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Review
Glossary

ABPP-multidimensional protein identification (ABPP-MudPIT): a high-through-

put gel-free ABPP approach involving biotinylated ABPs to label the active

proteome. Purification of the biotinylated ABP-labeled proteins with (strept)a-

vidin beads allows for their enrichment to identify less abundant protein

targets.

Bio-orthogonal functional group: A chemical moiety that is unreactive towards

all functional groups found in biological systems but may undergo other

reactions in the presence of specific molecules.

Comparative ABPP: an ABPP application that compares two or more

proteomes and analyzes their differing activities.

Competitive ABPP: a competitive mode of ABPP in which specific inhibitors are

identified by their ability to block access of the ABP to the enzyme active site.

LC-MS/MS: liquid chromatography–tandem mass spectrometry: an analytical

technique where hydrolyzed protein fragments are separated by liquid

chromatography and assessed for abundance through an initial mass spectro-

meter. The peptides are subsequently fragmented by collision induced

dissociation to determine the original peptide sequence in a second mass

spectrometer.

Proteome: an entire set of proteins expressed by a genome, cell, tissue or

organism at a given time and biological state.

Stable isotope labeling with amino acids in cell culture (SILAC): a quantitative

proteomic technique that uses non-radioactive isotope labeling and LC-MS/MS

to determine protein abundance.

Tandem-orthogonal proteolysis-ABPP (TOP-ABPP): ABPP method to enrich

specifically ABP-labeled peptide fragments while discarding the remaining

digested proteome. The use of a tobacco etch virus proteolytic site in the ABP

eliminates false positives to determine accurately the probe-labeled active site
Virologists have benefited from large-scale profiling
methods to discover new host–virus interactions and to
learn about the mechanisms of pathogenesis. One such
technique, referred to as activity-based protein profiling
(ABPP), uses active site-directed probes to monitor the
functional state of enzymes, taking into account post-
translational interactions and modifications. ABPP gives
insight into the catalytic activity of enzyme families that
does not necessarily correlate with protein abundance.
ABPP has been used to investigate several viruses and
their interactions with their hosts. Differential enzymatic
activity induced by viruses has been monitored using
ABPP. In this review, we present recent advances and
trends involving the use of ABPP methods in understand-
ing host–virus interactions and in identifying novel tar-
gets for diagnostic and therapeutic applications.

Deciphering host–viral interactions
Viruses constantly adapt to and transform their host envi-
ronment to enable their replication and propagation [1–8].
They do so, in part, through molecular interactions with
host proteins that often modify their regular endogenous
function. Although viral genomes were the first to be
completely sequenced – owing to their relatively small size
[9] – their encoding proteins and the modified proteomes of
their host are only now being elucidated [10,11]. These
studies have revealed some fascinating intricacies such as
multifunctional enzymes [12] and alternative open reading
frames within viral genomes [13,14]. With the successful
sequencing of the human genome and the genome of other
model host organisms, the current challenge is to be able to
monitor the effects of viral infections on the host proteome,
to uncover novel host–virus interactions and to discover
how these perturbations affect cell function, viral propaga-
tion and disease progression. Ultimately, new methods are
being developed to obtain a better understanding of the
mechanisms of viral pathogenesis.

Conventional abundance-based viral proteomics
Similar to microarray technology that enabled global gene
expression analyses, advances in high-throughput mass
spectrometry (MS) technologies have revolutionized both
specific and global protein analyses. Coupled with 2D gel
Corresponding author: Pezacki, J.P. (john.pezacki@nrc-cnrc.gc.ca).
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electrophoresis, LC-MS/MS (see Glossary) analysis of tryp-
tic fragments derived from protein digests has been com-
monly used to detect abundance changes in both viral and
host proteomes in response to viral infections [15–21]. This
technique has unveiled several proteins that play impor-
tant roles during the pathogenesis of human immunodefi-
ciency virus (HIV) [22], hepatitis C virus (HCV) [23], severe
acute respiratory syndrome (SARS) [24], encephalomyo-
carditis virus [25], and simian virus 40 [26]. To overcome
gel-to-gel variation, 2D differential gel electrophoresis
technique (2D-DIGE) has been developed to study differ-
ences between two proteome samples (i.e. pathogenic
versus non-pathogenic). In the 2D-DIGE approach, both
samples are labeled with a unique fluorescent dye and are
subsequently detected in the same 2D gel. Differentially
expressed or sample-specific proteins are readily detected
and analyzed based on their distinctive colored spots [27].
2D-DIGE has been applied to study the host–virus inter-
actions in several viral infections such as HIV [28], Dengue
virus [19], and SARS [20].
in the protein target.
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Figure 1. ABPP is a functional proteomics technique that uses ABPs to react covalently with the active site of mechanistically related classes of enzymes. (a) The chemical

structure of an ABP consists of two essential components: a warhead reactive group (e.g. small molecule inhibitors, substrate-based scaffolds or protein-reactive

molecules) that covalently targets the catalytic amino acid residue of an enzyme active site, and a reporter tag (fluorophore or biotin) for detection or purification. The linker

region is a flexible chain of varying length and hydrophobicity that connects and acts as a spacer between the warhead and the bulky fluorophore tag. (b) A clickable linker

most commonly exploits copper-catalyzed N3–alkyne cycloaddition to couple a chemically inert alkyne (B) group on the ABP to an N3 group on the reporter tag. Click

chemistry has been applied to the field of ABPP, allowing the active proteome to be labeled in situ and in vivo. (c) Examples of the three main classes of ABPs and reaction

with their respective enzyme targets. Upper panel: mechanism-based ABPs are based on irreversible enzyme inhibitors, such as fluorophosphonate, and form a covalent
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Precise quantification of differentially expressed proteins
is difficult to obtain by simply examining a gel. Alternative-
ly, gel-free methods such as ‘stable isotope labeling with
amino acids in cell culture’ (SILAC) have been used to
quantify more accurately the intricate changes in host
proteins caused by viral infections [29–33]. Specifically,
SILAC has been utilized to detect changes in both viral
and host proteomes in response to many viral infections
including those with coronaviruses [29], HIV [32], influenza
A virus [31], pseudorabies virus [18], and HCV [34].

Despite the significant findings resulting from these
abundance-based approaches, all of these examples fail
to capture many dynamic changes such as post-transla-
tional modifications, proteolytic processing, and associa-
tion with cofactors and regulatory proteins that influence
the activity of enzymes and their zymogens. Applications of
activity-based protein profiling (ABPP) for studying host–
viral systems have identified host enzymes that are differ-
entially regulated during viral propagation. For example,
ABPP has been used to identify human carboxylesterase 1
(CES1) being essential for efficient HCV propagation [35],
and has been used to aid characterization of the previously
unknown ubiquitin protease catalytic active site of the
tegument protein of several herpesviridae members [36–

40]. Also, ABPP has led the discovery of a new promising
antiviral tetrahydroquinoline oxocarbazate cathepsin L
inhibitor that abolishes SARS and Ebola virus entry [41]
(Table 1).

ABPP
ABPP was developed to determine the changes in the
catalytic state of enzymes in complex proteomes [42–44]
and to ascribe previously unknown enzymatic functions to
proteins [45]. ABPP uses active-site-directed covalent
probes (activity-based probes, ABPs) consisting of a reac-
tive group linked to a reporter tag (Figure 1a). Often, these
ABPs are designed with the intention of exploiting con-
served mechanistic features of their targeted enzyme su-
perfamily [42,46–48]. The reaction between the ABP and
its active protein target usually results in an irreversible
covalent bond (Figure 1c), which facilitates subsequent
analysis through the reporter tag. The reporter tag is
generally a fluorophore for detection and visualization
by in-gel fluorescence scanning, or biotin for purification
of labeled enzymes (Figure 1a).

ABPs are divided into at least three different classes
based on the nature of their warhead reactive groups:
mechanism-based ABPs, substrate-based ABPs and non-
directed ABPs (Figure 1c and Table 1). Mechanism-based
ABPs (also known as directed ABPs) contain an electro-
philic reactive group that forms a covalent bond to the
catalytic amino acid residue of the target enzyme active
bond with the catalytic nucleophile amino acid residue in the active site of the targeted e

hydrolase superfamily. Middle panel: substrate-directed ABPs depend on substrate-bas

as a specificity region targeting the probe to the catalytic active site of the enzyme. Fol

enzyme (Enz–) cleaves the scissile bond in proximity of the substrate scaffold to generate

highly reactive electrophilic quinolimine methide intermediate, that reacts with a nucleo

enzyme. Lower panel: non-directed ABPs contain a mild reactive group of electrophile

catalytic nucleophile amino acids in their activated state, but low enough to prevent unsp

the sulfonate ester ABP that targets several mechanistically distinct classes of enzymes.

of warhead reactive groups and the ABP labeling mechanisms can be found elsewhere
site (Figure 1c). Examples of class-wide mechanism-based
ABPP probes include fluorophosphonate, phosphonate
esters, modified fluoroglycosides, and natural products like
wortmannin and microcystin that target serine hydrolase,
glycosidase, kinase and threonine phosphatase families,
respectively [49–52].

Although mechanism-based ABPs are effective in tar-
geting enzyme families with known covalent inhibitors,
many enzyme classes do not use conserved active-site
nucleophiles or electrophiles to catalyze their enzymatic
reactions and thus cannot form covalent adducts with
mechanism-based suicide inhibitors. To broaden the num-
ber of enzyme classes addressable by ABPP, non-directed
ABPs that contain mild electrophilic reactive group were
developed (Figure 1c) [53,54]. For example, non-directed
sulfonate ester [53,55], a-chloroacetamide [56], and spir-
oepoxide [10] probes have been used to successfully label
different enzyme families with various cellular roles.

Substrate-based ABPs are another class of ABPs that
exploit the versatility of chemical scaffolds that take ad-
vantage of substrate selectivities within certain families of
proteins (usually an amino acid residue or peptide)
(Figure 1a). Substrate-based scaffolds can be used as a
specificity region to target the probe to the enzyme active
site (Figure 1c) [57–61]. By targeting a multitude of protein
candidates with diverse range of functions and substrate
preferences, this provides a better understanding of the
degree to which viruses utilize host enzymes for replication
and infection.

Several ABPP studies using these three ABP classes
have recently been conducted in various viral systems (Ta-
ble 1). Herein, we highlight these with a focus on the various
applications of ABPP including identification of dysregu-
lated enzyme functions as a result of viral infection, assign-
ing catalytic functions to previously uncharacterized viral
proteins, visualization of the altered active proteome in situ
during viral disease progression, and developing new anti-
viral therapeutics and viral diagnostics.

Comparative ABPP during viral infection

Comparative ABPP (Figure 2a) is the most common use of
ABPP in virology (Table 1). This approach, originally
applied towards profiling applications, compares the dif-
ferential activity between healthy and virus-infected host
proteomes. Viral proteins and their altered host proteome
are good candidates for comparative ABPP analyses, be-
cause viruses contain a manageable number of proteins,
and viral infections involve coordinated host–virus inter-
actions (e.g. attachment, cell entry, uncoating, replication,
expression, virion assembly, and exit).

Several ABPs, such as the influenza hemagglutinin-
tagged ubiquitin (HAUb)-derived bromoethylamine [62],
nzyme. Depicted here is a fluorophosphonate ABP targeting a member of the serine

ed scaffolds (usually an amino acid residue or a peptide, such as ubiquitin) that act

lowing recognition of the substrate-based scaffold, the catalytic nucleophile of the

 anion (X–) that facilitates departure of the fluoride leaving group (F–), generating a

philic residue (Y–) within the enzyme active site to bind covalently the probe to the

s, such as sulfonate ester, that have intermediate reactivity; enough to modify the

ecific labeling of other nucleophile residues outside the active site. Depicted here is

 A more detailed description of the different ABP classes, the history and discovery

 [42].
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HAUb vinylmethyl ester [62,63] and fluorophosphonate
[35] probes have been successfully used in comparative
ABPP during viral infection (Table 1). The application of
ABPP towards the deubiquitinating enzyme family is of
Table 1. Representative activity-based probes and their applicatio

Probe structure Enzyme class 

Mechanism-based ABPs

Fluorophosphonate ABP

Serine hydrolases 

Diphenylphosphonate ABP

Kaposi-sarcoma-

associated herpesvirus

proteases

Substrate-based ABPs

Amino acid coupled quinolimine methide ABP

Proteases, hydrolases,

oxidoreductases and

isomerases

HAUb bromoethylamin e ABP

USPs and UCHs 

Sialic acid ortho-difluoromethyl phenyl ABP

Neuraminidases 

HAUb vinyl methyl ester ABP

USP and UCH 

HAUb vinyl methyl ester ABP
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significant importance, because unlike Ub conjugation,
very little is known about the removal of Ub from Ub
conjugates and how they influence cellular processes dur-
ing an infection. The HAUb group of the probe (Table 1) is
n in diagnostic/therapeutic virology

Virus Applications Refs

HCV CES1 influences cellular

lipid metabolism during

HCV replication and

infection

[35]

HHV Active site inhibition

regulates the binding

affinity of monomer-dimer

equilibrium at the spatially

separate dimer interface of

the protease

[77]

HCV Identified several

differentially active

proteins during HCV

replication

[57]

EBV and HPV1 Activities of USP5, -7, -9, -

13, -15 and -22 as well as

UCH-L1 and -L3 are

upregulated during viral

infections

[62]

Influenza A virus (H1N1) Mechanism-based ABPP

of neuraminidases

[71]

HPV1 UCH-L1, UCH-L3, USP7,

and USP9X show

enhanced activity

following transduction of

HPV E6/E7

[63]

HSV-1 Identified UL36USP,

encoded by HSV-1

genome. UL36USP activity

peaks at late stages of viral

replication and appears to

require proteolytic

processing from full-

length UL36.

[37]



Table 1 (Continued )

Probe structure Enzyme class Virus Applications Refs

HAUb vinyl methyl ester ABP

human cytomegalovirus Identified a high molecular

weight protein as a

functional deubiquitinase

and that this enzyme

activity was not absolutely

essential for production of

infectious virus.

[39]

HAUb vinyl methyl ester ABP

MDV Identification of the

catalytic active cysteine of

the MDV large tegument

protein and the oncogenic

potential of MDV in

chickens

[40]

Biotin tri peptid e epoxide  (DCG-04) ABP  

Cysteine proteases Ebola virus and SARS-CoV Inhibitor of human

cathepsin L that blocked

SARS-CoV and Ebola

pseudotype virus entry

into human cells

[41]

Sulforhodamin e val yl analnylaspa rtic acid 
fluoro methylketone (SR-VAD -fmk) ABP

Caspase cysteine

proteases

murine norovirus (MNV-1) Identification of cathepsin

B as upstream activator of

the intrinsic apoptotic

pathway induced by MNV

[79]

Non-directed ABPs

Phenyl  sul fonat e est er AB P

Isomerase, nucleotide

binding, electron

transport, structural,

chaperone, hydrolase,

transferase,

oxidoreductase and

protein binding

HCV Identified nine

differentially active

enzymes during HCV

propagation

[55]

Abbreviations: ABP, activity-based probe; HAUb, hemagglutinin-tagged ubiquitin; HCV, hepatitis C virus; UCH, Ubiquitin C-terminal hydrolase; USP, Ubiquitin specific

protease.
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the substrate specificity region (Figure 1a) that targets the
probe to the active site of ubiquitin-specific protease (USP).
The catalytic cysteine residue undergoes 1,4-conjugate
addition with the vinylmethyl ester warhead group
(Figure 1a), creating a covalent bond with the probe
(Figure 1c, middle panel) [64]. By comparing the activity
profiles of these ABPs in presence or absence of Epstein–

Barr virus (EBV) and human papilloma virus (HPV) infec-
tions, several deubiquitinating enzymes have been shown
to be upregulated, such as USP-5, -7, -9, -13 and -15 [62], as
well as Ub carboxyl-terminal hydrolases (UCH)-L1 and -L3
[63]. One identified target, UCH-L1, is only upregulated
very late during viral infection, correlating with increased
cellular growth. The use of ABPP in human lymphomas
and cervical cancer biopsies to measure the increased
activity of UCH-L1 gives a more realistic understanding
of how UCH-L1 activity is linked to malignant cellular
proliferation [62,63], rather than simply monitoring the
enzymatic activity in cell lines or animal models. Signifi-
cant efforts are currently underway to characterize this
93
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Figure 2. Applications of ABPP to study viral replication and infection. (a) Comparative ABPP has been extensively used to screen for differentially active enzymes during

viral propagation with the potential to become therapeutic and diagnostic candidates. (b) Competitive ABPP is being used to screen inhibitor libraries and determine the

specificity and sensitivity of potential therapeutics against both host and viral enzymes involved in the viral life cycle. (c) Comparative and imaging ABP probes have been

used in situ by using the bioorthogonal click chemistry to monitor the variability of subcellular enzymatic activity induced by viral pathogenesis and the general

experimental flow is depicted.
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differentially active deubiquitinating enzyme and its
downstream targets to elucidate further the molecular
details leading to EBV- and HPV-induced malignancy [65].

Another promising target of comparative ABPP is
CES1, an endogenous liver enzyme identified with a fluor-
ophosphonate mechanism-based ABP (Table 1, Figure 1c
upper panel) to monitor the differential activity of serine
hydrolases during HCV replication and infection
(Figure 3a). CES1 activity not only correlates with HCV
abundance, but also regulates HCV replication and infec-
tivity in both cell culture and animal models (Figure 3b)
[35]. CES1 is a multifunctional enzyme that modulates
intracellular neutral lipid (e.g. triglycerides and cholester-
ol esters) biosynthesis by displaying triacylglycerol hydro-
lase [66] and acyl-CoA:acyl transferase [67] enzymatic
activities. Coherent anti-Stokes Raman scattering micros-
copy [68] has also been used to demonstrate that CES1
overexpression gives rise to a significant increase in lipid
droplet size (Figure 3b) [35]. CES1 is also involved in the
transport of these neutral lipids into intracellular lipid
droplets (LDs) for their subsequent secretion in very-low
density lipoproteins (VLDLs) [66]. HCV is known to exploit
the LD and VLDL cellular pathways for its own replication,
virion assembly and budding [69,70]. Also, HCV modulates
the host metabolic pathways by increasing the activity of
CES1 to alter the intracellular environment for its efficient
replication and propagation (Figure 3c) [35]. The ABPP
discovery of CES1 and its role in increasing the intracellu-
lar lipid content during HCV propagation provides a better
94
understanding of the development of liver steatosis (i.e.
fatty liver), a phenotypic outcome found in many HCV-
infected patients. Additionally, CES1 presents itself as a
possible host target for the development of new antiviral
therapeutics.

Non-directed comparative viral ABPP

Although mechanism-based ABPP is effective in analyzing
enzymes with known covalent inhibitors, substrate-based
and non-directed probes have also been applied to broaden
the activity-based profiling of host enzyme families that
could be involved in viral replication and infection (Table
1). By applying a non-directed sulfonate ester and a variety
of substrate-based amino acid coupled quinolimine
methide ABPs, we have identified several differentially
active proteins during HCV replication that encompass
many enzyme families [55,57]. The broader specificity of
the substrate-based ABP is likely attributed to the single
amino acid composition of the probe and the electrophilic
properties of the quinolimine methide intermediate [57].
The specificity of this probe would be improved by substi-
tuting the single amino acid with a di- or oligopeptide
substrate, as shown with a tripeptide epoxide [41] and a
hexapeptide diphenylphosphonate [71] ABPs discussed
further below. Of the identified ABPP targets, heat shock
protein 70, nuclear distribution gene C homolog, chaper-
onin containing TCP1, protein disulfide isomerase 1 and 6,
cathepsin D and isochorismatase domain containing 1
have been observed to have altered activity during
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HCV replication, with virtually unchanged abundance.
These differential activities, which are probably attributed
to post-translational modifications or cofactor/inhibitor
association, would have been undetected by other conven-
tional proteomic techniques. The identification of these
non-directed ABPP targets suggests that both combinato-
rial and mechanism-based ABPP methods can accelerate
the discovery of protein activities associated with the
pathogenic states of viral infections.

In situ/in vivo viral ABPP applications through click

chemistry

The early versions of ABPs were designed with bulky
reporter groups (i.e. fluorophore or biotin), which limited
their uptake and distribution in cells and tissues. Hence,
the initial ABPP protocols restricted the usage of ABPs to
in vitro experiments from homogenized cells or tissues.
This resulted in a loss of cellular compartmentalization
and altered the biodistribution of cofactors, inhibitors and
binding partners essential for enzymatic regulation and
probably did not represent the true functional state of the
targeted enzymes [72,73]. To provide a more physiologi-
cally relevant enzymatic profile, the enzymes needed to be
assessed within the context of their native subcellular
environments. To accomplish this, in vivo ABPs containing
small bio-orthogonal reporter groups, typically terminal
alkyne (B) or azide (N3) (Figure 1b), were developed. The
small size of the bio-orthogonal reporter group greatly
improves the ABP cell permeability and distribution in
cells for in situ or in vivo proteome labeling. To visualize or
isolate the enzymes bound to the alkyne ABPs, the alkyne-
labeled proteome is subsequently reacted with N3 contain-
ing a reporter tag via a copper-catalyzed azide–alkyne
cycloaddition, commonly referred to as a ‘click chemistry’
reaction (Figure 1b) [74]. The in situ ABPP labeling tech-
nique has been shown by our group using a non-directed
sulfonate ester alkyne (PS4B) ABP during HCV replication
and delivered significant labeling disparities between in
vitro and in situ ABPP [55]. The number of protein candi-
dates labeled in situ with the PS4B ABP doubled when
compared to the in vitro labeling of the cell homogenate
[55]. This demonstrates that catalytic activity is greatly
influenced by the structural integrity of the enzyme and its
native subcellular environment, and illustrates a key ad-
vantage of in situ and in vivo ABPP.

ABPP function assignment of uncharacterized viral
proteins
The relatively large DNA genomes of herpes viruses with
100–200 open-reading frames have made them a popular
virus group for characterization by ABPP of novel catalytic
functions of expressed viral gene products. Important
advances have recently been made in characterizing the
multifunctional activities of the highly variable tegument
protein of several herpesviridae members using an HAUb
vinylmethyl ester ABP (Table 1) [36–40]. Despite sharing
only 15% sequence similarity between some herpesviridae
members [38], ABPP is able to identify an important con-
served deubiquitinating enzymatic activity in the N-termi-
nal segment of the murine [38] and human [39]
cytomegaloviruses, EBV [38], herpes simplex virus 1
(HSV-1) [37], chicken Marek’s disease virus (MDV) [40]
and murine gammaherpesvirus 68 [36]. In one of these
studies, the use of both mutagenesis and the HAUb vinyl-
methyl ester ABP led to the identification of the catalytically
active cysteine of the MDV large tegument protein, and
linked it to the oncogenic potential of MDV in chickens [40].
The deubiquitinating activity of these herpesviridae tegu-
ment proteins is believed to not only be implicated in viral
gene transcription, cell cycle regulation and virion budding,
but also in tumor development. Despite the immense com-
plexity of the herpes genome, the highly conserved deubi-
quitinating catalytic site of the tegument protein among
alpha-, beta-, and gamma-herpesviruses is of great potential
for antiviral therapeutic development [37].

Similarly, another group has used a hexapeptide diphe-
nylphosphonate ABP to study the activity of a poorly
understood Kaposi-sarcoma-associated herpesvirus (hu-
man herpesvirus 8; HHV-8) protease (Table 1) [71]. By
characterizing the active site of HHV-8 protease through
ABPP, its catalytic activity has been shown to depend on
the quaternary structure of the resultant dimer, and that
the active sites of the monomer are catalytically indepen-
dent. The discovered link between the HHV-8 protease
quaternary structure and catalytic activity offers an alter-
nate inhibition strategy that could use the hexapeptide
diphenylphosphonate ABP for developing and screening of
substoichiometric inhibitors that could destabilize the di-
meric interface [71].

Competitive ABPP for antiviral inhibitor screening
Given that viruses require a host for their propagation, they
are more vulnerable to inhibition of cellular pathways.
Conventional antiviral drugs have focused on selectively
targeting viral gene products to minimize side effects expe-
rienced by the patient. The limited number of viral targets
and the rapid emergence of drug-resistant viral mutations
necessitate the search for host cell targets as alternatives for
antiviral therapeutic development. As host–virus interac-
tions become more apparent, ABPP can be used to screen for
inhibitors of novel host targets through competitive assays.
In these assays, relatively more potent inhibitors have been
identified by their ability to block access of the ABP to the
enzyme active site (Figure 2b).

Competitive ABPP has recently been applied for screen-
ing and testing antiviral drugs against SARS coronavirus
(CoV) and the Ebola pseudotype virus. A biotin tripeptide
epoxide ABP (biotin-Lys-C5 alkyl linker-Tyr-Leu-epoxide
or DCG-04) (Table 1) has been used to determine the
efficacy of a novel tetrahydroquinoline oxocarbazate CID
23631927 inhibitor against its host human cell cathepsin L
target [41]. The endosomal cathepsin L is an appealing
target for antiviral development, because it mediates viral
entry by triggering the fusion of the plasma membrane
with endosomes via proteolysis [75,76]. The DCG-04 ABP
revealed that the tetrahydroquinoline oxocarbazate inhib-
itor was cell permeable and reduced the activity of cathep-
sin L by 38% [41]. These findings demonstrate a potential
role for DCG-04 ABP for identifying novel inhibitors, such
as oxocarbazate inhibitor CID 23631927 that is a subna-
nomolar, slow-binding, reversible inhibitor of human ca-
thepsin L, which prevents SARS and Ebola virus entry into
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human cells [41]. Further applications of the DCG-04 ABP
could be to explore the mechanisms of viral entry and
screen for other potent inhibitors.

Similarly, ABPs that target extracellular membrane
proteins have been used in viral diagnostic development.
A substrate-based sialic-acid-containing ABP probe incor-
porating an ortho-difluoromethylphenyl trapping moiety
(Table 1) has been immobilized to the surface of a micro-
plate well and has successfully captured influenza virion
particles through their neuraminidase surface glycopro-
teins [77]. The immobilization of influenza virion particles
to functionalized surfaces via ABPs has the potential to
accelerate the simultaneous screening of hundreds of an-
tiviral antibodies and drugs. Furthermore, ABPs, such as
substrate-based probes containing sialic acid and ortho-
difluoromethylphenyl trapping moiety, could also influ-
ence viral diagnostics by generating unique activity pro-
files for dozens of viral species and strains to be matched
against unknown specimens for identification.

ABPP for viral pathogenesis imaging
The combination of live cell imaging with ABPP gives
researchers the ability to monitor rapidly changes of sub-
cellular enzymatic activity during viral pathogenesis in
real time (Figure 2c). Although not based on click chemis-
try (Figure 1b), the sulforhodamine valylalanylaspartic
acid fluoromethyl ketone (SR-VAD-fmk) poly caspase
ABP (Table 1) is cell-membrane-permeable [78], making
it suitable for in situ and in vivo ABPP. The in situ
application of SR-VAD-fmk on norovirus-infected mouse
macrophage cells has shown that activation of caspase
cysteine proteases occurred within 2 h of viral infection
[79]. In vitro ABPP characterization studies have identified
cathepsin B as a novel host enzyme that has increased
activity during early viral infection [79]. This implies that
the murine norovirus could take advantage of the cathep-
sin-B-induced apoptosis for its transfer in fragmented
membrane bodies to neighboring cells.

Future virus ABPP perspectives
While gel-based ABPP approaches are robust enough to
identify abundantly expressed proteins, they lack the ability
to identify low-abundance targeted proteins. A recent ABPP
gel-free approach uses 2D liquid chromatography to enrich
and identify ABPP-labeled protein targets in the presence of
highly abundant unlabeled host protein contaminants
(ABPP–MudPIT). This high-throughput characterization
of labeled proteins, combined with the simultaneous identi-
fication of the probe-labeled sites (TOP–ABPP), could speed
up the active site characterization of newly identified anti-
viral targets for therapeutic inhibitor screening [80]. Mod-
ern virology and antiviral drug discovery are thus expected
to be progressively enhanced by new research involving
Figure 3. Schematic stepwise example of how the altered function of a differentially act

The activity profile of serine hydrolases during HCV replication was obtained with a fluo

proteomes from non-infected and HCV-infected hepatocytes, a differentially labeled pro

CES1 activity on HCV propagation, the expression of CES1 was knocked down and o

influence the HCV life cycle, its specific role during HCV propagation was narrowed do

(TGs)] and their storage into intracellular LDs. (c–f) Based on the findings that CES1 fav

been suggested: the HCV-induced high expression of the endoplasmic reticulum (ER) pro

LD saturation with these inert lipids, the ER–LD interstitial space increases, creating a f

stage of HCV, an increase in the turnover dynamics of HCV particles allows CES1 and 
viral ABPP. Activity-based technology currently targets
over a dozen classes of enzymes [48]. As more covalent
inhibitors are discovered, the repertoire of addressable
enzyme families will increase to cover a larger portion of
the active proteome. ABPP is a valuable technique for
providing unique information on the enzymatically active
proteome, which complements other large-scale profiling
methods, such as abundance-based proteomics, SILAC,
microarray, and systems biology approaches. The future
challenges for the application of ABPP in virology will be
to determine which of the myriad of host enzymes are
essential for virus infection. These newly identified ABPP
candidates will represent novel targets for the development
of viral diagnostics and antiviral therapeutics.
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