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abstract

PURPOSE Somatic KRAS mutations occur in approximately half of the patients with metastatic colorectal cancer
(mCRC). Biologic tumor characteristics differ on the basis of the KRASmutation variant. KRASmutations are known
to influence patient prognosis and are used as predictive biomarker for treatment decisions. This study examined
clinical features of patients with mCRC with a somatic mutation in KRAS G12, G13, Q61, K117, or A146.

METHODS A total of 419 patients with colorectal cancer with initially unresectable liver-limited metastases, who
participated in a multicenter prospective trial, were evaluated for tumor tissue KRAS mutation status. For the
subgroup of patients who carried a KRAS mutation and were treated with bevacizumab and doublet or triplet
chemotherapy (N = 156), pretreatment circulating tumor DNA levels were analyzed, and total tumor volume
(TTV) was quantified on the pretreatment computed tomography images.

RESULTS Most patients carried a KRAS G12 mutation (N = 112), followed by mutations in G13 (N = 15), A146
(N = 12), Q61 (N = 9), and K117 (N = 5). High plasma circulating tumor DNA levels were observed for patients
carrying a KRAS A146 mutation versus those with a KRAS G12 mutation, with median mutant allele frequencies
of 48% versus 19%, respectively. Radiologic TTV revealed this difference to be associated with a higher tumor
load in patients harboring a KRAS A146 mutation (median TTV 672 cm3 [A146] v 74 cm3 [G12], P = .036).
Moreover, KRAS A146 mutation carriers showed inferior overall survival compared with patients with mutations
in KRAS G12 (median 10.7 v 26.4 months; hazard ratio = 2.5; P = .003).

CONCLUSION Patients withmCRCwith a KRASA146mutation represent a distinctmolecular subgroup of patients
with higher tumor burden and worse clinical outcomes, whomight benefit frommore intensive treatments. These
results highlight the importance of testing colorectal cancer for all KRAS mutations in routine clinical care.
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INTRODUCTION

Oncogenic KRAS mutations are highly prevalent in
multiple cancers and drive cell differentiation and
proliferation.1 KRAS mutations stimulate KRAS to stay
in its active state, thereby triggering the oncogenic
signaling pathway.2 Around 40%-50% of the patients
with metastatic colorectal cancer (mCRC) harbor a
somatic KRAS mutation.3-5 In general, patients with a
KRAS wild-type tumor have a better prognosis than
patients carrying a KRAS-mutated tumor.6,7 Moreover,
KRAS mutation status is a predictive marker for poor
response to anti–epidermal growth factor receptor
(EGFR) monoclonal antibody therapy,8 one of the
options for systemic treatment for patients with
mCRC.9 Therefore, analysis of KRAS mutation status
has been widely adopted in routine clinical practice.10

It is known that the biologic characteristics of tumors, like
cellular phenotypes and metabolomic characteristics,

differ on the basis of the KRAS mutation variant and
amino acid substitution.11-13 In a substantial part of
routine diagnostic KRAS tissue panels, only the most
common driver mutations in KRAS codons G12 and G13
are tested, which are affected in 28% and 8% of all
patients with mCRC, respectively. However, mutations
are also commonly present in KRAS Q61 (2%), K117
(1%), and A146 (4%).4,5,14 Here, we investigated clinical
features like tumor load and overall survival of patients
with mCRC with a somatic mutation in KRAS G12, G13,
Q61, K117, or A146.

METHODS

Patient Characteristics

Liquid biopsies of patients with histologically proven
colorectal cancer (CRC) with isolated, previously un-
treated, initially unresectable colorectal liver metas-
tases (CRLM) were collected in the ongoingmulticenter
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phase III CAIRO5 trial (NCT02162563).15 A total of 419
patients with CRLM, enrolled between November 2014 and
July 2019, were evaluated in this study. For all patients,
tissue KRAS mutation analyses were performed in the
participating hospitals before randomization following rou-
tine clinical practice. Only those patients who were ran-
domized for treatment with bevacizumab and chemotherapy
consisting of 5-fluorouracil, leucovorin, oxaliplatin, and/or
irinotecan were selected for the current study. Clinical follow-
up was performed according to standard of care, including
clinical review every three months as well as computed
tomography (CT) imaging every six months, for patients with
resectable disease and every two months for patients with
unresectable disease, using the RECIST 1.1 for reporting.
Follow-up was recorded until March 23, 2020. The study
was performed in accordance with the Declaration of Hel-
sinki and amedical ethical committee approved the trial, and
all patients signed written informed consent for study par-
ticipation and liquid biopsy collection.

Liquid Biopsy Collection

Liquid biopsies were collected before study treatment using
a cell-stabilizing BCT tube (Streck, La Vista, NE) in the
participating hospitals and shipped to the Netherlands
Cancer Institute. Here, cell-free plasma was collected in a
two-step centrifugation process: 10 minutes at 1.700 g
followed by 10 minutes at 20.000 g, and stored at –80°C
until further processing. Cell-free DNA (cfDNA) was iso-
lated using the QIAsymphony (Qiagen, Hilden, Germany)
with an elution volume set to 60 mL. The concentration of
cfDNA was measured using the Qubit dsDNA High-
Sensitivity Assay (TFS, Waltham, MA).

Liquid Biopsy Mutation Analyses

For patients with an established KRAS mutation on the
basis of tumor analysis, liquid biopsy mutation analyses
were performed using four droplet digital polymerase chain

reaction (ddPCR; Bio-Rad, Hercules, CA) screening kits,
namely ddPCR KRAS G12/G13 (#1863506), ddPCR KRAS
Q61 (#12001626), ddPCR KRAS K117N (#10049047),
and ddPCR KRAS A146T (#10049550). Table 1 in the
Data Supplement shows the different amino acid variants
detected by these assays. The ddPCR assays were per-
formed according to the manufacturer’s instruction,
making use of 1 mL of the multiplex assay, 11 mL of the
ddPCR supermix for probes (no dUTP), 9 mL of sample,
and 1 mL H2O. All measurements were performed in
duplicate and included a blank (nuclease-free water) and
a positive control. Data were analyzed using the Quan-
taSoft software version 1.6.6 (Bio-Rad, Hercules, CA). The
number of mutant copies per mL plasma (MTc/mL) and
mutant allele frequency (MAF) were used as outcome
measures. For the cfDNA samples with a KRAS A146
mutation, orthogonal validation was performed using
targeted deep sequencing, as described previously.16 In
brief, genomic libraries were prepared from 125 ng of
cfDNA, following normalization, end-repair, A-tailing,
adapter ligation, and PCR amplification. Target capture
was performed using a panel consisting of 58 genes,
covering 81 kb. Candidate somatic alterations across the
region of interest were identified using VariantDx (Per-
sonal Genome Diagnostics, Baltimore, MD).

Radiologic Total Tumor Volume Quantification

For patients with an identified KRAS mutation on tumor
tissue, pretreatment contrast-enhanced abdominal CT
images were used for semiautomatic segmentation in the
Tumor Tracking Modality of IntelliSpace Portal 9.0 (Philips,
Eindhoven, the Netherlands). The liver itself and all me-
tastases were segmented by two trained members of the
research team and subsequently adjusted and verified by a
radiologist specialized in abdominal pathology. All seg-
mentations and related CT images were processed and
analyzed with the SAS Viya analytical platform (SAS

CONTEXT

Key Objective
The distribution of KRASmutation variants across tumor types is not uniform. The KRAS A146mutation is predominantly seen

in patients with colorectal cancer. Here, we evaluated how clinical features like tumor load and overall survival differ
between patients with metastatic colorectal cancer (mCRC) carrying distinct somatic KRAS G12, G13, Q61, K117, or A146
mutations.

Knowledge Generated
This study revealed that within patients with mCRC, A146 is the third most common KRAS mutation variant. Patients with

mCRCwith a KRAS A146–mutated tumor represent a distinct molecular subgroup of patients with higher tumor burden that
is associated with worse clinical outcomes.

Relevance
These results highlight the clinical importance of testing colorectal cancer for all KRAS mutations in routine diagnostics. The

distinct clinical implications of KRAS A146 mutations in patients with mCRC warrant further investigation regarding
therapeutic strategies to target and treat KRAS A146 mutant tumors.
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Institute Inc, Cary, NC) for volume quantification using the
quantifyBioMed Images action.17 This action calculates the
total tumor volume (TTV) directly out of the segmentation
from all tumors presented in the liver by determining the
volume of one voxel and multiplying this volume with the
number of voxels included in the tumor segmentation. A CT
scan is built up by voxels, the three-dimensional equivalent
of a pixel, and a voxel’s volume depends on the pixel
spacing and slice thickness attributes of the CT scan. The
volume of the liver was calculated similarly, on the basis of
the three-dimensional liver segmentation. In addition, the
percentage TTV of the total liver volume, including TTV, was
calculated. Furthermore, the radiologist registered the
number of liver lesions.

Statistical Analyses

A Brown–Forsythe analysis of variance test using Dunnett’s
multiple comparisons was used for the liquid biopsy analyses.
A one-way analysis of variance corrected for multiple com-
parisons using Tukey’smultiple comparisons test was used for
the volumetric analyses. A two-sided P-value of .05 was used
as a cutoff for significance. A Mantel–Cox log-rank test using
a Bonferroni-corrected threshold of P , .005 for signifi-
cance was performed for the survival analyses. To de-
termine the equivalence between ddPCR and sequencing
circulating tumor DNA (ctDNA) levels, a Pearson correla-
tion was used. Clinical patient characteristics were com-
pared between carriers of different KRAS mutant variants
using Fisher’s exact tests. Univariate and multivariate Cox
proportional hazards regression analyses were performed
to analyze prognostic factors for overall survival, adjusted
for potential confounders. Analyses were performed with
Prism version 8 (GraphPad Software, Inc, San Diego, CA)
and SPSS software version 27 (IBM, New York, NY).

RESULTS

Patient Characteristics

Of the 419 patients evaluated, 178 patients (42%) met the
selection criteria and carried a tumor tissue KRASmutation.
Three patients who did not receive bevacizumab and 19
patients unavailable for follow-up were excluded, leaving
156 patients for analyses (Fig 1). The majority of these
patients carried a KRAS G12 mutation (N = 112, 71.8%),
followed bymutations in G13 (N = 15, 9.6%), A146 (N = 12,
7.7%), Q61 (N = 9, 5.8%), K117 (N = 5, 3.2%), and A59
(N = 1, 0.6%). The codon affected was unknown for two
patients (1.3%; Fig 2). Clinical patient characteristics per
KRAS mutation and per KRAS most frequent G12 residues
(G12A, G12C, G12D, and G12V) are shown in Table 1 and
Table 2 in the Data Supplement, respectively.

High Plasma ctDNA Levels in Patients With KRAS A146

Mutant Tumors

We previously measured plasma ctDNA levels in 100
patients with CRLM and noticed remarkably high

plasma ctDNA levels in patients harboring a KRAS
A146–mutated tumor, an observation that warranted fur-
ther investigation.18 The current study investigated the
liquid biopsy ctDNA levels for all 156 patients included.
Patients without a pretreatment liquid biopsy (N = 32) and
patients carrying a tumor with a KRAS mutation that could
not be detected by the ddPCR kits (N = 2) were excluded,
leaving 122 ctDNA samples for liquid biopsy analyses (Data
Supplement Figure 1). Liquid biopsy ddPCR analyses
showed more MTc/mL plasma and a higher MAF for pa-
tients with KRAS A146–mutated tumors (N = 10, median
MTc/mL = 35,338, median MAF = 48%) compared with
patients carrying a different KRAS variant, for example, a
KRAS G12 mutation (N = 92, median MTc/mL = 700,
median MAF = 19%), see Figure 3A (MTc/mL) and
Figure 3B (MAF). To ensure that these high plasma ctDNA
levels were not because of the KRAS codon 146 ddPCR
assay’s test characteristics, we performed orthogonal
testing using a targeted deep-sequencing approach. A
strong confirmation of the high KRAS A146 ctDNA levels
was observed, with a Pearson correlation (R2) of 0.98 (95%
CI, 0.96 to 1.00; P , .0001) between the ddPCR and
sequencing MAF results (Figure 2 in Data Supplement).
The high plasma ctDNA levels in KRAS A146 mutation
carriers were not caused by DNA copy-number gains or
focal amplification of the KRAS locus (see methods in Data
Supplement). Moreover, the high plasma ctDNA levels in
patients harboring a KRAS A146–mutated tumor were
accompanied by high plasma ctDNA levels for other genes
like TP53, TERT, and PIK3CA (Figure 3 in Data Supple-
ment), implying that high plasma ctDNA levels for KRAS
A146–mutated tumors are associated with tumor burden.

Patients With KRAS A146–Mutated Tumors Have

High TTV

As all patients in this study had liver-only metastases, total
tumor burden could be assessed by measuring the pre-
treatment TTV. Since abdominal contrast-enhanced CT
images could be used for segmentation, patients with a
magnetic resonance imaging (N = 17) and positron
emission tomography-CT (PET-CT) or non–contrast-
enhanced scans (N = 4) were excluded from the volu-
metric analysis. Other reasons for exclusion were technical
errors in the segmentation software (N = 3), missing scans
(N = 2), and incomplete scans (N = 4), leaving 126 patients
for volumetric analysis. Figure 4A shows the absolute TTV
and Figure 4B shows the relative TTV as percentage of the
liver volume. Patients with a KRAS A146–mutated tumor
have a significantly higher absolute and relative TTV
(median TTV of 672 cm3 and 24.5% of total liver volume)
compared with patients with a KRASG12mutation (median
TTV of 74 cm3 and 4.1% of total liver volume; P = .036 and
P = .053, respectively) and G13 mutation (median TTV of
55 cm3 and 3.5% of total liver volume; P = .021 and
P = .026, respectively). In addition, the median number of

van ’t Erve et al

1760 © 2021 by American Society of Clinical Oncology



lesions tended to be higher for patients with KRAS A146
mutant tumors (median = 25) compared with patients with
one of the other KRAS variants (median number of lesions
KRAS G12 = 11, G13 = 10.5, Q61 = 10, K117 = 14; see
Figure 4 in the Data Supplement). High TTV was also ob-
served in patients with the less prevalent KRAS K117
mutation (median absolute TTV = 592 cm3, relative TTV =
24.1%). The volumetric results of the four most frequent
G12-mutated residues (G12A, G12C, G12D, and G12V) did
not differ significantly (Figure 5 in Data Supplement).

KRAS A146–Mutated Tumors Are Associated With Poor

Overall Survival

Patients with mCRC with a KRAS A146–mutated tumor
showed a worse prognosis than patients with another KRAS
mutation variant (Fig 5). The overall survival of patients with
a KRAS A146–mutated tumor was significantly shorter
compared with patients with a KRAS G12–mutated tumor
(median 10.7 v 26.4 months). Also, patients with the less
common KRAS K117 mutation progressed faster, whereas
patients with a tumor with a mutation in KRAS G13 had the
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FIG 2. (A) The distribution of KRAS/NRAS/BRAFmutations among the 419 patients with CRLM evaluated in this study and (B) the relative distribution of KRAS
codon variants among 156 KRASmutation carriers. aOf note, 42.5% of the 419 patients (N = 178) carried a tumor tissue KRASmutation, of whom 156 patients
were used for further analyses (see Fig 1). CRLM, colorectal liver metastases.
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included in the prospective
CAIRO5 clinical trial (N = 419)

Patients who
are KRAS mutation carriers 

(n = 178)
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treated with bevacizumab

and chemotherapy (n = 175)
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for ctDNA, CT image, and clinical

data analyses  (n = 156)
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       Patients with a BRAF mutation                       (n = 23)
       Patients with a NRAS mutation                                        (n = 13)
       Patients without a KRAS, NRAS, or BRAF
         mutation                                                     (n = 205)
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       Patients who did not receive bevacizumab    (n = 3)
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       Patients without follow-up information        (n = 19)

FIG 1. Flowchart of patient selection. KRAS,
NRAS, and BRAF mutation status was de-
termined on tumor tissue for a total of 419
patients with CRC with isolated and initially
unresectable liver metastases enrolled in
the CAIRO5 clinical trial. Patients without a
KRAS-mutated tumor were excluded from
the current study. Next, patients not treated
with bevacizumab and chemotherapy were
excluded to ensure a homogenous patient
group. Last, patients without clinical follow-
up were excluded, resulting in 156 patients
with mCRC for analyses. CRC, colorectal
cancer; ctDNA, circulating tumor DNA; CT,
computed tomography; mCRC; metastatic
colorectal cancer.
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most favorable prognosis. Univariable Cox regression an-
alyses showed that age, sex, sidedness of the primary
tumor, and WHO performance status were not associated
with overall survival (Table 3 in Data Supplement). After
adjusting for these clinical characteristics (age, sex, sid-
edness, and performance status), the multivariable Cox
regression analysis showed that only the KRAS alteration
was an independent prognostic factor for worse overall
survival. The reported contrast between the KRAS mu-
tation variants showed that KRAS A146 was the only
significant feature behind this observation (hazard ra-
tio = 2.5; 95% CI, 1.4 to 4.6; log-rank P = .003). No

indications of an association between the baseline patient
characteristics and the KRASmutation variants were found
(Table 1). No significant differences were seen in overall
survival between the four most frequently mutated G12
residues (G12A, G12C, G12D, and G12V; see Figure 6 in
the Data Supplement). Furthermore, the location of disease
progression showed similar patterns for the different KRAS
mutation variants (Figure 7 in Data Supplement).

DISCUSSION

Oncogenic KRASmutations occur in approximately 50% of
patients with mCRC and are known to be predictive for

TABLE 1. Clinical Patient Characteristics per KRAS Mutation Variant
Characteristic G12 (N = 112) G13 (N = 15) Q61 (N = 9) K117 (N = 5) A146 (N = 12) P a

Age at inclusion, years .319

Mean 6 SD 63 6 9.4 60 6 7.6 63 6 8.6 66 6 7.4 58 6 11.3

Median 63 58 63 66 58

Sex, No. (%) .248

Female 40 (36) 6 (40) 3 (33) — 7 (58)

Male 72 (64) 9 (60) 6 (66) 5 (100) 5 (42)

Performance status, No. (%) .716

WHO 0 77 (69) 10 (66) 5 (55) 3 (60) 6 (50)

WHO 1 35 (31) 5 (33) 4 (45) 2 (40) 6 (50)

MMR, No. (%) .450

MMR-proficient 67 (60) 10 (67) 7 (78) 3 (60) 11 (92)

MMR-deficient 1 (1) — — — —

Unknown 44 (39) 5 (33) 2 (22) 2 (40) 1 (8)

Site of primary tumor, No. (%) .091

Left 77 (69) 6 (40) 4 (44) 4 (80) 6 (50)

Right 35 (31) 9 (60) 5 (56) 1 (20) 6 (50)

Abbreviations: ANOVA, analysis of variance; MMR, mismatch repair status; SD, standard deviation.
aCategorical variables were compared with the Fisher’s exact test and continuous variables were compared using a one-way ANOVA with Tukey’s multiple

comparisons testing.
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treatment response and to affect patient prognosis.10,11,19

The level of KRAS oncogene activation can vary depending
on the amino acid change, resulting in different biologic
and clinical behavior.11,20 Here, we studied the clinical
impact of KRAS mutation variants in a homogenous
group of patients with CRLM and demonstrated that
patients with CRLM with a KRAS A146–mutated tumor
have a high tumor load, which was associated with in-
ferior survival compared with patients with other KRAS
mutations.

The observations made in this study cannot directly be
translated to other cancer types, since the behavior of RAS
mutation variants is dependent on the location and cell type
of the tumor.11 For example, the large number of samples
analyzed and reported in cBioPortal21 show that KRAS
A146 mutations are rarely reported in other cancer types
except for CRC.21-23 Although the prevalence of A146
mutations among KRAS mutation carriers in CRC is ap-
proximately 8%, similar to our observation in this study, it is
only 0%-0.5% in both lung24-26 and pancreas cancer.27,28
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Biologically, KRAS mutation variants display distinct met-
abolic profiles. Oncogenic KRAS can dysregulate cell
metabolism via glycolysis and the following tricarboxylic
acid cycle. Enhanced glycolysis of cancer cells generating
lactate even when exposed to abundant oxygen (Warburg
effect)29 is shown to be upregulated via oncogenic
KRAS.30-32 This Warburg effect is marked by low levels of
ATP. However, a human CRC cell line study revealed
distinct metabolic profiles of different KRAS mutation
variants. Where for most KRAS variants the nucleotide
imbalance is shifted toward a decrease in ATP and other
nucleotides like guanosine triphosphate (GTP), cell lines
harboring the KRAS A146 mutation displayed increased
levels of these nucleotides.12 The distinct metabolic profiles
among KRAS mutation variants do not directly explain the
observed differences in clinical outcome. Future research
is needed to examine whether KRAS A146–mutated tumors
are a distinct metabolic subgroup for which other thera-
peutic targets might be beneficial.

The differences in biology and consequently clinical outcome
betweenKRASmutation variants observed in this studymight
originate from the molecular mechanism of oncogenic ac-
tivation. KRAS changes between two nucleotide-binding
states, the inactive form (guanosine diphosphate–bound)
and the active (GTP-bound) form, with the help of guanine
nucleotide exchange factors (GEF) and GTPase-activating
proteins (GAP). Somatic mutations stimulate KRAS to be in
the active GTP-bound form,33 but the impairment of GTP
hydrolysis occurs via different mechanisms.11,34 KRAS G12
and Q61mutations mainly affect GAP-driven GTP hydrolysis,
whereasmutations in G13 and K117 influence both GEF and
GAP.35,36 By contrast, mutations in KRAS A146 cause an
increase in GEF-mediated nucleotide exchange without af-
fecting GAP activity,37 suggesting that tumors with a KRAS
A146 mutation may be prone to respond to GEF inhibitors.
Inhibition of the GEF Son Of Sevenless protein 1 (SOS1)
reduces KRAS activation, especially when combined with an
MEK inhibitor.38 Likewise, RAS activation via GEFs was re-
duced by inhibition of the protein tyrosine phosphatase
SHP2,39 which was more effective in cells harboring KRAS
G12C compared with cells harboring KRAS G12D.40 Re-
cently, AMG 510 (sotorasib), an antitumor agent targeting
KRAS G12C mutant advanced solid tumors, has shown to
improve the efficacy of (targeted) treatments in vivo.41 AMG
510 is currently under investigation in a clinical trial
(NCT03600883), including patients with CRC and non-
–small-cell lung cancer.42 Another potential treatment
strategy could be dual phosphatidylinositol 3-kinase (PI3K)/
mammalian target of rapamycin (mTOR) inhibition. Over-
expression of the PI3K/Akt/mTOR signaling pathway is
common in (m)CRC, resulting in enhanced tumor growth.
Dual PI3K/mTOR inhibitors have shown to reduce cell pro-
liferation of PIK3CA mutant tumors in mice43 and phase I
clinical studies.44 However, this effect was not seen in cell
lines where KRAS and PIK3CA mutations co-occurred.45

When combining the dual PI3K/mTOR inhibitor with an
MEK inhibitor, significant tumor reduction was seen in KRAS
mutant tumors.46,47 No data are available on combined PI3K/
mTOR and MEK inhibition for patients with KRAS A146
mCRC specifically. The high tumor burden observed in our
study makes the PI3K/mTOR signaling pathway an inter-
esting potential druggable target for patients with KRAS
A146–mutated tumors. Future research is needed to find out
whether PI3K/mTOR inhibition combined with an MEK in-
hibitor has potential for KRAS A146–mutated tumor and if the
poor long-term tolerability found in other advanced solid
tumors48 is also pertinent in patients with KRAS A146 mutant
tumors. Taken together, these results show promising po-
tential for therapeutic targeting ofKRASmutation variants and
warrant further investigation regarding therapeutic strategies
to specifically target tumors with a KRAS A146 mutation.

A better insight into the KRASmutation status can help guide
and personalize the treatment approach of patients with
mCRC. Previous studies in patients with early-stage CRC and
CRLM showed worse outcomes for patients with a KRAS
G12V,49-53 G12C,50-53 or G12S49 tumor mutation compared
with other frequently occurring G12 variants, like G12A and
G12D. In our study, patients with KRAS G12C and G12V
mutations tended to have inferior survival compared with
KRASG12D and G12Amutations. Interestingly, in contrast to
the current study investigating patients with CRC in the
metastatic setting, patients with nonmetastatic CRC with a
KRAS A146–mutated tumor showed better survival com-
pared with patients with mutations in other KRAS codons.4,54

Whereas the patients with early-stage CRC carrying a KRAS
A146 mutation in the study of Janakiraman et al had more
frequent KRAS copy-number gains, we did not observe such
copy-number aberrations in the patients with KRAS A146
mutant mCRC. The location and extent of metastases might
also influence survival differences. The focus on unresectable
liver-only metastases is specific for this study. Furthermore,
the biologic characteristics of tumors might differ on the basis
of the specific KRAS A146 amino acid substitution, similar to
the differences observed between KRAS G12 variants.

In current clinical practice, no distinction is made based
between KRASmutation variants with regards to anti-EGFR
treatment. However, data on the effect of anti-EGFR
treatment in patients with CRC with a KRAS A146 tumor
mutation are conflicting. Some studies describe a more
favorable clinical outcome in patients with CRCwith a KRAS
A146-mutated tumor upon anti-EGFR treatment compared
with patients with tumors carrying another KRAS
mutation.54-57 Other studies show that tumors with a KRAS
A146 mutation, like other KRASmutations, are responsible
for anti-EGFR resistance.58-61In this study, the homogenous
population of initially unresectable liver-only metastatic
CRC patients all receiving the same treatment regimen
allowed for an unbiased comparison of the clinical features
of patients harboring different KRAS tumor mutations.
Another strength of this study is the objective assessment of
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tumor burden by TTV quantification on the basis of
semiautomatic segmentations of the tumor. However, the
assessment of TTV is not implemented in clinical practice,
as it remains time-consuming and advanced volumetric
software is not yet widely available in every radiology de-
partment. Since KRAS A146 mutations occur in roughly
4% of patients with mCRC, only a limited number of
patients were available with a KRAS A146–mutated tumor
despite the large number of patients included in the
clinical trial. The percentage of patients with a KRAS
A146–mutated tumor might be even higher than depicted
in this study because routine molecular diagnostics is

sometimes limited to the most common KRAS driver
mutations, that is, the G12 and G13 variants. Although
KRAS Q61, K117, and A146 mutations occur less fre-
quently, this study indicates it is important to implement
KRAS mutation testing for all variants (G12, G13, Q61,
K117, and A146) in routine diagnostics.8,59,62

In conclusion, patients with mCRC with a KRAS A146
mutation represent a distinct molecular subtype of patients
with poor survival who might benefit from more intensive
treatments. Therefore, KRAS A146 mutation testing should
be adopted in routine diagnostic testing.
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