approximately 40 genes are
associated with the development of leukocyte antigen, i.e., class I and class II HLA genes (Bonamigo
et al., 2012). Class I and II regions are categorized into classical and non-classical, where, classical
HLA-class I comprises of HLA-A, HLA-B, and HLA-C, and class II HLA gene loci are HLA-DR,
HLA-DP, and HLA-DQ (Shiina et al., 2009). Out of which, class I genes encode proteins which
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present endogenous antigen to CD8 + T lymphocytes, while,
class II genes encode proteins which present exogenous antigens
to CD4+ T cells (Watts, 2004; Traherne, 2008; Cruz-Tapias et al.,
2013). The class I complex is generally located on all nucleated
cell surfaces, and class II genes are expressed on the specific
antigen-presenting cells (APCs), B lymphocytes and activated
T cells (Choo, 2007). By the cross-presentation process, certain
APCs present exogenous antigens on HLA class I molecules for
the activation of cytotoxic CD8+ T cells responses (Bevan, 2006;
Joffre et al., 2012).

HLA molecules play a significant role in the induction and
regulation of immune responses. The role of HLA class I
molecules has been implied in tumor resistance to apoptosis
(Sabapathy and Nam, 2008). Recent findings suggest that the
altered expression of HLA molecules is associated with metastatic
progression and poor prognosis in the tumor (Aptsiauri
et al., 2007; Mendez et al., 2009; Johansen et al., 2016).
The modification of surface molecules, lack of co-stimulatory
molecules, production of immunosuppressive cytokines, and
alterations in HLA molecules are some of the primary escape
mechanisms used by tumor cells to evade the immune response
(Garrido et al., 2010), which can directly distress the survival of
an individual. Previous studies reveal that cutaneous melanoma
is one of the most threatening and fatal form of skin cancer
and scrutinized multi-omics signatures for the progression of
malignancy (Li et al., 2015; Ossio et al., 2017; Bhalla et al., 2019).
Further, in the past, it has been shown that if melanoma is
detected at an early stage, the OS rate is 95%; but, once it is
metastasized (lesion thickness > 4 mm); they are tough to cure,
and the survival rate is reduced to less than 50% (Büttner et al.,
1995; Bristow et al., 2010). Therefore, tumor staging is crucial
to provide fundamental prognostic information to clinicians. To
this end, the American Joint Committee on Cancer (AJCC),
and the Melanoma Staging Committee, provides information
related to Tumor-Nodes-Metastasis (TNM) classification and
tumor stage grouping (Gershenwald et al., 2017). Primary tumors
(stage I and II), are categorized into T1, T2, T3, and T4 with
a corresponding tumor thickness such as ≥1.00 mm, 1.01 –
2.0 mm, 2.01 – 4.0 mm and >4.0 mm, respectively. Regional
Lymph Nodes (stage III) are classified into N0, N1, N2, and
N3, which represent the number of metastatic tumor nodes
(0, 1, 2–3, 4+), respectively. Distant metastasis (stage IV) is
divided into four categories M0 (No distant metastases), M1a
(metastasis to distant skin, subcutaneous tissues, and/or lymph
nodes), M1b (metastasis to the lungs), and M1c (metastasis
to any non-pulmonary visceral site) (Gershenwald et al., 1998;
Dickson and Gershenwald, 2011). Earlier, it has been observed
that melanoma tumor cells escape the immune checkpoints
and proliferate at a higher rate than normal tissue cells (Khair
et al., 2019). Further, it is categorized as an immunogenic
tumor as its lesions have been found to have signatures of
several immune escape mechanisms such as the downregulated
expression of HLA molecules, secretion of cytokines like IL-
10, and loss of tumor-specific antigens (Nestle et al., 1997).
For instance, the downregulation of class I antigen have been
associated with the poor prognosis and inadequate treatment in
melanoma cases (Sun and Schuchter, 2001; Cabrera et al., 2007;

Carretero et al., 2008). Moreover, recent studies demonstrate the
importance of HLA alleles in the prognosis of melanoma. For
example, the loss of heterozygosity in HLA class I allele (HLA-
B∗15:01) has been shown to be related with poor survival
outcome. In addition, HLA-C alleles and the HLA-B44 supertype
has been shown to enhance OS (Campillo et al., 2006; Gogas et al.,
2010; Chowell et al., 2018), thereby showing that these molecules
could be considered prognostic markers for melanoma. Thus,
it is vital to ascertain the role of class I and II antigen in the
survival of melanoma patients. With the knowledge of accurate
HLA typing, one can design immunotherapy-based prognostic
biomarkers and personalized vaccines against cancer.

In the current study, we have attempted to understand the
role of HLA (class I and II) alleles and superalleles in the
survival of cutaneous melanoma patients using The Cancer
Genome Atlas (TCGA-SKCM) dataset. Here, first, we have
performed the HLA typing of patients for class I and II alleles,
followed by their assignment to superallele (i.e., low-resolution
HLA alleles) groups. Subsequently, we categorized the HLA
superalleles into survival favorable and unfavorable groups based
on the significant impact of their presence on the survival
of patients. Further, we have developed survival prediction
models employing key HLA superalleles, and demographic and
clinical features of patients by using different machine learning
techniques. In service of the scientific community, we have also
developed a webserver “SKCMhrp” to predict low-risk and high-
risk patient groups based on HLA superalleles, and clinical and
demographic features.

MATERIALS AND METHODS

Study Design and Dataset Collection
The complete pipeline of the study is illustrated in Figure 1. The
description of each step is given below.

Dataset Collection
Collection of Whole-Exome Dataset
We obtained the TCGA-SKCM controlled access dataset from
the Genome Data Commons (GDC) data portal. Specifically,
the whole-exome sequencing (WXS) BAM files of individual
melanoma patients were downloaded [under the approval of
dbGap (Project No. 17674)] according to the GDC protocols
(Grossman et al., 2016) with the help of an in-house high-
performance computing (HPC) facility and scripts. Clinical
information for 470 patients was also obtained, that included
age, gender, stage, tumor status, treatment status, Breslow depth,
vital status, OS, etc. using TCGA assembler 2 (Zhu et al., 2014;
Liu et al., 2018). We were able to extract the HLA typing
information for 415 out of 470 TCGA-SKCM patients only,
after removing irrelevant errors in the BAM files. Out of 415
samples, 14 patients lacked OS information. In summary, we used
401 cutaneous melanoma patients for which complete survival
information with exome sequencing data was available. Clinical
information like the type of melanoma, tumor stage, tumor
site, Breslow depth, treatment etc., of the patients is shown in
Supplementary Table S1.
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FIGURE 1 | Pipeline representing the workflow of the study.

Dataset for Prediction Models
We used the TCGA-SKCM dataset to train our prediction
models and assessed the performance of our models using a
particular set of features, which included HLA alleles and clinical
characteristics. Eventually, the performance was evaluated on the
external dataset. For the external validation dataset, we collected
data from 121 cutaneous melanoma patients from various studies
(Snyder et al., 2014; Van Allen et al., 2015; Hugo et al., 2016; Riaz
et al., 2017), which incorporated 145 unique class I and II HLA
alleles with two demographics (age and gender) and one clinical
feature (tumor stage). We trained our machine learning model on
the TCGA-SKCM dataset and evaluated it on the external dataset
with a similar set of features.

HLA Typing
After downloading the whole exome BAM files of cutaneous
patients from TCGA, chromosome 6 was extracted from these
BAM files using the SAMtools package (Li et al., 2009).
Subsequently, we used xHLA software (Xie et al., 2017) for HLA
typing from the chromosome 6 region. In this study, four-digit
HLA typing was performed for each patient for the assignment of
both class I (-A, -B, -C) and class II (-DP, -DQ, -DR) HLA alleles,
which are represented in Supplementary Table S2.

HLA Superallele
According to IMGT/HLA nomenclature, each HLA-allele
is assigned to a unique name, followed by the asterisk (∗)
and separated by colons (Marsh, 2003; Robinson et al.,
2016). The first two-digits represent an allele group (field1)
(Listgarten et al., 2008); the third and fourth digit corresponds
to the specific HLA protein (field2). Due to low-frequency
distribution of high-resolution HLA alleles among patients,
we combined the HLA alleles on the basis of field1 [which
correspond to the historical serological antigen group (or
allele family)] (Giannopoulos and Kriebardis, 2017) to
form low-resolution HLA alleles. In this study, we used the
term “superallele” for the first time for low-resolution HLA

alleles, in which we assigned a high resolution (i.e., four-
digit typing) to low-resolution (i.e., two-digit typing) HLA
allele. For example, HLA-A∗01:01/A∗01:02/A∗01:03 alleles
are assigned to the HLA-A∗01 superallele. The complete
representation of the superallele is shown in Figure 2, and
Supplementary Table S2.

Categorization of HLA Superalleles
Here, we categorized HLA superalleles into favorable and
unfavorable groups based on the impact of their presence on the
survival of patients, i.e., whether the presence of the superallele
improves or deteriorates the survival rate. First, all patients were
divided into two groups, i.e., patients with a particular HLA-allele
and patients lacking that particular HLA-allele; subsequently, the
mean survival of patients was computed in each group. Further,
an allele was assigned as a survival favorable allele if the mean
survival of the patients with this allele was significantly (p-
value < 0.05) higher than the mean survival of patients without
this allele. Similarly, an allele is assigned as an unfavorable allele,
if the mean survival of patients with this allele is lower than the
mean survival of patients without this allele. It has been observed
that an individual allele is only present in a limited number of
patients; thus, grouping based on the occurrence of alleles will be
skewed. Therefore, we analyzed the presence and absence of HLA
superalleles in patients and assigned them to survival favorable
(SF) and survival unfavorable (SU) superallele groups. Here, we
applied a two-sample t-test to check the statistical significance
(p-value < 0.05) of these superalleles. Notably, we considered
only those superallele, that must be present in at least 10 samples
before assigning it to any of these groups. Further, to study
the overall impact of the presence of SF and SU superalleles,
we combined SF and SU superalleles and prepared a matrix;
where, we assigned a score of +1 if an unfavorable superallele
was present, and a score of −1 if a favorable superallele was
present in an SKCM patient, otherwise 0. Eventually, all the
scores were cumulatively added to generate a single score called
risk score (RS). Subsequently, threshold-based methods have
been developed using these superalleles as features. Finally, we

Frontiers in Genetics | www.frontiersin.org 3 March 2020 | Volume 11 | Article 221

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00221 March 25, 2020 Time: 17:50 # 4

Dhall et al. Risk Prediction in Cutaneous Melanoma

FIGURE 2 | Representation of HLA superalleles on the basis of common HLA gene (-A, -B, -C, -DPB1, -DQB1, -DRB1) and field1 (F1).

assigned a patient as high-risk if the score was more than the
threshold of RS, otherwise the patient was classified as low-risk.

Survival Analysis
In the current study, “univariate” and “multivariate” survival
analyses were performed by cox proportional hazard (Cox
PH) models and implemented by the ‘survival’ package in R
(V.3.5.1). Univariate analysis was performed to understand the
impact of each variable like age, tumor stage, tumor status,
gender, class I, II HLA alleles, HLA superalleles, and RS in the
prognosis of cutaneous melanoma patients. Further, multivariate
survival analysis was performed to understand the independent
clinical impact of these HLA superalleles in the presence of
other multiple factors such as age, tumor stage, tumor status,
gender, and class I, II HLA superalleles (Bradburn et al., 2003).
The log-rank test was used to estimate the significant survival
distributions between high-risk and low-risk groups in terms of
the p-value. Kaplan-Meier (KM) survival curves were used for
the graphical representation of high-risk and low-risk groups
(Kishore et al., 2010).

Development of Prediction Models
Models Based on Machine Learning Techniques
In the current study, various machine learning techniques
were implemented to develop regression models for OS time
prediction in cutaneous melanoma patients. These machine
learning techniques include a random forest (RF), ridge, lasso,
and a decision tree (DT). These techniques were implemented
using python-library scikit-learn (Pedregosa et al., 2011).
Regression using the decision tree method, results in the
supervised machine learning model, which predicts the response
variable by learning the decision rules from the predictor

variables. It is a tree-based approach in which a decision tree is
constructed using the recursive partitioning approach in a top–
down manner (Pedregosa et al., 2011). The random forest is a
supervised machine learning method that implements ensemble
learning. It proceeds by assembling a number of decision trees
at the time of training of a model and predicts the response
variable as the average prediction of the individual trees (Geurts
et al., 2006). Least absolute shrinkage and selection operator or
LASSO, is a type of a linear regression method that employs
the shrinkage approach. It performs the L1 regularization, which
leads to the model with coefficients for predictor variables, which
aids in the prediction of the response variable. On the other
hand, ridge regression performs the L2 regularization to calculate
the coefficients (Friedman et al., 2010). To develop prediction
models, we used a wide range of features that include HLA
superalleles, and clinical and demographic characteristics of the
patients like age, gender, stage, tumor status, Breslow depth, and
their combination.

Wrapper Based Feature Selection Method
Here, a recursive feature selection model was developed by
adding HLA superalleles to the clinical and demographic
features one-by-one. Then, survival time was predicted and
followed by the computation of the hazard ratio (HR) for
each combination. Briefly, every time input matrix was updated
by adding a new column with a HLA superallele, which
had the HR just higher than that of the previous input
matrix. We repeated this process until there was no further
improvement in the HR. Finally, we were left with the
matrix which attained the highest HR. Subsequently, this
matrix was used to build the final prediction model for the
estimation of OS time.
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Evaluation of Models
Five-Fold Cross-Validation
In order to avoid the over-optimization in the training of models,
we used standard 5-fold cross-validation (Patiyal et al., 2019).
In brief, all instances are randomly divided into five sets; where,
four sets are used for the training and the remaining fifth set for
testing. This process is repeated five times so that each set is used
for testing at least once. The final performance is calculated by
averaging the performance on all five sets.

Parameters for Measuring Performance
The major challenge in these types of studies is to use appropriate
parameters to evaluate the performance of models. In this study,
we used the standard parameter HR to measure the performance
of the models. HR is a measure of the effect of an intervention
on an outcome of interest over time. Our regression models
segregate patients into high-risk and low-risk groups by taking a
median cut-off. In order to evaluate our model, we compute HR
from the predicted OS time for the group of patients (high-risk or
low-risk patients). Additionally, we also measured the confidence
interval (CI) with HR and reported the HR at 95% CI. In order
to measure the significance of prediction, we also calculated
the p-value using the log-rank test. These parameters were
implemented previously in similar kinds of studies (Schemper,
1993; Chen et al., 2012).

RESULTS

Distribution of HLA Alleles
We extracted a total of 4,711 HLA alleles from 415 TCGA-SKCM
patients by performing the HLA typing using xHLA software
(Xie et al., 2017), out of which 367 HLA alleles were unique.
Among them, 367 alleles, 237 belong to the HLA class I gene
(-A,-B,-C), and 130 alleles correspond to class II genes (-DPB1,
-DQB1, -DRB1). We computed the frequency distribution of
different alleles in patients. Due to heterogeneity in HLA genes,
all alleles were not found all individuals, so the frequency of
alleles vary from patient to patient (Williams, 2001). Out of 415
patients, only 357 patients had all the six alleles of the HLA class
I genes. In the case of HLA class II gene, only 264 patients had
all six alleles. The complete frequency distribution of class I and
class II HLA alleles in the TCGA-SKCM patients is provided
in Supplementary Table S3. Among them, the most abundant
(present in more than 20% of the population) class-I and class-II
HLA alleles include HLA-A∗02:01, HLA-A∗01:01, HLA-C∗07:02,
HLA-C∗07:01, HLA-B∗07:02, HLA-A∗03:01, HLA-DPB1∗04:01,
HLA-DQB1∗03:01, HLA-DQB1∗02:01, HLA-DPB1∗02:01, HLA-
DRB1∗07:01, HLA-DQB1∗05:01, HLA-DRB1∗15:01, respectively,
as shown in Supplementary Table S3.

Categorization of Superalleles Into
Favorable and Unfavorable Groups
To understand whether an allele is favorable for the survival of
the patient or not, we computed the difference in mean overall
survival (MOS) of patients. HLA allele is assigned as favorable

if the difference in MOS is positive, otherwise it is classified as
unfavorable. For instance, the class I allele HLA-A∗01:01 was
present in 110 patients with a MOS of 72.21 months; while
MOS was reduced to 55.25 months in 291 patients that lack
the class I allele. Therefore, we conclude that, HLA-A∗01:01 is
a favorable allele as its presence enhances the MOS. Similarly,
the class I allele HLA-A∗24:02 is present in 72 patients with
a MOS of 45.73 months, and it is absent in 329 patients
with a MOS of 63 months. This is an unfavorable allele as
its presence decreases the MOS of patients, as represented
in Supplementary Table S3. These alleles can be used to
predict the risk of survival; unfortunately, this statistic could
be biased as the number of patients with a particular allele
is very small for most of the alleles. This prompted us to
create the HLA superalleles (low-resolution HLA alleles) from
the high-resolution HLA alleles on the basis of field1 (F1).
Here, 367 alleles were further categorized into 121 superalleles.
Out of 121 superalleles, 60 and 61 belong to class I and II,
respectively. HLA-A∗01/02, HLA-B∗07, HLA-C∗07, HLA-B∗44,
HLA-DPB1∗04/02, HLA-DQB1∗02/03/06/05, HLA-DRB1∗07/15
are the most frequent class I and class II HLA superalleles in
TCGA-SKCM patients, as shown in Supplementary Figure S1.
Distribution of superalleles which are present in at least ten
patients, is shown in supplementary Figure S2. The abundance
of all superalleles is given in Supplementary Table S4. Further,
the HLA superalleles are categorized into two groups, i.e., SF
and SU, on the basis of the difference in MOS between patients
with a specific HLA superallele and patients without that specific
HLA superallele. Among the 24 superalleles, 9 were SF (HLA-
B∗55, HLA-DPB1∗01, HLA-DPB1∗10, HLA-B∗08, HLA-B∗49,
HLA-A∗01, HLA-DRB1∗03, HLA-C∗05, HLA-C∗07) and 15 were
SU (HLA-B∗14, HLA-A∗24, HLA-DPB1∗05, HLA-A∗31, HLA-
DPB1∗11, HLA-DRB1∗07, HLA-DPB1∗06, HLA-C∗14, HLA-
B∗18, HLA-C∗01, HLA-B∗13, HLA-A∗30, HLA-DRB1∗16, HLA-
B∗50, HLA-DRB1∗12) with their MOS and frequency represented
in Table 1.

Univariate Survival Analysis
HLA Superalleles
It is clear from the above analysis that certain alleles/superalleles
are essential for the survival of cutaneous melanoma patients.
The next challenge is to utilize this information to predict high-
risk cancer patients based on the presence of key alleles or
superalleles. Here, we used HLA superalleles to predict high-
risk patients, employing the univariate survival analysis due
to the poor distribution of alleles in patients. We observed
that HLA-B∗50, which is responsible for poor survival in
patients, assigns patients as a high risk if this superallele is
present and obtained a HR of 2.77 (95% CI 1.284 to 5.941)
with a p-value of 0.009. Similarly, HLA-DRB1∗12 achieved
the maximum performance of HR 3.13 (95% CI 1.687–
5.826) with a p-value < 0.001. The combined effect of the
presence of HLA-B∗50 and HLA-DRB1∗12 was also used to
predict high-risk patients and obtained HR 3.15, 95% (CI
1.906–5.194) with a p-value less than 0.001, as shown in
Supplementary Table S5.
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TABLE 1 | Classification of HLA-superalleles in to SF and SU on the basis of mean OS difference.

HLA superalleles #No. of Samples #Mean OS Mean Diff OS (P-A) P-value Risk status

Present (P) Absent (A) Present (P) Absent (A)

HLA-B*55 16 385 94.58 58.46 36.12 0.002

HLA-DPB1*01 34 367 87.51 57.34 30.17 6.82E-07

HLA-B*08 80 321 81.09 54.62 26.47 6.36E-14

HLA-DRB1*03 85 316 80.14 54.46 25.69 2.29E-14

HLA-B*49 11 390 77.87 59.39 18.48 0.037

HLA-A*01 115 286 72.88 54.68 18.2 1.24E-17

HLA-C*05 61 340 72.74 57.6 15.15 1.82E-12

HLA-DPB1*10 16 385 72.87 59.36 13.51 0.0004

HLA-C*07 217 184 66.01 52.7 13.31 3.65E-31

Lo
w

 R
is

k

HLA-B*14 27 374 48.34 60.74 −12.39 2.20E-05

HLA-A*24 81 320 48.59 62.77 −14.18 5.61E-13

HLA-DPB1*05 17 384 46.26 60.51 −14.25 0.001

HLA-A*31 26 375 46.34 60.84 −14.5 1.76E-05

HLA-DPB1*11 10 391 45.32 60.27 −14.95 0.003

HLA-DRB1*07 103 298 48.37 63.89 −15.51 4.31E-14

HLA-DPB1*06 12 389 43.68 60.4 −16.72 0.014

HLA-C*14 10 391 43.44 60.32 −16.88 0.003

HLA-B*18 39 362 44.41 61.57 −17.16 1.07E-08

HLA-C*01 42 359 44.35 61.72 −17.37 9.08E-07

HLA-B*13 19 382 41.94 60.79 −18.86 0.03

HLA-A*30 26 375 42.14 61.13 −19 5.22E-06

HLA-DRB1*16 23 378 29.53 61.75 −32.22 7.00E-06

HLA-B*50 12 389 25.03 60.98 −35.95 6.33E-05

HLA-DRB1*12 19 382 23.46 61.71 −38.26 9.43E-05

H
ig

h 
R

is
k

#Samples (P): No of SKCM-patients in which HLA-superallele is present; # Samples (A): No of SKCM-patients in which HLA-superallele is absent; #Mean OS (P): Average
OS in which HLA-superallele is present; # Mean OS (A): Average OS in which HLA-superallele is absent; Mean Diff OS: Mean difference in mean OS between patients
with a specific HLA typing and patients without it; Risk status Survival Favorable (SF) or Survival Unfavorable (SU) HLA-superallele, SF considered as low-risk and SU
taken as high-risk groups.

Risk Score (RS)
From the above univariate analysis, we have identified key HLA
superalleles, which exhibit a significant role in the prognosis of
melanoma patients as a single feature. We next aimed to use them
as features for the development of prediction methods. Therefore,
we developed a threshold-based method using RS, which was
derived from multiple HLA superalleles. To understand how
well RS based on multiple superalleles stratified risk-groups of
cutaneous melanoma patients, a survival analysis was performed
using this RS as an input feature. For instance, if the threshold
value is ≥2, then the patients are significantly divided into high-
risk and low-risk groups with HR 2.18 (95% CI 1.441–3.297)
and a p-value of 0.000223, as given in Table 2. Conclusively,
we found that RS thresholds act as a prognostic indicator to
stratify melanoma patients into high-risk and low-risk groups,
as shown in Table 2. Additionally, KM survival plots represent
the segregation of risk groups of melanoma patients based on
different threshold values of RS (shown in Figure 3).

Clinical and Demographic Characteristics
In the past, clinical and demographic features like age, gender,
tumor stage, tumor status, and Breslow depth, have shown a
significant effect on skin cancer incidence and a bias toward a

particular group (Zhang and Zhang, 2017). For instance, even
in the current study, male incidences are higher than that of
females, as shown in Supplementary Table S1. This prompted
us to analyze the association between these clinical features
and the survival of patients. Thus, we performed a univariate
survival analysis using these clinical and demographic features.
This analysis indicates that the tumor status is a major significant
prognostic factor in the prediction of survival time of melanoma

TABLE 2 | Survival analysis based on Risk score to discriminate low-risk and
high-risk samples.

Threshold (Risk Score) #G1 #G2 HR 95% CI P-value

≥3 375 26 1.84 0.97–3.51 6.35E-02

≥2 341 60 2.18 1.44–3.30 2.23E-04

≥1 275 126 1.82 1.33–2.50 1.83E-04

≥0 171 230 1.71 1.28–2.30 3.35E-04

≥−1 98 303 1.55 1.11–2.16 1.03E-02

≥−2 61 340 1.26 0.87–1.82 0.23

≥−3 37 364 1.55 0.98–2.46 0.06

#G1: No of SKCM-patients representing low-risk group; #G2: No of SKCM-patients
denoting high-risk group; HR: Hazard Ratio; 95% CI: 95% confidence interval.
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FIGURE 3 | Kaplan Meier (KM) survival curves for the risk estimation of melanoma patient cohort based on the risk score with significant p-value (A) Melanoma
samples stratified on the basis of cut-off (≥2 Risk Score), (B) Stratified samples by taking cut-off (≥1 Risk Score), (C) Stratified samples by taking cut-off (≥0 Risk
Score), (D) Stratified samples by taking cut-off (≥–1 Risk Score).

patients. We predict patients to be at high-risk if the score is
more than zero and obtained HR 8.293 (95% CI 4.688–14.67)
with a p-value of less than 0.0001 (Supplementary Table S6).
Age, tumor stage, and Breslow depth are other features that
are significantly associated with the prognosis of patients, as
shown in Figure 4. However, samples are unable to stratified into
high-risk and low-risk groups based on the gender (Figure 4).

Prediction Models
Machine Learning Based Prediction Models
It is clear from the above results that HLA superalleles, clinical
and demographic features (such as age, gender, tumor stage,
tumor status, and Breslow depth) are essential to identify high-
risk patients. The threshold-based method, however, is simple,
but not very efficient when multiple features were used. Thus,
to further improve the performance, we implemented a wide
range of machine learning techniques (such as, lasso, RF, ridge,
DT) to develop prediction models. First, we considered all
121 superalleles to develop machine learning models. The RF
model is the top performing model and achieves a maximum
HR of 3.264, and a p-value of 1.03E-10, as represented in

Supplementary Table S7. Subsequently, a prediction model
was developed by considering clinical, demographic, and 24
HLA superalleles as input features. In addition, Lasso and
RF based models were also developed using only clinical and
demographic features (Feature Set-1) and obtained a maximum
performance with HR 3.17 (p-value 3.50E-11), and HR 3.09 (p-
value 2.87E-11), respectively, as shown in Table 3. Further, we
developed models by eliminating two factors, i.e., tumor status
and tumor stage. Although the tumor stage is an important
clinical factor, this information is sometimes available only for
a few patients. So, the prediction model was developed without
considering these clinical factors and a maximum HR of 2.99
(with p-value 9.37E-12) was achieved by the RF model. To
further improve the performance of the machine learning based
models, we used all clinical and demographic features with
the key 24 HLA superalleles (Feature Set-2). Models based on
the lasso regressor achieved the maximum performance with
a HR 4.05 and a significant p-value of 4.01E-13. However,
RF prediction models also performed reasonably well, but had
a lower HR than that of the lasso models. The complete
results of the survival prediction models are represented in
Table 3. It has been reported in the literature that class I
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FIGURE 4 | Kaplan Meier survival curves for risk estimation of SKCM cohort, show a significant difference in the high-risk/low-risk groups. (A) Patients with age
(>60 years) are stratified into high/low risk with HR = 1.45, 95%CI = 1.039–2.024 and p-value = 0.028, (B) Stratification of low-risk and high-risk groups on the basis
of gender with HR = 1.11, 95%CI = 0.7901–1.52, and p-value = 0.545, (C) Stage (III + IV) patients are on high risk as compared to Stage (0 + I + II) patients with
HR = 1.94, 95%CI = 1.386-2.722, p-value < 0.001, (D) Patients with Tumor status (With Tumor) were stratified on high/low-risk with HR = 8.29,
95%CI = 4.688–14.67, and p-value < 0.001, (E) Patients having Breslow depth > 3 mm are stratified into high/low-risk corresponding 95%CI 1.788–3.509,
HR = 2.5, and p-value < 0.001.

alleles are important in tumor cell elimination (Garcia-Lora
et al., 2003; Chang et al., 2005). Therefore, we also tried to
build prediction models employing class-I alleles only. Here, the
prediction model was developed using 15 class I superalleles,
two demographic, and three clinical features. RF performs best
among other machine learning models with a HR of 2.91
and a p-value of 1.79E-07. The complete results are shown in
Supplementary Table S8.

Machine Learning Prediction Models Based on
Wrapper Method
It is important to have a minimum number of features to avoid
over-optimization and for practical implementation in real life.
Therefore, a further wrapper method was used to decrease the
number of features recursively. Finally, prediction models were
developed using five clinical and demographic characteristics
(age, gender, tumor stage, tumor status, and Breslow depth) and
various HLA superalleles, by implementing different machine
learning techniques. Similar to the above analysis, the lasso
method, based on five clinical features and 14 superalleles, was
the top performer with a HR of 4.52 and a p-value of 8.01E-15,
as given in Table 4. The KM plot represents the stratification of
high-risk and low-risk patients based on the estimated OS using
the lasso recursive regression model, as shown in Figure 5.

Performance on the External Validation Dataset
In order to evaluate performance on the external validation
dataset, we considered only 27 available input features, which
included 24 superalleles, two demographic (age and gender),

and one clinical feature (tumor stage) for both training and
validation, represented as ‘Set-A.’ Here, training was done on
the TCGA-SKCM dataset and validated on the external dataset.
The prediction model based on lasso, with 24 HLA superalleles,
stratified the risk groups with a HR of 2.66 (p-value 6.94E-08)
and 2.24 (p-value 0.000778) for training and validation datasets,
respectively. Whereas, after applying the wrapper method we
got 14 HLA superalleles and then, we trained and validated our
model on these 14 HLA superalleles along with two demographic
and one clinical feature, which resulted in 17 input features,
represented as ‘Set-B.’ The performance of the lasso model using
features of ‘Set-came out’ with a HR of 2.81 (p-value 1.06E-08)
and a HR of 2.11 (p-value 0.0018) for the training and validation
dataset, respectively, as shown in Table 5.

Multivariate Survival Analysis for SF and
SU HLA Superalleles
Further, to understand the independent impact of the different
variables, like SF and SU HLA-superalleles, RS, and clinical and
demographic features in the presence of all the factors, on the
survival of the patients, we performed a multivariate survival
analysis using the cox proportional hazard model (Bradburn
et al., 2003). This analysis revealed that RS is a significant
independent factor associated with the survival of patients.
Results (shown in Supplementary Figure S2) indicate that the
presence of SU superalleles reduces the survival of melanoma
samples. The SU patients group is at approximately two times
higher risk as compared to the SF patients group as indicated
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by a HR of 2.44 (95% CI 1.68–3.5) with a p-value less than
3.02E-06 (shown in Table 6). Both multivariate and univariate
analysis revealed that age (>60), stage (III and IV), Breslow depth
(>3 mm), and RS (>0) are associated with poor survival in
melanoma patients, as represented in Supplementary Figure S3.

Further, to scrutinize which specific superalleles out of SF
and SU superallele groups, are significantly associated with
good and poor outcomes in patients, multivariate analysis
was performed using each of the SF and SU superalleles
with the clinical and demographic characteristics. Results
from this analysis show that the presence of HLA-B∗55 and
HLA-A∗01 superalleles is significantly associated with a good
outcome; while, HLA-DRB1∗12, HLA-B∗50, HLA-B∗13, HLA-
DPB1∗06, HLA-A∗31, HLA-A∗24 is significantly associated with
a poor outcome of a melanoma cohort in terms of their
survival time, as given in Supplementary Tables S9, S10 and
Supplementary Figures S4, S5.

Web Server for Risk Prediction in SKCM
Patients: SKCMhrp
To serve the scientific community, we developed a web
server, “SKCMhrp” https://webs.iiitd.edu.in/raghava/skcmhrp/.
SKCMhrp is designed to predict risk using clinical, demographic
features and HLA superalleles. It has two modules; one is based
on clinical features and the second is based on superalleles.

TABLE 3 | Performance of the survival prediction models based on Clinical
Characteristics and 24 HLA-Class I, II Superalleles implemented using various
regression techniques.

Method Feature Set-1 Feature Set-2

All Features

HR P-value HR P-value

LASSO 3.17 3.50E-11 4.05 4.01E-13

RIDGE 3.01 1.76E-10 3.80 2.30E-12

RF 3.09 2.87E-11 3.77 8.15E-12

DT 2.25 6.93E-07 2.00 5.29E-05

Clinical features without tumor status

LASSO 3.50 3.93E-13 3.46 1.54E-11

RIDGE 3.49 3.93E-13 2.97 2.89E-09

RF 3.74 3.01E-14 2.96 8.23E-10

DT 2.15 2.24E-06 1.83 3.12E-04

Clinical features without tumor stage

LASSO 2.80 9.96E-10 3.51 1.32E-11

RIDGE 2.43 4.68E-08 3.55 7.56E-12

RF 2.81 2.05E-10 3.18 2.14E-10

DT 2.50 1.64E-08 2.76 2.38E-09

Clinical features without tumor stage and tumor status

LASSO 2.40 4.41E-08 3.11 5.60E-10

RIDGE 2.40 4.41E-08 2.57 5.81E-08

RF 2.99 9.37E-12 2.59 1.55E-08

DT 2.54 1.06E-08 2.65 7.37E-09

#HR: Hazard Ratio; RF: Random Forest; DT: Decision Tree; Feature Set-1: Clinical
and demographic features, Feature Set-2: Clinical, demographic and 24 HLA
superalleles features.

TABLE 4 | Performance of the recursive prediction models based on selected
features (clinical features and superalleles) implemented using various
regression technique.

Method Attribute HR P-value

LASSO Clinical + 14 HLA-superalleles
(A*31_A*24_DPB1*10_B*08_DRB1*
03_DRB1*07_B*18_B*55_A*01_C*
05_DRB1*16_DRB1*12_B*49
_DPB1*11)

4.52 8.01E-15

RIDGE Clinical + 19 HLA-superalleles
(DPB1*10_B*50_C*07_B*49_B*55
_B*08_C*01_C*14_DPB1*06_C*05
_DRB1*03_A*30_DRB1*07_A*31
_B*14_DRB1*16_B*13_DPB1*
01_A*01)

3.85 3.35E-12

RF Clinical + 3 HLA-superalleles
(DPB1*11_C*05_B*08)

3.53 2.84E-11

DT Clinical + 2 HLA-Superalleles
(A*01_DPB1*01)

2.59 6.92E-08

#HR: Hazard Ratio; RF: Random Forest; DT: Decision Tree; Attribute: Clinical
features and selected HLA-superalleles.

FIGURE 5 | SKCM-patients were stratified based on predicted OS by using
Lasso recursive regression model after applying fivefold cross validation.
Samples with predicted OS < median (predicted OS) were at fourfold higher
risk as compared to the patients predicted OS > median (predicted OS)
(HR = 4.52, 95% CI = 3.088 to 6.609, p-value = 8.01E-15).

The first module predicts the risk status of melanoma patients
based on their clinical and demographic characteristics, i.e., age,
gender, tumor stage, tumor status, Breslow depth. Here, a user
can predict the survival time (in months) of the individual
sample, even by choosing a single clinical feature. Input values
are given to a regression model to estimate the risk status. The
second module predicts the risk status of melanoma patients
using all 121 superalleles and 14 superalleles with five clinical
and demographic features. The webserver “SKCMhrp” was built
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TABLE 5 | Performance of the prediction models based on lasso method using
selected features (2 demographic and 1 clinical features, 24 and 14 HLA
superalleles) on training and external validation dataset.

Dataset Set-A Set-B

HR P-value HR P-value

Training data (TCGA-SKCM) 2.66 6.94E-08 2.81 1.06E-08

External validation data 2.24 0.000778 2.11 0.0018

#HR: Hazard Ratio; Set-A: 1 Clinical, 2 demographic features and selected 24
HLA-superalleles; Set-B: 1 Clinical, 2 demographic features and selected 14
HLA-superalleles.

using HTML, PHP 5.2.9, and JAVA scripts. To make the website
compatible with mobiles and tablets, we used the HTML5
web template. The abovementioned technologies that have been
implemented are open source and platform-independent.

DISCUSSION

Skin cutaneous melanoma is a lethal malignancy as indicated
by the rise in incidence of melanoma (Siegel et al., 2020). The
FDA (Food and Drug Administration) has approved several
therapies and strategies to curb melanoma in the past few
years. Choosing a treatment from the available options, however,
requires information about the tumor such as its location, stage,
etc. Accurate tumor stage identification with high precision is
itself a challenging task in different malignancies (Jagga and
Gupta, 2014; Bhalla et al., 2017, 2018; Saghapour et al., 2017;
Kaur et al., 2019; Yu et al., 2019). Recent findings have suggested
that antigenic repertoire variability is a crucial factor in tumor
progression and immunosurveillance (Dunn et al., 2004). For
instance, HLA-class I and II proteins have been shown to have
a significant role in the progression of melanoma (Gogas et al.,
2010; Bonamigo et al., 2012; Kandilarova et al., 2016). Thus,
it is important to understand which specific HLA alleles from
class-I and class-II could affect the survival of the patients.
To this end, the current study is a systematic attempt to
understand the prognostic roles of class-I/II alleles in the survival
of melanoma patients.

In this study, 367 unique HLA alleles were identified for 415
cutaneous melanoma patients using the xHLA software. The
low-frequency distribution of these 367 alleles among patients

(as shown in Supplementary Table S3) made it difficult to
delineate any reliable conclusion regarding any of the alleles from
the analysis. This propelled us for their assignment into low-
resolution HLA typing, i.e., 121 HLA superalleles. Thereafter,
these superalleles were categorized into SF and SU groups
based on the impact of their presence on the survival of the
patients, i.e., higher MOS or lower MOS of the patients with
their occurrence, respectively. Here, among the 24 superalleles,
nine were SF including HLA-B∗55, HLA-DPB1∗01, HLA-
DPB1∗10, HLA-B∗08, HLA-B∗49, HLA-A∗01, HLA-DRB1∗03,
HLA-C∗05, HLA-C∗07; while, 15 were SU that include HLA-
B∗14, HLA-A∗24, HLA-DPB1∗05, HLA-A∗31, HLA-DPB1∗11,
HLA-DRB1∗07, HLA-DPB1∗06, HLA-C∗14, HLA-B∗18, HLA-
C∗01, HLA-B∗13, HLA-A∗30, HLA-DRB1∗16, HLA-B∗50, HLA-
DRB1∗12. In the literature, HLA-A∗01, HLA-C∗05, and HLA-
C∗07 have been shown to be positively associated with survival
of melanoma patients (Paschen et al., 2005; Campillo et al.,
2006; Zhu et al., 2012), whereas HLA-B∗14, HLA-A∗24, HLA-
A∗31, HLA-C∗14, and HLA-B∗13 are negatively associated with
survival of melanoma patients (Marincola et al., 1995; Kawakami
et al., 2000; Akiyama et al., 2005; Kandilarova et al., 2016; Rogel
et al., 2019). Apart from these, HLA-DRB1∗07 has been shown
to be negatively associated with patient survival in other cancers
such as lung cancer, cervical cancer, and breast cancer (Ferreiro-
Iglesias et al., 2018; Hu et al., 2018; Spraggs et al., 2018). Further,
in the current study, a parameter RS was computed to evaluate
the cumulative effect of the presence of SF and SU superalleles
in patients. After that, 24 HLA superalleles, and clinical features
like tumor status, Breslow depth, and tumor stage were identified
which can significantly stratify high-risk and low-risk survival
groups, by employing univariate survival analysis and a log rank
test (Supplementary Tables S5, S6). Furthermore, prediction
models were developed based these 24 superalleles, and clinical
and demographic features, which stratified the risk groups with
HR 4.05 (p-value 4.01E-13). In the past, the role of class I alleles
was reported to be crucial for the defense against a tumor.
Therefore, prediction models were developed by employing 15
class I superalleles with clinical and demographic features only.
The RF model attained the maximum HR of 2.9 (p-value 1.79E-
07). This indicates that not only class I, but rather both class I
and II superalleles are important in the stratification of survival
risk groups as performance decreases on the exclusion of class-II
superalleles. Subsequently, the performance of the model based

TABLE 6 | Comparison of univariate and multivariate analysis.

Univariate survival analysis Multivariate survival analysis

Covariate HR 95% CI P-value HR 95% CI P-value

Age (>60 years) 1.45 1.04–2.02 0.029 1.45 1.03–2.00 3.20E-02

Gender (Female) 1.11 0.79–1.52 0.545 0.98 0.69–1.40 0.896

Tumor Stage (III + IV) 1.94 1.39–2.72 0.001 1.89 1.33–2.70 4.00E-04

Tumor Status (With Tumor) 8.29 4.69–14.67 <0.001 9.24 5.21–2.80 2.76E-14

Breslow Depth(>3 mm) 2.50 1.79–3.51 <0.001 1.96 1.38–2.80 1.70E-04

Risk Score (>0) 1.82 1.33–2.50 <0.001 2.44 1.68–3.50 3.02E-06

HR: Hazard Ratio, 95% CI: 95% Confidence Interval.
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on 24 superalleles with age, gender, and tumor stage was also
evaluated on the external validation dataset. This model stratified
survival risk groups of the external dataset with a HR of 2.24
(p-value 0.000778). Recently, Chen et al. (2019) also reported
that the higher expression of HLA-class II genes enhances the
survival of melanoma patients. Our analysis also revealed that,
the higher expression of HLA (-A, -B, -C, -DPB1, -DQB1, -
DRB1) genes, are associated with poor survival, as shown in
Supplementary Table S11. Besides, our study also indicates that
stage is a major prognostic factor for melanoma patients. It
significantly stratified high-risk and low-risk patients in both
univariate and multivariate analyses with a p-value of 0.001 and
4.00E-04, respectively (Table 6). It corroborates with previous
literature as well; where, it has been reported that the tumor
stage of melanoma patients drastically affects their prognosis.
For instance, the OS of stage-Ia patients is quite good, i.e., a 10-
year survival of 95%, while it is only 30% in the case of stage-IV
patients. A moderate survival rate has been reported in the case
of stage 1b, II, and III patients, which is shown to vary between
85 and 40% (Balch et al., 2009; Yélamos and Gerami, 2015).

Multivariate survival analysis was performed to better
understand the prognostic impact of the association of SF and
SU superalleles with the clinical and demographic features on
the survival of patients. This analysis revealed that SF and SU
superalleles also act as independent prognostic indicators. For
instance, the presence of HLA-class I superalleles, such as HLA-
B∗55 (HR = 0.15, p-value = 0.013) and HLA-A∗01(HR = 0.54,
p-value = 0.011) is significantly associated with the good outcome
(Supplementary Table S9 and Supplementary Figure S4). On
the other hand, the presence of superalleles such as HLA-B∗50
(HR = 3.1 and p-value = 0.03), HLA-DRB1∗12 (HR = 3.77 and p-
value < 0.001), HLA-DRB1∗16 (HR = 2.18, p-value = 0.04), HLA-
B∗13 (HR = 2.49, p-value = 0.046), HLA-DPB1∗06 (HR = 3.53,
p-value = 0.006), HLA-A∗31 (HR = 2.09, p-value = 0.04),
and HLA-A∗24 (HR = 1.79, p-value = 0.006) is associated
with a poor survival outcome (Supplementary Table S10 and
Supplementary Figure S5). In addition to this, RS, tumor status,
tumor stage, Breslow depth, and age were also revealed as major
independent prognostic factors for melanoma patients.

Furthermore, with an aim to estimate the survival time
of melanoma patients, various regression models were
developed based on survival-associated superalleles, clinical
and demographic features, and their combination. For this, we
implemented diverse machine learning regressors like lasso, RF,
DT, and ridge regressor. The predicted OS from these models was
further employed for the stratification of high-risk and low-risk
survival groups. Although the prediction, based on five clinical
and demographic factors, attained a consistent performance
(HR = 3.17). The accurate determination of the stage and tumor
status remains a difficult task. Therefore, prediction models
were also developed after the exclusion of these two factors. The
performance of our ML models substantially decreased to a HR
of 2.99. Thereafter, prediction models were developed based
on HLA-superalleles and conveniently available demographic
and clinical factors like age, gender, and Breslow depth. The
performance improved considerably from a HR of 2.99 to 3.11.
Lasso and RF recursive regression models were found to be

among the top performers for the prediction of the survival of
melanoma samples. In particular, predicted OS obtained from
the lasso recursive model, based on clinical and demographic
characteristics and 14 superalleles, significantly (p-value = 8.01E-
15) stratified the high-risk and low-risk survival groups of the
cutaneous melanoma patients with a HR = 4.52. Although the
RF-based models performed reasonably well in the estimation of
OS, however, they achieved a lower HR of 3.53 than that of lasso
models. The performance of this model was further evaluated
on an external validation dataset considering 14 superalleles
with age, gender, and tumor stage; attained an HR 2.11 (p-value
0.0018), as represented in Table 5.

CONCLUSION

Altogether, our findings show that the presence of HLA-class
I and II alleles influence the OS of TCGA-SKCM patients
both favorably and unfavorably. Eventually, survival analysis
and recursive machine learning regression models revealed the
prognostic potential of 14 superalleles, clinical and demographic
features in the stratification of high-risk and low-risk survival
groups and the estimation of OS time. Further, these HLA-based
signatures could be considered in the design of personalized
vaccines in several clinical cohorts. For clinical utility, this needs
to be further confirmed by exploring the role of these superalleles
in other cohorts. Finally, to provide a service to the scientific
community to predict high-risk patients based on their clinical
features, demographic features, 14 and 121 HLA-superalleles, we
designed a webserver “SKCMhrp.”

LIMITATION OF THE STUDY

In the current study, the prognostic potential of 14 superalleles
(low-resolution HLA allele), demographic and clinical features
were revealed to estimate the survival of cutaneous melanoma
patients. One of the limitations of these features/markers is that
they are derived from low-resolution HLA alleles. Researchers
can, however, implement a similar strategy if sufficient data
is available for high-resolution HLA alleles. Further, we have
not considered the ethnicity of the patients for the analysis or
development of the prediction models in this study.
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