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Abstract
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting func-

tion of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent muta-

tions, D801N and E815K, and a more severe phenotype in the E815K cohort. We

performed mutation analysis and retrospective genotype-phenotype correlations in all eligi-

ble patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical

data were abstracted from standardized caregivers’ questionnaires and medical records

and confirmed by expert clinicians. We identified ATP1A3mutations by Sanger and whole

genome sequencing, and compared phenotypes within and between 4 groups of subjects,

those with D801N, E815K, other ATP1A3 or no ATP1A3mutations. We identified heterozy-

gous ATP1A3mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31

(91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior

studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex oc-

currences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations.

Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor

impairment and a higher prevalence of status epilepticus. This study further expands the

number and spectrum of ATP1A3mutations associated with AHC and confirms a more del-

eterious effect of the E815K mutation on selected neurologic outcomes. However, the com-

plexity of the disorder and the extensive phenotypic variability among subgroups merits

caution and emphasizes the need for further studies.

Introduction
Alternating Hemiplegia of Childhood (AHC, MIM#614820) is a rare and complex neurodeve-
lopmental disorder described initially by Verret and Steele in 1971, and named for the charac-
teristic recurrent attacks of hemiplegia that affected first one side of the body, then another.
However, episodes of paroxysmal neurologic dysfunction in this unusual disorder encompass a
wide range of abnormal movements and episode types ranging from hemiplegia to quadriple-
gia to dystonia, and lasting from minutes to hours or even days. A variety of external or emo-
tional stressors trigger the onset or worsening of paroxysmal symptoms, but they are
consistently relieved by sleep, whether pharmacologically or naturally induced [1,2]. Although
rare familial cases with autosomal dominant inheritance have been reported [3–6], AHC is pre-
dominantly a sporadic disorder. Estimated incidence of the classic form of the disease is 1 in
one million: males and females are affected in roughly equal numbers. The variability and the
complexity of presenting symptoms have historically led to considerable delays in diagnosis,
which was until recently based solely on carefully conceived clinical diagnostic criteria. These
criteria specified an infantile onset (< 18 months) of recurrent paroxysmal episodes of hemi-
plegia, dystonia and ocular movement abnormalities, and were ultimately characterized by the
appearance of additional fixed neurologic signs and symptoms including chorea, dysarthria,
dyskinesia, ocular apraxia, ataxia and global developmental delay [2,7,8]. The variable course
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of the disease and limited longitudinal follow-up and neuropathologic data have led to ongoing
speculation as to whether or not AHC represents a static neurodevelopmental or a progressive
disorder [9–11].

The pathophysiology of AHC was totally unknown until the recent identification of muta-
tions in ATP1A3, which encodes a neuron specific sodium/potassium ATPase involved in the
regulation of neuronal excitability [12]. We and others initially identified de novo recurrent
mutations in ATP1A3 by performing whole exome studies in trios in a series of simplex AHC
patients. These initial studies indicated that more than 2/3 of patients had de novo mutations,
confirming a causative role of ATP1A3 in the pathogenesis of AHC, and that two mutations ac-
counted for most of the confirmed cases [13–21]. ATP1A3 was previously shown to be mutated
in Rapid-Onset Dystonia-Parkinsonism (RDP, DYT12, MIM#128235), a rare neurological dis-
order characterized by abrupt onset of dystonia and triggered by emotional or physical stress
[22–37]. More recently, mutations were identified in another childhood onset condition called
CAPOS syndrome(MIM#601338) with paroxysmal neurological symptoms overlapping with
AHC and DYT12 but with distinctive features including pes cavus, optic atrophy and sensori-
neural hearing loss [38,39]. To date, mutations in ATP1A3 for these different phenotypes have
proved largely non-overlapping, indicating that genotypes may be predictive of phenotype in
these allelic disorders, at least for patients presenting with the classic phenotypes as defined
using strict clinical diagnostic criteria. Since ATP1A3mutations were reported in patients with
AHC in 2012, the increasing numbers of patients with overlapping or unique phenotypes have
led to use of the broader term “ATP1A3-related neurologic disorders.”However, it is notable
that, to date, patients with the classically described phenotypes associated with AHC and RDP
share very little overlap in the precise mutations identified. This underscores the importance of
genotype-phenotype studies and that will undoubtedly provide clues to understand the unique
pathogenesis of these clinical syndromes.

Here we present the results of a genetic and clinical study of the largest AHC cohort re-
ported to date. This cohort includes 187 AHC patients enrolled since 1997 in the US AHC
foundation (AHCF) registry and biobank at the University of Utah. We identified 34 unique
mutations in ATP1A3 among 154 affected individuals, accounting for 82% of cases (154/187)
and confirming the previously observed high frequency of the D801N and E815K mutations
among AHC patients. In a subset of patients with complete clinical data, we performed a retro-
spective genotype-phenotype correlation study to evaluate the influence of the two most fre-
quently observed mutations on selected outcomes in patients with a clinical diagnosis of AHC.

Patients
One hundred eighty seven patients (82 males and 105 females) with AHC enrolled in the regis-
try from 1997 to 2012 and provided DNA samples and clinical information for this analysis.
Subjects were predominantly from the USA (108) but also from Australia (6), Brazil (2), Cana-
da (7), Chile (1), Croatia (1), Czech Republic (2), Denmark (2), France (27), Iceland (1), Ireland
(2), India (2), Israel (1), Italy (5), Kenya (1), Mexico (1), the Netherlands (1), New Zealand (1),
Puerto Rico (4), Spain (4), Sweden (2), Turkey (1), and the United Kingdom (4). Clinical diag-
nosis of AHC had been confirmed in all cases by a neurologist based on published diagnostic
criteria for AHC; a second review of available history and records was performed by authors
KJS, KS or MS. Typical cases, defined as “clinically definite,” fulfilled the diagnostic criteria as
originally defined by Bourgeois et al.2 Atypical cases deemed “clinically probable” by the refer-
ring physician were also included in this analysis and included subjects with onset of first
symptoms> 18 months of age but whose phenotype fulfilled all other diagnostic criteria for
AHC.
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One hundred sixty-nine patients were simplex cases, and DNAs of both parents were avail-
able for 70 (41%). The cohort included two sets of monozygotic twins who were concordantly
affected. Fourteen subjects in 5 multiplex pedigrees, 2 with dominant inheritance, were also in-
cluded in the present analysis. Patients and their parents gave informed written consent for
clinical data and DNA storage and analysis. Ethics approval was obtained from the Institution-
al Review Board at the University of Utah. Among the 187 patients, 13 have been included in
the genetic study published by Heinzen et al in 2012 [12].

Methods
DNA was extracted from peripheral venous blood using QIAmp DNAminikit (Qiagen, Hil-
den, Germany). ATP1A3 sequencing was performed on DNA from AHC probands and family
members using the Sanger method after PCR amplification of the 23 coding exons and their
flanking regions with intronic primers as defined by Heinzen et al (reference sequence
ENSG00000105409/NCBI:NM_001256214.1) [12]. PCR products were purified with ExoSA-
P-IT (Affymetrix, Santa Clara, CA) and sequenced using the BigDye3.1 terminator method on
an ABI PRISM 3730xl Genetic Analyzer (Applied Biosystems, Foster City, CA). Sequences
were analyzed with Sequencher 4.9 Software (Genes Codes Corporation, Ann Harbor, MI) and
DNA variants were described using ALAMUT Software (Interactive-Biosoftware, France).
Evaluation of pathogenicity of the DNA variants was made using the Polymorphism Phenotyp-
ing (Polyphen) program (http://genetics.bwh.harvard.edu/pph/), the Provean program (http://
provean.jcvi.org/index.php) and the Human Splicing Finder tool (http://www.umd.be/HSF/).
Detection of the proband's mutation in the DNA of the parents was performed by Sanger se-
quencing of the mutated exon. DNA from an additional 30 probands was examined via whole
genome sequencing on the CGI platform (Complete Genomics Inc., Mountain View, CA), in-
cluding 25 parent-child trios and an additional 5 multiplex AHC pedigrees. Sequences were
aligned to the GRCh37 (hg19) human reference genome. Variants were evaluated using QIA-
GEN’s Ingenuity Variant Analysis software. We tested for presence and frequency of identified
variants in the Kaviar database (version 141029), which integrates data from 1000 genomes,
the Personal Genome Project, ESP6500, dbSNP and several other public resources, and thou-
sands of private genome sequences [40].

For the clinical phenotype portion of the study, information was collected using standard-
ized questionnaires completed by the parent or caregiver first, and then validated by the physi-
cian. For some patients, follow-up information was available from medical records, subsequent
in-person evaluations at one of several national family meetings sponsored by the AHCF, or
via follow-up telephone interviews. Main characteristics of the subset of AHC patients with
complete clinical data are summarized in Table 1. Clinical characteristics were compared
among a cohort of 164 subjects with and without ATP1A3mutations. We also compared clini-
cal data between individual patient cohorts with the two most frequent mutations, D801N and
E815K, and to those with other ATP1A3mutations.

Table 1. Summary of 164 AHC patients included in the genotype-phenotype correlation study.

ATP1A3 mutations E815K D801N Other Mutations No Mutation

Total Number of Subjects 31 58 49 26

Females 16 (51.6%) 36 (62.1%) 25 (51.0%) 15 (57.7%)

Males 15 (48.4%) 22 (37.9%) 24 (49.0%) 11 (42.3%)

Mean Age at Onset, in months (standard deviation) 1.9 (3.3) 4.2 (4.0) 5.4 (7.9) 12.2 (12.5)

Mean Age at Last Evaluation, in years (standard deviation) 7.5 (5.2) 12.0 (7.7) 13.4 (10.1) 9.5 (5.9)

doi:10.1371/journal.pone.0127045.t001
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Statistical Analysis
Descriptive analyses were used to examine the characteristics of the study population by muta-
tion subtype. Since the age at onset was not normally distributed, quantile regression, more
specifically median regression with gender adjustment, was used to estimate the differences in
age at onset between E815K mutation, the D801N mutation and other mutations. Non-
parametric survival analysis and log-rank tests were conducted to estimate and compare the
curves of the cumulative probabilities of acquiring the gross motor skills of unsupported sitting
and independent walking between the same mutation group pairs. Logistic regression was used
to quantify how strongly the presence of an E815K mutation was associated with the occur-
rence of epilepsy. All the analyses were performed using the SAS version 9.2 statistical package
(SAS Institute, Cary, NC). Statistical significance was assessed assuming a 0.05 significance
level and a two-sided alternative hypothesis.

Results

Genetic analysis
We identified 34 distinct ATP1A3mutations in 154 patients, including 68 males and 86 fe-
males. One hundred forty three were simplex cases, 4 patients were two sets of monozygotic
twins, and 7 patients were members of 2 families with dominant inheritance (Table 2). The
mutations were all heterozygous and predominantly missense (31/34), located in the coding se-
quence of 9 exons of ATP1A3, with hot spots in exons 17 and 18 suggested by 3 recurrent com-
mon mutations. A deletion of 3 nucleotides in exon 20, predicting deletion of a single amino
acid from the ATP1A3 protein sequence, was found in 2 patients. Two intronic mutations at
the donor site of exon 18 were found in 3 patients, predicting abnormal splicing of this intron
(Fig 1). All the missense mutations identified in this cohort were predicted to be damaging (see
S1 Table). We tested for their presence and frequency in the Kaviar database and concluded
that these variants have never been observed other than in AHC patients. No mutation was de-
tected in the exonic sequence of ATP1A3 in 33 AHC patients.

The predominant mutation, D801N, was found in 40% of the simplex patients (58/143) and
the mutation E815K in 26% (38/145); neither of these mutations were observed in multiplex
cases (see S1 Table). In the 70 simplex cases for which DNA was available from both parents,
all were confirmed to be de novo mutations. One dominant family with 4 affected family mem-
bers was previously reported [3]. In another family, a heterozygous mutation (R756H) segre-
gates with the disease phenotype in an affected mother and her two affected children. No
ATP1A3mutation was found in 3 other multiplex families. Of the 34 mutations identified in
this cohort, 16 are novel and 18 were previously reported in AHC patients [13–21].

Phenotype analysis and correlations
Data were extracted from standardized medical questionnaires that had been previously en-
tered into a RedCAP database associated with the registry. Data for the current analysis were
selected according to the reliability of documentation, their availability in most patients, and

Table 2. Summary of the 187 patients included in the genetic study.

Number of patients Simplex cases Homozygous twins Multiplex cases Total

With ATP1A3 mutations 143 2 twins, 2 twins 4 of 1 family, 3 of 1 family 154

Without ATP1A3 mutation 26 0 3 of 1 family, 2 of 1 family, 2 of 1 family 33

Total 169 4 14 187

doi:10.1371/journal.pone.0127045.t002
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their perceived importance as indicated by emphasis in other recent publications. The variables
include: 1) the age of the first paroxysmal symptom or sign (i.e., ocular movements, dyskinesia,
or unilateral or bilateral paralysis or seizure-like episode); 2) the age at which the child achieved
unsupported sitting; 3) the age at which the child achieved independent walking, and 4) a his-
tory of status epilepticus and/or sudden unexplained death during the time of follow up.

All patients with the D801N or E815K mutation had onset of their first paroxysmal symp-
toms by 18 months of age. The 6 patients presenting an atypical late onset of the disease had a
rare ATP1A3 variant or did not have any detectable ATP1A3mutation. Those patients with a
mutation in ATP1A3 had a significantly earlier median age at onset (5 months earlier) than for
those without a mutation (P-value = 0.008). When contrasting the most common mutations,
the age at onset for patients with the E815K mutation was 2.7 months earlier than those with
other types of ATP1A3mutations (P-value<0.0001), as well as 2.7 months earlier than those
with the D801N mutation (P-value<0.0001) (Fig 2). Patients with E815K mutations achieved
unsupported sitting later than those with the D801N mutation (P-value = 0.0020) and later
than those with other mutations (P-value = 0.0002) (Fig 3). Patients with E815K mutations
were also more likely to achieve independent walking later than those with other mutations (P-
value = 0.0264) (Fig 4). Finally, patients with E815K mutation were almost 3 times more likely
to present with status epilepticus during the course of the disease than the patients with other
types of ATP1A3mutations (P-value = 0.0206. Table 3)

Discussion
Since mutations in ATP1A3 were first identified in 2012 in patients with AHC, the prevalence
of mutations in sporadic patients meeting classic diagnostic criteria for AHC has ranged from
70% to 100% across a variety of ethnic backgrounds [12–20]. The 2 most common mutations,
D801N and E815K, account for more than 60% of all ATP1A3 mutations resulting in an AHC
phenotype [12]. We extend these observations in this large cohort, confirming a similar preva-
lence among our AHC cases for the 2 most common mutations, and confirming that most mu-
tations causing AHC seem to occur in a region located between the haloacid-dehalogenase-
like-hydrolase and the C-terminal-ATPase domains, close to the transmembrane domains of

Fig 1. Schematic representation of ATP1A3mutations.Mutations identified in our cohort are indicated above the gene; all the mutations previously
published are indicated in black; novel mutations are indicated in light blue; mutations identified in multiplex cases are underlined; mutations reported in
DYT12 are indicated in green; the mutation reported in CAPOS syndrome is indicated in red. The mutation associated with a phenotype combining features
of both AHC and RDP is in orange. The 2 most commonmutations are in bold. Asterisks mean that 2 different nucleotide changes have been identified for
these protein variants.

doi:10.1371/journal.pone.0127045.g001

Extensive Genetic Study and Genotype Phenotype Correlations in AHC

PLOSONE | DOI:10.1371/journal.pone.0127045 May 21, 2015 6 / 14



the protein. The 16 novel mutations we report here, however, effectively double the number of
identified mutations associated with an AHC phenotype, and further extend the full range of
identified mutations.

Although the majority of AHC mutations identified here did not overlap with mutations
previously reported in association with an RDP phenotype, we found two mutations (D801Y

Fig 2. Ages at onset of AHC in each group of patients defined by their genotype. The horizontal lines in the boxes indicate the 25th percentile (bottom),
the median (middle) and the 75 percentile (top) values. Crosses indicate the mean values. Numbers of patients analyzed in each group are indicated above
the boxes.

doi:10.1371/journal.pone.0127045.g002

Fig 3. Ages at unsupported sitting acquisition in each group of patients defined by their genotype.Cumulative probability of acquiring unsupported
sitting by patients presenting the E815Kmutation, compared to patientsmutation (3b). Patients with the E815K mutation are likely to gain unsupported sitting
at a later age than patients in each of the other groups (respectively P = 0.0002 and P = 0.0020).

doi:10.1371/journal.pone.0127045.g003
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and R756H) previously reported with RDP phenotypes, although the latter familial occurrence
has unique features, with some that overlap with both disorders. Clinical features of these pa-
tients are summarized in S2 Table. Such variable expressivity has been recently reported for
two other mutations (T370N and D923N) in ATP1A3-related disorders [19, 21]. Rosewich
et al. noted that specific ATP1A3mutations were associated with certain features characteristic
of both AHC and RDP phenotypes [19,41].

Despite a high rate of mutation detection in ATP1A3 in our study (82%), we did not identify
mutations in all of the patients. Genome sequencing of the ATP1A3 negative cohort also failed
to identify obvious variants in genes associated with familial hemiplegic migraine (ATP1A2,
SLC1A3/EEAAT1, CACNA1A), in agreement with prior investigations [18,42–45].

Previous studies showed that patients with early onset of AHC symptoms tended to have a
more severe clinical course [7,11]. Our genotype-phenotype correlation study shows an earlier
age at disease onset and a significantly higher incidence of status epilepticus in the E815K mu-
tation group. Ishii et al. reported similar observations in Japanese patients with E815K muta-
tions [14].

The significant delay in achievement of gross motor milestones observed here in patients
with the most common ATP1A3mutations is also concordant with previous findings. Howev-
er, patients within cohorts with the same mutation (for example, the 58 D801N-mutation pa-
tients and the 31 E815K-mutation patients with complete clinical data) presented a wide range
of age of onset (0–12 months and 0–16 months, respectively), developmental delay, and overall
neurologic morbidity. In comparing our E815K cohort to the Japanese E815K cohort,

Fig 4. Ages at unaided walking acquisition in each group of patients defined by their genotype. Cumulative probability of acquiring unaided walking by
patients presenting the E815K mutation, compared to patients with all other ATP1A3mutations (4a) and to patients with the D801Nmutation (4b). Patients
with the E815K mutation are likely to gain unaided walking at a later age than patients in each of the other groups (respectively P = 0.0264 and P = 0.0835).

doi:10.1371/journal.pone.0127045.g004

Table 3. Odds ratio for occurrence of status epilepticus in AHC patients with different ATP1A3
mutations.

ATP1A3 mutations Odds Ratio Confidence Interval P-value

E815K vs. all other mutations 2.73 (1.166, 6.370) 0.021

E815K vs. D801N 1.12 (1.193, 7.919) 0.020

D801N vs. all other mutations 0.54 (0.252,1.141) 0.106

doi:10.1371/journal.pone.0127045.t003

Extensive Genetic Study and Genotype Phenotype Correlations in AHC

PLOSONE | DOI:10.1371/journal.pone.0127045 May 21, 2015 8 / 14



outcomes appear to be overall consistently more severe in the latter, suggesting the possible in-
fluence of epigenetic or additional unknown genetic factors that modify expression of the dis-
ease. However, we had less complete data for those with E815K than with D801N mutations in
our cohort. Finally, we observed an earlier median age at onset in patients with any ATP1A3
mutation (D801N, E815K or other) relative to patients without such mutations.

During the last 10 years, several functional studies have attempted to decipher the pathophysi-
ology of ATP1A3 related disorders and to explain the important phenotypical variability of these
diseases [1, 46–53] Using cellular models, Heinzen et al showed that D801N, E815K and 3 other
AHCmutations did not decrease the level of expression of the alpha 3 subunit of the Na+/K+-
ATPase but significantly decreased the ATPase activity [12]. This functional defect was quantita-
tively similar for E815K as for the other mutations, suggesting that the ATPase activity defect
solely could not explain the higher severity of the E815K associated phenotype. The other major
function of the alpha subunit of the Na+/K+ ATPase is the ion transport across the cell mem-
brane, in a process called forward cycling: three Na+ go out of the cell while two K+ go in, using
ATP hydrolysis, with a concomitant passive inward transport of protons [54]. Interestingly, the
majority of the mutations associated with AHC are located in the transmembrane domains of the
Na+/K+ ATPase alpha subunit, suggesting a specific impact of these mutations on ion binding and
transport. Using electrophysiological techniques on Xenopus Levis oocytes, Li et al investigated
the consequences of D801N, E815K and G947R mutations on Na+, K+ and H+ flows [55]. They
showed that these 3 mutants were associated with a loss of ion transport with a strong dominant
negative effect, suggesting that the loss of forward cycling is a pathological mechanism in AHC.
The level of impact on Na+ and K+ transport was similar for D801N, E815K and G947R but the
proton transport was significantly more profoundly reduced by the E815K than by the two other
mutations. The severity of the phenotype associated with the E815Kmutation is possibly the con-
sequence of a more profound intracellular alkalosis. Intracellular proton concentration is known
to be an important modulator of neuronal excitability and such a change may certainly have se-
vere consequences on neuronal function.

Prediction of the course and severity of the disease using genotype information is a major
aim of genotype-phenotype correlation studies. This information is essential for the evaluation
of new therapeutics, to provide a more accurate prognosis to patients and caregivers, and to
help develop the most appropriate guidelines for care management. Currently, however, the re-
liability and consistency of tools used to evaluate the severity of AHC are problematic. Panagio-
takaki et al. designed specific indexes of paroxysmal and non-paroxysmal disability for AHC
evaluation and used these tools in a 2-year retrospective and prospective study of 157 patients
[10]. Still, this remarkable study did not demonstrate evidence of disease progression, in con-
trast to observations from the Japanese patient cohort [15]. Phenotype-genotype correlation
from our analysis and others suggests that patients with E815K mutations are at greater risk of
an acute clinical decompensation. Thus, even as our understanding of the genetics and patho-
physiology of AHC increases, there is a continued need for comprehensive longitudinal natural
history studies of AHC.

Conclusion
Further progress in our understanding of the pathophysiology of AHC and the broader spec-
trum of ATP1A3 related phenotypes will require that a number of initiatives proceed in paral-
lel, including 1) close collaboration among patients, physicians and researchers to facilitate
early diagnosis via molecular studies; 2) early enrollment of the majority of patients in registries
and prospective longitudinal studies; 3) a strong international collaboration to ensure uniform
collection of data to better understand disease pathogenesis and outcome; and 4) the
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identification and implementation of valid, reliable, and sensitive outcome measures for future
use in clinical trials to assess promising therapies. Such outcomes measures should include (a)
caregiver questionnaires and patient or caregiver reported outcomes, (b) standardized patient
assessments of motor and cognitive function over a wide range of age and disease severity, and
(c) tools for tracking AHC episode characteristics such as duration, frequency, and severity.
Achieving such aims will enable progress towards an improved understanding of this complex
and devastating disease, and help to ensure access to clinical trials and ultimately, truly
effective therapies.
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