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Objectives: Osteosarcoma was the most popular primary malignant tumor in children
and adolescent, and the 5-year survival of osteosarcoma patients gained no substantial
improvement over the past 35 years. This study aims to explore the role of lipid
metabolism in the development and diagnosis of osteosarcoma.

Methods: Clinical information and corresponding RNA data of osteosarcoma patients
were downloaded from TRGET and GEO databases. Consensus clustering was
performed to identify new molecular subgroups. ESTIMATE, TIMER and ssGSEA
analyses were applied to determinate the tumor immune microenvironment (TIME) and
immune status of the identified subgroups. Functional analyses including GO, KEGG,
GSVA and GSEA analyses were conducted to elucidate the underlying mechanisms.
Prognostic risk model was constructed using LASSO algorithm and multivariate Cox
regression analysis.

Results: Two molecular subgroups with significantly different survival were identified.
Better prognosis was associated with high immune score, low tumor purity, high
abundance of immune infiltrating cells and relatively high immune status. GO and KEGG
analyses revealed that the DEGs between the two subgroups were mainly enriched
in immune- and bone remodeling-associated pathways. GSVA and GSEA analyses
indicated that, lipid catabolism downregulation and lipid hydroxylation upregulation may
impede the bone remodeling and development of immune system. Risk model based on
lipid metabolism related genes (LMRGs) showed potent potential for survival prediction
in osteosarcoma. Nomogram integrating risk model and clinical characteristics could
predict the prognosis of osteosarcoma patients accurately.

Conclusion: Expression of lipid-metabolism genes is correlated with immune
microenvironment of osteosarcoma patients and could be applied to predict the
prognosis of in osteosarcoma accurately.
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BACKGROUND

Osteosarcoma is the most common primary malignant bone
tumor in children and adolescent, which is characterized by
poor prognosis and high metastasis rate (Niu et al., 2020; Song
et al., 2020). The incidence of osteosarcoma is related with
the age of patients, which is about 0.0004% in individuals
younger than 25 years old or older than 59 years old, while
0.0001% in individuals aged 25–59 years old (Whelan and
Davis, 2018). It is worth noting that 15–20% patients had lung
metastasis when they were first diagnosed with osteosarcoma
(Miller et al., 2013). The 5-year survival rate of osteosarcoma
patients with or without lung metastasis is 60–70%, and
20%, respectively, which has remained stagnant over the past
35 years and is far from satisfaction (Kansara et al., 2014;
Negri et al., 2019).

Tracing back to the source, the main reason for the
poor prognosis in osteosarcoma is the high extent of tumor
heterogeneity caused by significant genomic instability (Whelan
and Davis, 2018; Wang et al., 2019). Thus, it is necessary to
develop a risk stratification method and identify prognostic genes
for personalized targeted therapy of osteosarcoma patients.

Recently, lipid metabolism reprogramming has been regarded
as a novel hallmark of tumor malignancy (Cheng et al.,
2018), and increasing evidences from clinical and laboratory
studies have revealed that lipid metabolism disorder plays a
pivotal role in tumorigenesis, tumor progression and treatment
(Corbet and Feron, 2017; Luo et al., 2017; Cao, 2019). Niemi
et al. (2018) demonstrated that aberrant lipid metabolism in
ovarian cancer intensified with increasing stage. Su et al. (2020)
reported that enhanced lipid metabolism was necessary for the
initiation and differentiation of tumor-associated macrophages.
Hilvo et al. (2011) demonstrated that the lipids in the breast
cancer tissue were correlated with tumor progression and
patient survival. Moreover, previous studies have demonstrated
that lipid metabolism related genes (LMRGs) had potent
prognostic potential in multiple types of tumors, including
ovarian carcinomas (Zheng et al., 2020), lung adenocarcinoma
(LAUD) (Li et al., 2020), pancreatic cancer (Ye et al., 2021),
hepatocellular carcinoma (HCC) (Hu et al., 2020), renal cell
carcinoma (RCC) (Bao et al., 2019) and diffuse gliomas (Wu
et al., 2019). As such, targeting lipid metabolism has been
regarded as a novel therapeutic strategy for tumor treatment
(Visweswaran et al., 2020). Construction of prognostic risk
model was an applicable strategy to evaluate the prognostic
performance. Up to now, several risk models have been
constructed to explore the prognostic value of genes associated
with tumor microenvironment, immune cell infiltrating and
energy metabolism (Chen Y. et al., 2020; Wen et al., 2020;
Zhang et al., 2020; Zhu et al., 2020) in osteosarcoma,
whereas the role of LMRGs in osteosarcoma has remained
poorly understood.

Tumor immune microenvironment (TIME), which reflexed
the immune landscape in the tumor microenvironment,
was essential for the initiation and development of tumors
(Binnewies et al., 2018). Immune cells take part in the cell
reprogramming critically, during which the microenvironment

of the tumor cells was modified meticulously by themselves
through secreting various kinds of biological factors, thereby
endowing surrounding cells with powers to determine the
survival and progression of tumors (Hinshaw and Shevde, 2019).
In tumor microenvironment, tumor infiltrating immune cells
account for the primary non-tumor constituents, which have
been demonstrated to play an important role in prognostic
prediction of OS patients (Zhang et al., 2020). Thus, TIME
takes crucial significance in the development and progression of
tumor, and accumulated evidence revealed that TIME was closely
associated with pathogenesis of osteosarcoma (Heymann et al.,
2019; Luo et al., 2020). Assessing the TIME of osteosarcoma helps
to understand the immune status of tumor cells, is conducive to
promote the development of immunotherapy and improve the
prognosis of osteosarcoma patients.

In the present study, we comprehensively analyzed LMRGs
to explore the effect of lipid metabolism on the TIME and
survival of osteosarcoma patients. Moreover, we constructed
a LMRGs-based risk score model to evaluate the prognostic
value of LMRGs in osteosarcoma. Our work may provide a
new clue for exploring the underlying molecular mechanisms of
osteosarcoma, shed a novel light on the targeting therapy strategy
of osteosarcoma and promote the individual-based treatment of
osteosarcoma patients.

MATERIALS AND METHODS

Data Collection
Clinical information and sequencing RNA data were downloaded
from the Therapeutically Applicable Research To Generate
Effective Treatments (TARGET1) and Gene Expression Omnibus
(GEO2) databases. The inclusion criteria were as follows: (a)
samples diagnosed as osteosarcoma; (b) samples with mapped
clinical information and gene expression matrix; (c) samples
with complete clinical information including survival time,
survival status, age and sex at least; (d) only one was included
if there were paired samples. The exclusion criteria were
as follows: (a) normal tissue samples; (b) samples without
complete clinical information; (c) samples with no expression
value in over half of the genes; (d) samples with bias
in expressional value. Ninety three samples acquired from
the TARGET database were defined as the training cohort.
Seventy samples acquired from GEO databases (GSE21257 and
GSE39058) were included and defined as verification cohort after
integrating. The demographic data and clinical features of the
training cohort and validation cohort were listed in Table 1.
Datasets of 776 LMRGs were obtained from the Reactome
and KEGG databases.

Identification of Molecular Subgroups
and TIME Evaluation
Firstly, 74 genes were found to be associated with the
prognosis of osteosarcoma through the univariate Cox regression

1https://ocg.cancer.gov/programs/target
2https://www.ncbi.nlm.nih.gov/geo/
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TABLE 1 | Characteristics of patients in the training and validation cohort.

Training
cohort (n = 93)

Validation
cohort (n = 70)

P-value

n/% n/%

Age 0.6115

<18 years 71/76.3 51/72.9

>=18 years 22/30.1 19//27.1

Sex 0.6649

Female 39/41.9 27/38.6

Male 54/58.1 43/61.4

Survival status 0.4311

Alive 55 47

Dead 35 23

Histologic response 0.0850

Stage 1/2 16 23

Stage 3/4 27 16

NA 47 31

Race

White 55 NA

Asian 6 NA

Black or African American 9 NA

NA 20 NA

NA, not available.

analysis. Consensus clustering was performed according to
the expression matric of the 74 genes using the R package
“ConsensusClusterPlus.” Stromal score, immune score, and
tumor purity were calculated using the Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression data
(ESTIMATE) algorithm (Yoshihara et al., 2013).

Immune Analyses
TIMER immune infiltrating analysis3 was performed to calculate
the abundance of six immune infiltrating cells (B cell,
Macrophage cell, Dendritic cell, Neutrophil cell, CD4 T cell and
CD8 T cell). Datasets including 28 types of immune infiltrating
cells and related 782 genes were obtained from molecular
signature database4, and the enrichment of the 28 immune
infiltrating cells in the tumor samples were assessed using single
sample gene set enrichment analysis (ssGSEA).

Functional Analyses
Differentially expressed genes (DEGs) between the two clusters
were identified using R package “Limma.” Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis were performed using “clusterProfiler” R package to
enrich associated pathways, which was visualized in Metascape5.
Based on “GO biological process” gene set downloaded from
molecular signature database (see text footnote 5), Gene set
variation analysis (GSVA) was performed to demonstrate the
signaling pathways alteration between the two clusters using the

3https://cistrome.shinyapps.io/timer/
4https://www.gseamsigdb.org/gsea/msigdb/index.jsp
5https://metascape.org

“GSVA” R package. Meanwhile, according to the same dataset,
Gene Set Enrichment Analysis (GSEA) was conducted to analyze
the difference between clusters.

Establishment and Validation of Risk
Model
Least absolute shrinkage and selection operator (LASSO) analysis
was conducted to downsize the prognostic genes previously
filtrated using “glmnet” R package. The minimum lambda was
defined as the optimal value. The genes used for establishment
of risk model was determined by multivariate Cox regression
analysis. Risk score of each patient in the training and verification
cohorts was calculated as: risk score = 1.7063 × expression
value of ALOX15B + 0.7626 × expression value of
ME1 + 0.6200 × expression value of GPD1, and patients
were divided into high risk and low risk groups according to
the medium value. ROC and Martingale residuals method were
performed to assess the predictive efficiency of the model. The
whole process of data analysis was depicted in Figure 1.

Statistical Analyses
Statistical analyses were performed via R (version 3.6.1) and
GraphPad Prism (version 8.0.1), and visualization was conducted
via TBtools (Chen C. et al., 2020). Survival analysis was completed
using Kaplan–Meier method, and the prediction performance
of the risk model was evaluated using time-dependent receiver
operating characteristic (ROC) via “survivalROC” R package.
Subgroup analysis was carried out when the patients were
regrouped according to age, sex, lesion site and metastasis.
Discontinuous data was presented as number/percentages while
continuous data was shown in the form of mean ± standard
deviation (SD). Student’s t-test was used for statistical analysis
between two groups, and one-way ANOVA analysis was selected
flexibly when there were three or more groups. A P < 0.05 was
defined as statistically significant difference.

RESULTS

Identification of Two Molecular Subtypes
Based on LMRGs
The consensus clustering approach was conducted to divide the
osteosarcoma patients in the training cohort into subgroups
based on 74 prognostic genes generated from univariable
Cox analysis (Supplementary Table 1). The optimal clustering
stability was identified when K = 2 (Figures 2A–C and
Supplementary Figure 1). 51 patients were clustered into cluster
1 and 42 patients were clustered into cluster 2. The expression
level of the LMRGs in the two subtypes was visualized through
the heatmap (Figure 2D), and obvious expression difference was
found between cluster 1 and cluster 2. Moreover, patients in
the cluster 2 enjoyed better overall survival than patients in the
cluster 1 (P = 0.0069; Figure 2E). These results demonstrated that
the LMRGs classify the osteosarcoma patients into two molecular
subtypes with different overall survival.
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FIGURE 1 | Flow chart of the data analyzing process.

Patients in the Two Molecular Subtypes
Exhibited Different TIME and Immune
Status
Next, we performed immune analyses to explore the immune
difference between the two molecular subtypes. ESTIMATE
algorithm revealed that osteosarcoma patients in the cluster 2
had significantly higher immune score (P < 0.0001), ESTIMATE
score (P = 0.0008) and lower tumor purity (P = 0.0013) compared
with cluster 1, with no significant difference found in stromal
score (P = 0.1916; Figures 3A–D). In addition, TIMER algorithm
indicated that the abundance of B cell (P = 0.0010), macrophage
(P = 0.0036), dendritic cell (P < 0.0001) and T cell.CD4
(P = 0.0022) in cluster 2 was significantly higher than cluster
1, while the abundance of neutrophil was significantly higher
in cluster 1 (P = 0.0004), and no statistical significance was
detected with respect to T cell.CD8 (P = 0.6407; Figure 3E).
Moreover, as illustrated in the heatmap (Figure 3F), immune
landscape made by ssGSEA algorithm differed significantly
between cluster 1 and cluster 2, with a relatively low immune
status in cluster 1. Besides, statistical analysis demonstrated that
except for eosinophils, mast cell, neutrophil and memory B cell,
the other 24 types of cells were significantly higher in cluster 2
than those in cluster 1 (Figure 3G). These results demonstrated
that the TIME and immune status of the two molecular subtypes
differed significantly.

DEG and Functional Analyses
DEGs between the two clusters were identified and functional
analyses were performed to explore the underlying signaling
mechanisms. A total of 198 DEGs were detected, of which
58 genes were downregulated and 140 genes were upregulated
in cluster 2, as compared with cluster 1 (Figure 4A). GO
enrichment analysis revealed that the DEGs were enriched
in bone remodeling- and immune-related biological processes,

including bone remodeling, bone resorption, antigen processing
and presentation, immune cell differentiation and activation
(Figures 4B,C). Meanwhile, some crucial molecular functions
and cellular components were also enriched (Supplementary
Figure 2). Similarly, KEGG enrichment analysis also identified
some signaling pathways associated with bone remodeling and
immune, including osteoclast differentiation, natural killer cell
mediated cytotoxicity, and complement and coagulation cascade
(Figure 4D). PPI analysis identified four sub- models, all of which
were closely associated with tumor development and immunity,
indicating that immune may be associated with the contribution
of lipid metabolism to osteosarcoma (Figure 4E). To further
explore the relationship between the enriched pathways and the
prognosis of osteosarcoma patients, we performed GSVA and
GSEA analyses to evaluate the relative expression difference of
the pathways in the two clusters. GSVA analysis enriched a
lot of differentially expressed pathways, which was visualized
by the heatmap (Figure 4F). In comparison to cluster 2,
the expression of pathways associated with immune, bone
remodeling and lipid catabolic process were significantly lower
in the cluster 1, whereas the expression of lipid hydroxylation
associated pathways were significantly higher. Consistently,
GSEA analysis revealed that leukocyte differentiation, myeloid
leukocyte differentiation and osteoclast differentiation expressed
lowly in cluster 1 (Figures 4G–I). All these results demonstrated
that expression of LMRG was correlated with dysregulation of
immune and bone remodeling, which may be involved in the
poor prognosis of osteosarcoma patients.

Development of Risk Model Based on
LMRG in the Training Cohort
Then, a risk signature model was constructed to assess the
prognostic prediction value of LMRGs in osteosarcoma. LASSO
analysis was conducted to screen potential genes for establishing
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FIGURE 2 | Consensus cluster. (A–C) K = 2 was identified the optimal value for consensus clustering, (D) heatmap visualizing the expression of lipid metabolism
gens in the two subgroups, (E) survival curve of the patients in the two subgroups.

risk model, and 24 genes were filtered with optimal lambda value
(Figure 5A). Based on the genes generated from LASSO analysis,
multivariate Cox analysis identified three genes, ME1, GPD1, and
ALOX15B, to construct the risk model. All of the three genes
were risk genes with a hazard ratio of over 1, and Kaplan–Meier
analysis demonstrated that all of these genes were independently
prognostic marker of osteosarcoma patients (Supplementary
Figure 3). The established risk model successfully classified
the osteosarcoma patients into high risk and low risk groups
(Figure 5B). As shown in Figure 5C, patients in the high risk
group trended to expressed the three candidate genes higher
than those in the low risk group. Patients in the low risk
group had a better overall survival than those in the high risk
group (Figure 5D). Regarding the model diagnosis of the risk
model, ROC curve (Figure 5E) and residual plot (Supplementary
Figure 4) showed acceptable assessment result. Time dependent
ROC analysis indicated that the constructed risk model exhibited
precise predictive capacity over a period of 5 years, and the area

under curve (AUC) of the ROC curve for 1, 3, and 5 years
was 0.701, 0.707, and 0.719, respectively (Figure 5E). Finally,
ESTIMATE algorithm was performed to evaluate the TIME of
the two groups, and the result revealed that compared with the
high risk group, the stromal score (P = 0.0298), immune score
(0.0156), ESTIMATE score (P = 0.0101) were significantly higher
in the low risk group (Figures 5F–H), while the tumor purity was
significantly lower (Figure 5I). These results suggested that the
constructed risk model possessed potent potential for prognosis
prediction of osteosarcoma patients, and it was significantly
correlated with TIME in osteosarcoma.

Independence of the Constructed Risk
Model
Furthermore, we explored the association between the risk score
and clinical features, and evaluated the independence of the
constructed risk model via subgroup analysis and regression
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FIGURE 3 | Immune analyses in the two clustered subgroups. (A) stromal score, (B) immune score, (C) ESTIMATE score and (D) tumor purity calculated by
ESTIMATE algorithm, (E) abundance of six immune filtrating cells evaluated by TIMER, (F) heatmap depicting the enriching level of 29 immune related cells evaluated
by ssGSEA algorithm, (G) statistical analysis of ssGSEA. *p < 0.05; **p < 0.01; ***p < 0.001.

analyses. No significant difference was detected between patients
with different age (Figure 6A), sex (Figure 6B), lesion site
(Figure 6C) and metastasis status (Figure 6D) regarding risk
score, indicating that there was no association between risk
score and clinical characteristics (Figures 6A–D). Besides, when
the patients were regrouped according to age (Figure 6E), sex

(Figure 6F), and metastasis status (Figure 6G), the risk model
still exhibited potent predictive performance and those patients
with lower risk score enjoyed better prognosis. Moreover,
univariate/multivariate Cox regression analyses revealed that the
constructed risk model was independent predictive marker of the
prognosis of osteosarcoma patients (Tables 2, 3). These results

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 April 2021 | Volume 9 | Article 673827

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673827 April 12, 2021 Time: 19:2 # 7

Qian et al. Lipid Metabolism in Osteosarcoma

FIGURE 4 | Differentially expressed genes (DEGs) analysis and functional analyses. (A) Volcano plot showing the DEGs between the two subgroups, (B,C) circle plot
and network visualizing the biological processes enriched by gene ontology (GO) analysis, (D) bubble diagram showing the signaling pathways enriched by Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, (E) PPI analysis of DEGs, (F) heatmap illustrating the result of GSVA analysis, (G–I) GSEA plots visualizing
the result of GSEA analysis.
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FIGURE 5 | Construction of risk model in the training cohort. (A) LASSO analysis with minimal lambda, (B) distribution of survival status and risk score of
osteosarcoma patients in the high and low risk groups, (C) heatmap illustrating the expression of the three candidate genes in the two groups, (D) survival curve of
the osteosarcoma patients in the two groups, (E) time-dependent ROC curve of the risk model, (F–I) stomal score, immune score, ESTIMATE score and tumor
purity calculated by ESTIMATE algorithm.

demonstrated that the constructed risk model had excellent
independence in predicting the prognosis in osteosarcoma.

Risk Model Was Correlated With TIME
and Prognosis in Osteosarcoma in the
Verification Cohort
Thereafter, we further validate the established prognostic risk
score model in the verification cohort. According to above-
mentioned formula, the osteosarcoma patients in the verification

cohort were stratified into high risk or low risk groups
(Figure 7A). The expression of the three candidate genes were
shown via the heatmap (Figure 7B). Survival analysis revealed
that patients in the high risk group had poorer prognosis
(P = 0.021; Figure 7C). ROC analysis indicated that the risk
model exhibited the best prediction accuracy in predicting 3-year
survival (Figure 7D). We also explore the association between the
risk model and TIME. Same to the training cohort, in comparison
to the high risk group, the stromal score (P < 0.05), immune
score (P < 0.001), ESTIMATE score (P < 0.05) were significantly
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FIGURE 6 | Association of risk score and clinical characteristics (A–D). No significant difference was identified in patients with different age (A), sex (B), lesion site
(C) and metastasis status (D). Independence analysis of the risk model (E–J). Survival curve of patients regrouped according to age (E,F), sex (G,H), and metastasis
(I,J).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 April 2021 | Volume 9 | Article 673827

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673827 April 12, 2021 Time: 19:2 # 10

Qian et al. Lipid Metabolism in Osteosarcoma

TABLE 2 | Univariate analysis of risk score and characteristics in training cohort.

Variates Coefficient HR HR 95%CI (lower) HR 95%CI (upper) p-value

Risk score 0.52465566 1.68987686 1.309302499 2.1810726 5.58E−05

Sex −0.0203184 0.97988661 0.510247494 1.8817883 0.951337

Age −0.0233226 0.97694732 0.914836448 1.0432751 0.486496

Metastasis 1.33251557 3.79056685 1.978018385 7.2640361 5.94E−05

lesion site 1.36256868 3.90621424 1.225603012 12.449798 0.021226

HR, hazard ratio; CI, confidence interval.

TABLE 3 | Multivariate analysis of risk score and characteristics in training cohort.

Variates Coefficient HR HR 95%CI (lower) HR 95%CI (upper) p-value

Risk score 0.554978 1.741903 1.324072765 2.29158578 7.31E−05

Sex −0.16642 0.846691 0.426467921 1.680985208 0.63435

Age −0.01876 0.981413 0.910831832 1.057463256 0.622222

Metastasis 1.4284 4.17202 2.090665046 8.325459388 5.08E−05

Lesion site 0.877566 2.405038 0.902139129 6.411659127 0.079412

higher in the low risk group (Figures 7E–G), while the tumor
purity was significantly lower (P< 0.01; Figure 7H). These results
demonstrated that the established risk model was correlated with
TIME and prognosis in osteosarcoma in the verification cohort.

Construction and Calibration of an
Integrated Monogram
Finally, a nomogram integrating the risk model and clinical
features were constructed to predict the prognosis of the
osteosarcoma patients more precisely. The constructed
nomogram was shown in Figure 8A, risk score and pathological
characteristics were endowed a specific score basing on their
contribution on the prognosis in osteosarcoma. Then we
validated the nomogram in the training and verification cohort.
In terms of the model diagnosis of the nomogram, C-index, the
calibration curve (Figures 8B–D) and decision curve analysis
(Supplementary Figure 5) suggested the acceptable accuracy.
The C-index for the nomogram in the training cohort reached
0.7520 (95%CI: 0.7078–0.7962). The observed overall survival
matched well with the actual survival at 3 and 5 years in the
training cohort (Figures 8B,C), and similar result was also
observed in the verification cohort (Figures 8D,E). These results
demonstrated that the integrated nomogram could predict the
prognosis of osteosarcoma patients accurately.

All of these findings revealed that lipid metabolism
dysregulation may lead to disorder of TIME and bone
remodeling, resulting in poor prognosis. The constructed
risk model based on LMRGs could predict the prognosis of
osteosarcoma patients reliably and accurately.

DISCUSSION

Osteosarcoma was the most common primary malignant tumor
of bone in children and adolescent (Niu et al., 2020). Despite
of the booming development of multiple treatment strategy, the
5-year survival of osteosarcoma patients has remained stagnant

over the past 35 years, and it is urgent to develop effective risk
stratification approach and individualized targeting treatment
strategy (Kansara et al., 2014; Negri et al., 2019). In the present
study, we identified two molecular subtypes, which exhibited
significantly different lipid metabolism landscapes. Immune
analyses indicated that patients with poor prognosis were in
relatively low immune status, and possessed lower immune
score and ESTIMATE score whereas higher tumor purity, as
compared with patients with better prognosis. Further functional
analyses revealed that upregulation of lipid hydroxylation was
implicated with poor immunity and bone remodeling. Moreover,
we established a prognostic risk model based on LMRGs, which
predicted the prognosis of osteosarcoma patients precisely. Our
results may facilitate the development of targeting therapy for
osteosarcoma and help the clinicians to make more rational
treatment decisions.

Consensus clustering was a reliable approach to classified
samples into different subgroups based on the gene expression
matrix. According to the LMRGs expression matrix of
osteosarcoma patients, firstly, we identified two molecular
subgroups via consensus clustering, which also had significantly
different overall survival. Then immune and function analyses
were performed to explore the role of lipid metabolism in
osteosarcoma successively.

As mentioned previously, TIME plays a crucial role in the
prognosis of patients, since tumor progression is associated with
the modification of the surrounding stroma, with immune cells
being the pivotal components of tumor stroma (Hinshaw and
Shevde, 2019). In addition, aberrant metabolism status of tumor
cells would result in metabolic variation of TIME. ESTIMATE
algorithm was an innovative method to infer the tumor purity,
as well as the fraction of immune and stromal cells in tumor
according to gene expression value (Yoshihara et al., 2013).
Immune scores generated from ESTIMATE algorithm displayed
immune components in tumor samples quantitatively, reflecting
the TIME. Tumor purity was defined as the proportion of
malignant cells in tumor tissue, which was closely correlated
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FIGURE 7 | Validation of the constructed risk model in the verification cohort. (A) distribution of survival status and risk score, (B) heatmap illustrating the expression
of three candidate genes in the verification cohort, (C) survival curve of the patients in the high and low risk groups in the verification cohort, (D) ROC curve of the
risk model in the verification cohort, (E–H) stromal score, immune score, ESTIMATE score and tumor purity calculated by ESTIMATE algorithm. *p < 0.05;
**p < 0.01; ***p < 0.001.
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FIGURE 8 | Construction and calibration of nomogram. (A) nomogram integrating risk score and clinical features, (B,C) calibration of the nomogram at 3 and
5 years in the training cohort, (D,E) calibration of the nomogram at 3 and 5 years in the verification cohort.

with prognosis (Yoshihara et al., 2013; Aran et al., 2015; Li
et al., 2017). Previously, Hong et al. (2020) and Zhang et al.
(2020) have demonstrated that high immune score and low
tumor purity were linked with poor prognosis in osteosarcoma.
Therefore, we applied ESTIMATE to determinate the TIME of
the two subgroups. Our result indicated that these patients with
better prognosis had higher immune score and lower purity,
which was consistent with previous reports. Furthermore, we

applied another two methods, TIMER and ssGSEA, to assess
the immune status of the two molecular subgroups. TIMER was
a web tool which facilitated the quantification of six tumor-
infiltrating immune subsets (Li et al., 2017). TIMER analysis
revealed that the abundance of five out of six immune cells was
significantly lower in the cluster 1, which was in concert with the
result of ESTIMATE and indicated that the immune landscape
was downregulated in cluster 1. The ssGSEA analysis outlined the
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abundance of 29 immune-related cells, and the result suggested
that patients in cluster 1 were in relatively low immune status,
further confirming the result of ESTIMATE and TIMER. Taken
together, we could assume that low immune score and immune
status were implicated with unfavorable prognosis reasonably.

Next, functional analyses between the two subgroups were
conducted to explore the underlying biological mechanisms.
Based on the identified DEGs, GO analysis, KEGG analysis
and PPI analysis synergistically suggested that dysregulation
of immunity and bone remodeling may mediate the role
of lipid metabolism on the tumorigenesis and progression
of osteosarcoma. However, the detailed relationship between
lipid metabolism and aberrant immunity and bone remodeling
remained unclear. Therefore, we performed GSVA and GSEA
analyses to further elucidate the underlying mechanisms.
Through GSVA, the activity of signaling pathways in each
sample was calculated according to the gene expression level,
and the variation over different groups could be estimated
(Hänzelmann et al., 2013). The GSVA heatmap result revealed
that the activity of lipid catabolism, bone remodeling, immune
system development and activation was impeded in cluster 1,
whereas lipid hydroxylation was enhanced. GSEA analysis was a
canonical method for integrating gene expression information,
through which the expression tendency of gene sets in different
groups were clarified directly (Subramanian et al., 2005). In this
study, GSEA result revealed relatively low expression of immune
cells differentiation and osteoclast differentiation in cluster 1.
These results indicated that downregulated lipid catabolism
and upregulated lipid hydroxylation were implicated with low
immune status and poor bone remodeling.

Synthesizing above findings, we could deduce reasonably
that dysregulation of lipid metabolism, including hydroxylation
upregulation and catabolism downregulation, resulted in the
impairment of TIME and bone remodeling, thereby leading to
the poor prognosis in osteosarcoma. As mentioned above, lipid
metabolism reprogramming was recognized as new hallmark
of tumor malignancy. Over the past years, lipid metabolic
abnormalities of tumor have gained increasing attention (Maan
et al., 2018). Targeting aberrant pathways of lipid metabolism
is a promising strategy for antitumor therapy. For example,
anti-tumor drugs based on the hydroxylated lipid has been
widely used for tumor treatment clinically (Király et al.,
2013). In this study, upregulated lipid hydroxylation was found
to be associated with poor survival. Among the multiple
modification of lipids, hydroxylation was a specific approach
during which oxygens were added onto the lipids in the manner
of hydroxyl through radical oxygen species (ROS) or non-
radical oxidants (Spickett, 2020). As one of the activated radicals
of biological systems, hydroxyl radical was prone to induced
lipid peroxidation (Spickett, 2020). Because lipids were critical
components of multiple membranes and distributed widely
(Cheng et al., 2018), lipid peroxidation usually occurred when
polyunsaturated fatty acids (PUFAs) were attacked by ROS,
which would impair the structure and/or function of membranes
subsequently (Yoshida et al., 2013). Lipid peroxidation resulted
in the formation of aldehydes with high reactivity (Erejuwa
et al., 2013), which further attack the components of cellular

membrane, such as lipids and proteins (Höhn and Grune, 2013).
Meanwhile, some other products of lipid peroxidation, including
malondialdehyde, 4-hydroxynonenal and acrolein, also bound
to the amino acid residues of protein covalently via Michael
addition, damaging the structure and function of the residues
(Fukuda et al., 2009). All of these could explain the contribution
of upregulated hydroxylation to the poor prognosis of cancer
patients in a certain extent. On the other hand, catabolism
downregulation reduced the consumption of lipids, and as
a result, accumulative lipids were stored in tumor cells and
surrounding cells. The influence of accumulated lipid due to
lipid metabolism abnormalities on the tumor-microenvironment
dendritic cells may also account for the poor prognosis partly.
Because previous studies reported that lipid-laden dendritic cells
were unable to present tumor-associated antigens (Herber et al.,
2010). And abnormal lipid accumulation inhibited the capacity
of dendritic cells to facilitate anti-tumor T cells (Cubillos-
Ruiz et al., 2015). This also expounded why the downregulated
lipid metabolism led to lower immune score and immune
status. Besides, the accumulative lipid may result in poor
prognosis via facilitating metastasis which was a critical factor
for tumor progression, since the metastatic potential of tumor
cells was positively correlated with intracellular lipid storage
(Maan et al., 2018).

To further validate the effect of lipid metabolism disorder on
the TIME in osteosarcoma and explore the prognostic value of
LMRGs in osteosarcoma patients, we constructed a prognostic
risk model based on LMRGs and verified it in the validation
cohort. The three genes used for establishing risk model in
this study have been demonstrated to be closely associated
with development and progression of tumors. ME1 encodes
malic enzyme 1 (ME1), which catalyzes the transformation of
malate to pyruvate and promotes the formation of NADPH
concomitantly. Prior studies reported that ME1 mediated the
lipid metabolism through participating in lipid biosynthesis
basically (Simmen et al., 2020). Numerous researches have
provided the evidence of the pro-oncogenic role of ME1 in
multiple tumors (Simmen et al., 2020). ALOX15B (Arachidonate
15-Lipoxygenase Type B) has been demonstrated as risk genes
in colorectal cancer and lung squamous cell carcinoma (Yuan
et al., 2020; Kim et al., 2021). GPD1 encodes glycerol-3-
phosphate dehydrogenase 1 (GPD1), which played a pivotal
role in lipid metabolism through catalyzing the transformation
of NADH and dihydroxyacetone phosphate to NAD+ and
glycerol-3-phosphate reversibly (Yoneten et al., 2019). Studies
suggested that GPD1 was closely related to prognosis of
gastrointestinal cancer, breast cancer, and glioblastoma (Xie
et al., 2020; Xia et al., 2021). Survival analysis revealed that
no matter in the training cohort or the verification cohort, the
established risk model exhibited potent predictive performance
for the survival of osteosarcoma patients. And significantly
lower stromal score, immune score and higher tumor purity
were accompanied with poor survival. Moreover, independence
analysis and subgroup analysis suggested that the LMRGs-
based risk model could predict the prognosis independently
in osteosarcoma, regardless of their age, sex and metastasis
condition. Finally, a nomogram integrating the risk score
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and clinical features was also established and calibrated, and
it showed considerable property for predicting the survival.
All these results confirmed the prognostic prediction role of
LMRGs in osteosarcoma and correlation between aberrant lipid
metabolism and TMIE disorder.

Over the recent decades, radiotherapy and chemotherapy for
tumors have grew boomingly. However, the 5-year survival of
osteosarcoma remained unsatisfactory (Ritter and Bielack, 2010;
Kansara et al., 2014; Heng et al., 2020). It is imperative to
develop effective methods to classify the patients according their
risk score, and conduct reasonable individualized and targeted
therapy. Bioinformatic analysis based on sequencing RNA data
was a feasible approach for risk stratification and targeted-gene
identification. Although researchers have constructed risk model
based on tumor microenvironment, immune cell infiltrating
and energy metabolism (Chen Y. et al., 2020; Wen et al.,
2020; Zhang et al., 2020; Zhu et al., 2020) in osteosarcoma,
our study exhibited unique merits compared with previous
studies. Firstly, our work focused on the lipid metabolism of
osteosarcoma patients, and identified two molecular subgroups
with significantly different prognosis and immune status via
consensus clustering. Secondly, we explored the biological
mechanisms according to the result of clustering and elucidated
the underlying mechanism partly. Thirdly, we clarified the
influence of lipid metabolism on TIME and prognosis. Last but
not least, this work integrated two GEO datasets as a verification
cohort, which containing much more samples than previous
studies. Our work would provide excellent theoretical instruction
for further studies of osteosarcoma. Additionally, result of this
study could promote the development of targeted therapy for
osteosarcoma and help the clinicians make treatment strategy
more rationally.

In general, in this study, we identified two molecular
subtypes, cluster 1 and 2. In cluster 1, patients with poor
prognosis showed TIME disorder including low immune
score and high tumor purity, and the dysregulation of
lipid catabolism was implicated with low immune status
and aberrant bone remodeling. Risk model based on
LMRGs could predicted the prognosis in osteosarcoma
precisely, meanwhile, those patients with unfavorable
survival in the high risk showed low immune score
and high tumor purity. These results indicated that lipid
metabolism landscape was correlated with TIME, and deserved
considerable attention in determining treatment strategy
for osteosarcoma patients, which was a potential target for
individualized treatment.

There were some drawbacks in our study which should
be notified when generalizing the conclusion. Firstly, due
to the absence of information about the progression of
the osteosarcoma patients, such as tumor stages, we could
not demonstrate the role of LMRG in the development
of osteosarcoma. Secondly, our results generated from
bioinformatics analysis, which was not further validated by
experiments. Thirdly, the data used in this study was downloaded
from open database instead of our cohort. The nature of low

evidence level of retrospective research still remained, and more
prospective studies are needed to be conducted to further confirm
the prognostic value of LMRGs in osteosarcoma.

CONCLUSION

In conclusion, in the present study, two molecular subtypes
were identified based on LMRGs in osteosarcoma via consensus
clustering. Immune analysis and functional analyses revealed
that dysregulation of lipid metabolism would impede the
immune system and bone remodeling, thereby resulting in
poor prognosis. Our work could shed a novel light on the
development of new targeting drugs, provide theoretical support
for individualized therapy, and facilitate the risk stratification of
osteosarcoma patients.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

YH and PL conceived the original ideas of this manuscript
and reviewed the finished manuscript and executed supervision
throughout the process. HQ executed the data collection and data
analysis. HQ and TL prepared the manuscript, tables, and figures.
All authors have read and approved the manuscript.

FUNDING

This study was supported by the Scientific Research Project of
Health and Family Planning Commission of Hunan Province,
China (Grant No. B2019188), the Science and Technology
Innovation Leading Project for High-tech Industry of Hunan
Province (Grant No. 2020SK2008), and the Natural Science
Foundation of China (Grant Nos. 82002277 and 81672656).

ACKNOWLEDGMENTS

We thank Shengchao Xu for technology supporting and
composition instruction.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
673827/full#supplementary-material

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 April 2021 | Volume 9 | Article 673827

https://www.frontiersin.org/articles/10.3389/fcell.2021.673827/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.673827/full#supplementary-material
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673827 April 12, 2021 Time: 19:2 # 15

Qian et al. Lipid Metabolism in Osteosarcoma

REFERENCES
Aran, D., Sirota, M., and Butte, A. J. (2015). Systematic pan-cancer analysis of

tumour purity. Nat. Commun. 6:8971. doi: 10.1038/ncomms9971
Bao, M., Shi, R., Zhang, K., Zhao, Y., Wang, Y., and Bao, X. (2019). Development

of a membrane lipid metabolism-based signature to predict overall survival for
personalized medicine in ccRCC patients. EPMA J. 10, 383–393. doi: 10.1007/
s13167-019-00189-8

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M.,
et al. (2018). Understanding the tumor immune microenvironment (TIME) for
effective therapy. Nat. Med. 24, 541–550. doi: 10.1038/s41591-018-0014-x

Cao, Y. (2019). Adipocyte and lipid metabolism in cancer drug resistance. J. Clin.
Invest. 129, 3006–3017. doi: 10.1172/JCI127201

Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al.
(2020). TBtools: an integrative toolkit developed for interactive analyses of big
biological data. Mol. Plant 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009

Chen, Y., Zhao, B., and Wang, X. (2020). Tumor infiltrating immune cells (TIICs)
as a biomarker for prognosis benefits in patients with osteosarcoma. BMC
Cancer 20:1022. doi: 10.1186/s12885-020-07536-3

Cheng, C., Geng, F., Cheng, X., and Guo, D. (2018). Lipid metabolism
reprogramming and its potential targets in cancer. Cancer Commun. 38:27.
doi: 10.1186/s40880-018-0301-4

Corbet, C., and Feron, O. (2017). Emerging roles of lipid metabolism in cancer
progression. Curr. Opin. Clin. Nutr. Metab. Care 20, 254–260. doi: 10.1097/
MCO.0000000000000381

Cubillos-Ruiz, J. R., Silberman, P. C., Rutkowski, M. R., Chopra, S., Perales-Puchalt,
A., Song, M., et al. (2015). ER stress sensor XBP1 controls anti-tumor immunity
by disrupting dendritic cell homeostasis. Cell 161, 1527–1538. doi: 10.1016/j.
cell.2015.05.025

Erejuwa, O. O., Sulaiman, S. A., and Ab Wahab, M. S. (2013). Evidence in support of
potential applications of lipid peroxidation products in cancer treatment. Oxid.
Med. Cell. Longev. 2013:931251. doi: 10.1155/2013/931251

Fukuda, M., Kanou, F., Shimada, N., Sawabe, M., Saito, Y., Murayama, S., et al.
(2009). Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the
hippocampi of patients with Alzheimer’s disease. Biomed. Res. 30, 227–233.
doi: 10.2220/biomedres.30.227

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinform. 14:7. doi: 10.1186/
1471-2105-14-7

Heng, M., Gupta, A., Chung, P. W., Healey, J. H., Vaynrub, M., Rose, P. S., et al.
(2020). The role of chemotherapy and radiotherapy in localized extraskeletal
osteosarcoma. Eur. J. Cancer 125, 130–141. doi: 10.1016/j.ejca.2019.07.029

Herber, D. L., Cao, W., Nefedova, Y., Novitskiy, S. V., Nagaraj, S., Tyurin, V. A.,
et al. (2010). Lipid accumulation and dendritic cell dysfunction in cancer. Nat.
Med. 16, 880–886. doi: 10.1038/nm.2172

Heymann, M. F., Lézot, F., and Heymann, D. (2019). The contribution of immune
infiltrates and the local microenvironment in the pathogenesis of osteosarcoma.
Cell Immunol. 343:103711. doi: 10.1016/j.cellimm.2017.10.011

Hilvo, M., Denkert, C., Lehtinen, L., Müller, B., Brockmöller, S., Seppänen-Laakso,
T., et al. (2011). Novel theranostic opportunities offered by characterization of
altered membrane lipid metabolism in breast cancer progression. Cancer Res.
71, 3236–3245. doi: 10.1158/0008-5472.CAN-10-3894

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557–4566. doi: 10.1158/0008-
5472.CAN-18-3962

Höhn, A., and Grune, T. (2013). Lipofuscin: formation, effects and role of
macroautophagy. Redox Biol. 1, 140–144. doi: 10.1016/j.redox.2013.01.006

Hong, W., Yuan, H., Gu, Y., Liu, M., Ji, Y., Huang, Z., et al. (2020). Immune-related
prognosis biomarkers associated with osteosarcoma microenvironment. Cancer
Cell Int. 20:83. doi: 10.1186/s12935-020-01271-2

Hu, B., Yang, X. B., and Sang, X. T. (2020). Construction of a lipid metabolism-
related and immune-associated prognostic signature for hepatocellular
carcinoma. Cancer Med. 9, 7646–7662. doi: 10.1002/cam4.3353

Kansara, M., Teng, M. W., Smyth, M. J., and Thomas, D. M. (2014). Translational
biology of osteosarcoma. Nat. Rev. Cancer 14, 722–735. doi: 10.1038/nrc3838

Kim, A., Lim, S. M., Kim, J. H., and Seo, J. S. (2021). Integrative genomic and
transcriptomic analyses of tumor suppressor genes and their role on tumor

microenvironment and immunity in lung squamous cell carcinoma. Front.
Immunol. 12:598671. doi: 10.3389/fimmu.2021.598671

Király, A., Váradi, T., Hajdu, T., Rühl, R., Galmarini, C. M., Szöllösi, J., et al. (2013).
Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and
altering the structure of lipid rafts. Mar. Drugs 11, 4858–4875. doi: 10.3390/
md11124858

Li, J., Li, Q., Su, Z., Sun, Q., Zhao, Y., Feng, T., et al. (2020). Lipid metabolism gene-
wide profile and survival signature of lung adenocarcinoma. Lipids Health Dis.
19:222. doi: 10.1186/s12944-020-01390-9

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). TIMER: a web
server for comprehensive analysis of tumor-infiltrating immune cells. Cancer
Res. 77, e108–e110. doi: 10.1158/0008-5472.CAN-17-0307

Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., et al. (2017). Emerging roles of
lipid metabolism in cancer metastasis. Mol. Cancer 16:76. doi: 10.1186/s12943-
017-0646-3

Luo, Z. W., Liu, P. P., Wang, Z. X., Chen, C. Y., and Xie, H. (2020). Macrophages
in osteosarcoma immune microenvironment: implications for immunotherapy.
Front. Oncol. 10:586580. doi: 10.3389/fonc.2020.586580

Maan, M., Peters, J. M., Dutta, M., and Patterson, A. D. (2018). Lipid metabolism
and lipophagy in cancer. Biochem. Biophys. Res. Commun. 504, 582–589. doi:
10.1016/j.bbrc.2018.02.097

Miller, B. J., Cram, P., Lynch, C. F., and Buckwalter, J. A. (2013). Risk factors for
metastatic disease at presentation with osteosarcoma: an analysis of the SEER
database. J. Bone Joint Surg. Am. 95:e89. doi: 10.2106/JBJS.L.01189

Negri, G. L., Grande, B. M., Delaidelli, A., El-Naggar, A., Cochrane, D., Lau,
C. C., et al. (2019). Integrative genomic analysis of matched primary and
metastatic pediatric osteosarcoma. J. Pathol. 249, 319–331. doi: 10.1002/path.
5319

Niemi, R. J., Braicu, E. I., Kulbe, H., Koistinen, K. M., Sehouli, J., Puistola, U.,
et al. (2018). Ovarian tumours of different histologic type and clinical stage
induce similar changes in lipid metabolism. Br. J. Cancer 119, 847–854. doi:
10.1038/s41416-018-0270-z

Niu, J., Yan, T., Guo, W., Wang, W., Zhao, Z., Ren, T., et al. (2020). Identification
of potential therapeutic targets and immune cell infiltration characteristics in
osteosarcoma using bioinformatics strategy. Front. Oncol. 10:1628. doi: 10.
3389/fonc.2020.01628

Ritter, J., and Bielack, S. S. (2010). Osteosarcoma. Ann. Oncol. 21(Suppl. 7),
vii320–vii325. doi: 10.1093/annonc/mdq276

Simmen, F. A., Alhallak, I., and Simmen, R. C. M. (2020). Malic enzyme 1 (ME1) in
the biology of cancer: it is not just intermediary metabolism. J. Mol. Endocrinol.
65, R77–R90. doi: 10.1530/JME-20-0176

Song, Y. J., Xu, Y., Zhu, X., Fu, J., Deng, C., Chen, H., et al. (2020). Immune
landscape of the tumor microenvironment identifies prognostic gene signature
CD4/CD68/CSF1R in osteosarcoma. Front. Oncol. 10:1198. doi: 10.3389/fonc.
2020.01198

Spickett, C. M. (2020). Formation of oxidatively modified lipids as the basis for
a cellular epilipidome. Front. Endocrinol. 11:602771. doi: 10.3389/fendo.2020.
602771

Su, P., Wang, Q., Bi, E., Ma, X., Liu, L., Yang, M., et al. (2020). Enhanced
lipid accumulation and metabolism are required for the differentiation and
activation of tumor-associated macrophages. Cancer Res. 80, 1438–1450. doi:
10.1158/0008-5472.CAN-19-2994

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Visweswaran, M., Arfuso, F., Warrier, S., and Dharmarajan, A. (2020). Aberrant
lipid metabolism as an emerging therapeutic strategy to target cancer stem cells.
Stem Cells 38, 6–14. doi: 10.1002/stem.3101

Wang, D., Niu, X., Wang, Z., Song, C. L., Huang, Z., Chen, K. N., et al. (2019).
Multiregion sequencing reveals the genetic heterogeneity and evolutionary
history of osteosarcoma and matched pulmonary metastases. Cancer Res. 79,
7–20. doi: 10.1158/0008-5472.CAN-18-1086

Wen, C., Wang, H., Wang, H., Mo, H., Zhong, W., Tang, J., et al. (2020). A three-
gene signature based on tumour microenvironment predicts overall survival
of osteosarcoma in adolescents and young adults. Aging 12, 619–645. doi:
10.18632/aging.202170

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 April 2021 | Volume 9 | Article 673827

https://doi.org/10.1038/ncomms9971
https://doi.org/10.1007/s13167-019-00189-8
https://doi.org/10.1007/s13167-019-00189-8
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1172/JCI127201
https://doi.org/10.1016/j.molp.2020.06.009
https://doi.org/10.1186/s12885-020-07536-3
https://doi.org/10.1186/s40880-018-0301-4
https://doi.org/10.1097/MCO.0000000000000381
https://doi.org/10.1097/MCO.0000000000000381
https://doi.org/10.1016/j.cell.2015.05.025
https://doi.org/10.1016/j.cell.2015.05.025
https://doi.org/10.1155/2013/931251
https://doi.org/10.2220/biomedres.30.227
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.ejca.2019.07.029
https://doi.org/10.1038/nm.2172
https://doi.org/10.1016/j.cellimm.2017.10.011
https://doi.org/10.1158/0008-5472.CAN-10-3894
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1016/j.redox.2013.01.006
https://doi.org/10.1186/s12935-020-01271-2
https://doi.org/10.1002/cam4.3353
https://doi.org/10.1038/nrc3838
https://doi.org/10.3389/fimmu.2021.598671
https://doi.org/10.3390/md11124858
https://doi.org/10.3390/md11124858
https://doi.org/10.1186/s12944-020-01390-9
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.3389/fonc.2020.586580
https://doi.org/10.1016/j.bbrc.2018.02.097
https://doi.org/10.1016/j.bbrc.2018.02.097
https://doi.org/10.2106/JBJS.L.01189
https://doi.org/10.1002/path.5319
https://doi.org/10.1002/path.5319
https://doi.org/10.1038/s41416-018-0270-z
https://doi.org/10.1038/s41416-018-0270-z
https://doi.org/10.3389/fonc.2020.01628
https://doi.org/10.3389/fonc.2020.01628
https://doi.org/10.1093/annonc/mdq276
https://doi.org/10.1530/JME-20-0176
https://doi.org/10.3389/fonc.2020.01198
https://doi.org/10.3389/fonc.2020.01198
https://doi.org/10.3389/fendo.2020.602771
https://doi.org/10.3389/fendo.2020.602771
https://doi.org/10.1158/0008-5472.CAN-19-2994
https://doi.org/10.1158/0008-5472.CAN-19-2994
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1002/stem.3101
https://doi.org/10.1158/0008-5472.CAN-18-1086
https://doi.org/10.18632/aging.202170
https://doi.org/10.18632/aging.202170
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673827 April 12, 2021 Time: 19:2 # 16

Qian et al. Lipid Metabolism in Osteosarcoma

Whelan, J. S., and Davis, L. E. (2018). osteosarcoma, chondrosarcoma, and
chordoma. J. Clin. Oncol. 36, 188–193. doi: 10.1200/JCO.2017.75.1743

Wu, F., Zhao, Z., Chai, R. C., Liu, Y. Q., Li, G. Z., Jiang, H. Y., et al. (2019).
Prognostic power of a lipid metabolism gene panel for diffuse gliomas. J. Cell
Mol. Med. 23, 7741–7748. doi: 10.1111/jcmm.14647

Xia, R., Tang, H., Shen, J., Xu, S., Liang, Y., Zhang, Y., et al. (2021). Prognostic
value of a novel glycolysis-related gene expression signature for gastrointestinal
cancer in the Asian population. Cancer Cell Int. 21:154. doi: 10.1186/s12935-
021-01857-4

Xie, J., Ye, J., Cai, Z., Luo, Y., Zhu, X., Deng, Y., et al. (2020). GPD1 enhances
the anticancer effects of metformin by synergistically increasing total cellular
glycerol-3-phosphate. Cancer Res. 80, 2150–2162. doi: 10.1158/0008-5472.
CAN-19-2852

Ye, Y., Chen, Z., Shen, Y., Qin, Y., and Wang, H. (2021). Development and
validation of a four-lipid metabolism gene signature for diagnosis of pancreatic
cancer. FEBS Open Biol. [Epub ahead of print]. doi: 10.1002/2211-5463.
13074

Yoneten, K. K., Kasap, M., Akpinar, G., Gunes, A., Gurel, B., and Utkan, N. Z.
(2019). Comparative proteome analysis of breast cancer tissues highlights the
importance of glycerol-3-phosphate dehydrogenase 1 and monoacylglycerol
lipase in breast cancer metabolism. Cancer Genom. Proteom. 16, 377–397. doi:
10.21873/cgp.20143

Yoshida, Y., Umeno, A., and Shichiri, M. (2013). Lipid peroxidation biomarkers
for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin.
Biochem. Nutr. 52, 9–16. doi: 10.3164/jcbn.12-112

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Yuan, Y., Chen, J., Wang, J., Xu, M., Zhang, Y., Sun, P., et al. (2020). Development
and clinical validation of a novel 4-gene prognostic signature predicting survival
in colorectal cancer. Front. Oncol. 10:595. doi: 10.3389/fonc.2020.00595

Zhang, C., Zheng, J. H., Lin, Z. H., Lv, H. Y., Ye, Z. M., Chen, Y. P., et al. (2020).
Profiles of immune cell infiltration and immune-related genes in the tumor
microenvironment of osteosarcoma. Aging 12, 3486–3501. doi: 10.18632/aging.
102824

Zheng, M., Mullikin, H., Hester, A., Czogalla, B., Heidegger, H., Vilsmaier, T., et al.
(2020). Development and validation of a novel 11-gene prognostic model for
serous ovarian carcinomas based on lipid metabolism expression profile. Int. J.
Mol. Sci. 21:9169. doi: 10.3390/ijms21239169

Zhu, N., Hou, J., Ma, G., Guo, S., Zhao, C., and Chen, B. (2020). Co-expression
network analysis identifies a gene signature as a predictive biomarker for energy
metabolism in osteosarcoma. Cancer Cell Int. 20:259. doi: 10.1186/s12935-020-
01352-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer JZ declared a shared affiliation with all authors to the handling editor
at the time of review.

Copyright © 2021 Qian, Lei, Hu and Lei. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 April 2021 | Volume 9 | Article 673827

https://doi.org/10.1200/JCO.2017.75.1743
https://doi.org/10.1111/jcmm.14647
https://doi.org/10.1186/s12935-021-01857-4
https://doi.org/10.1186/s12935-021-01857-4
https://doi.org/10.1158/0008-5472.CAN-19-2852
https://doi.org/10.1158/0008-5472.CAN-19-2852
https://doi.org/10.1002/2211-5463.13074
https://doi.org/10.1002/2211-5463.13074
https://doi.org/10.21873/cgp.20143
https://doi.org/10.21873/cgp.20143
https://doi.org/10.3164/jcbn.12-112
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fonc.2020.00595
https://doi.org/10.18632/aging.102824
https://doi.org/10.18632/aging.102824
https://doi.org/10.3390/ijms21239169
https://doi.org/10.1186/s12935-020-01352-2
https://doi.org/10.1186/s12935-020-01352-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Expression of Lipid-Metabolism Genes Is Correlated With Immune Microenvironment and Predicts Prognosis in Osteosarcoma
	Background
	Materials and Methods
	Data Collection
	Identification of Molecular Subgroups and TIME Evaluation
	Immune Analyses
	Functional Analyses
	Establishment and Validation of Risk Model
	Statistical Analyses

	Results
	Identification of Two Molecular Subtypes Based on LMRGs
	Patients in the Two Molecular Subtypes Exhibited Different TIME and Immune Status
	DEG and Functional Analyses
	Development of Risk Model Based on LMRG in the Training Cohort
	Independence of the Constructed Risk Model
	Risk Model Was Correlated With TIME and Prognosis in Osteosarcoma in the Verification Cohort
	Construction and Calibration of an Integrated Monogram

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


