AMERICAN

Applied and Environmental
SOCIETY FOR . '
MICROBIOLOGY MICI’ObIO'Ogy

] CrossMark
& click for updates
-

Relationship of Bacterial Richness to Organic Degradation Rate and
Sediment Age in Subseafloor Sediment

Emily A. Walsh,? John B. Kirkpatrick,? Robert Pockalny,? Justine Sauvage,? Arthur J. Spivack, Richard W. Murray,? Mitchell L. Sogin,®
Steven D’Hondt?

Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA? Department of Earth and Environment,
Boston University, Boston, Massachusetts, USA®; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole,
Massachusetts, USAS

ABSTRACT

Subseafloor sediment hosts a large, taxonomically rich, and metabolically diverse microbial ecosystem. However, the factors that
control microbial diversity in subseafloor sediment have rarely been explored. Here, we show that bacterial richness varies with
organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one conti-
nental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in rich-
ness with increasing depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates
with abundance-weighted community composition but does not drive the vertical decrease in richness. Vertical patterns of rich-

ness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline
together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity
exerts a primary influence on bacterial richness in marine sediment and (ii) many bacterial taxa that are poorly adapted for sub-
seafloor sedimentary conditions are degraded in the geologically young sediment, where respiration rates are high. Richness
consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic sub-
seafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context.

IMPORTANCE

Subseafloor sediment provides a wonderful opportunity to investigate the drivers of microbial diversity in communities that
may have been isolated for millions of years. Our paper shows the impact of in situ conditions on bacterial community structure
in subseafloor sediment. Specifically, it shows that bacterial richness in subseafloor sediment declines exponentially with sedi-
ment age, and in parallel with organic-fueled oxidation rate. This result suggests that subseafloor diversity ultimately depends
on electron donor diversity and/or total community respiration. This work studied how and why biological richness changes

over time in the extraordinary ecosystem of subseafloor sediment.

ubseafloor sediment contains a diverse microbial ecosystem

(1-3), with a total cell abundance comparable to that in ter-
restrial soil and in the world ocean (4). Subseafloor sedimentary
communities push the boundaries of life as we know it; per-cell
rates of respiration are often orders of magnitude lower than those
in the surface world (5, 6), biomass turnover can take hundreds to
thousands of years (7, 8), cell abundance can be as low as 10 cells
per cm’ (9), and microbes in deep subseafloor sediment may be
isolated from the surface world for millions of years (Ma) to tens
of Ma. Subseafloor sediment, therefore, provides an unprece-
dented opportunity to investigate drivers of microbial diversity on
a time scale of thousands to millions of years.

In the broadest context, distributions of microbial diversity
result from combined effects of speciation, selection, dispersal,
and ecological drift (10, 11). However, subseafloor conditions
may severely impact the relative influence of these processes. For
example, exceedingly low per-cell energy fluxes may place very
high selection pressure on subseafloor populations, severely limit
active dispersal (6) and cell abundance, and cause mean genera-
tion times to greatly exceed the already-long few-hundred-year to
few-thousand-year time scale of biomass turnover (7) in sub-
seafloor sediment (12). Generation times of hundreds to millions
of years may in turn greatly lower the rates of speciation.

To document microbial diversity and its potential drivers in

4994 aem.asm.org

Applied and Environmental Microbiology

subseafloor sediment, we extracted and sequenced PCR ampli-
cons for the V4 to V6 hypervariable region of the bacterial 16S
rRNA gene from the sediment of four distinct locations: the Ber-
ing Sea (Integrated Ocean Drilling Program [IODP] expedition
323 site U1343) (13), the eastern equatorial Pacific (Knorr expe-
dition 195-3 site EQP1), the central equatorial Pacific Ocean
(Knorr 195-3 site EQP8), and the Bay of Bengal continental mar-
gin (Indian National Gas Hydrate Program [NGHP] site NGHP-
1-14) (14) (Fig. 1).
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MATERIALS AND METHODS

Sites. The three open-ocean sites (Bering Sea site U1343 and Equatorial
Pacific sites EQP1 and EQP8) have water depths of 1,953, 2,885, and 4,336
m below sea level (mbsl), respectively (see the supplemental material).
The water depth at the Bay of Bengal continental margin site NGHP-1-14
is 895 mbsl (14). The Bering Sea and Bay of Bengal sites are characterized
by high sea surface chlorophyll concentrations and very high sedimenta-
tion rates (0.34 and 1.04 mg/m3 and 250 m/Ma, and ca. 100 m/Ma at
U1343 and NGHP-1-14, respectively). The equatorial Pacific sites are
characterized by moderate sea surface chlorophyll concentrations and
moderate mean sedimentation rates (0.16 and 0.32 mg/m?, and 75 and 4.8
m/Ma at EQP1 and EQPS, respectively). The total organic carbon (TOC)
content of near-surface sediment is highest at the high sedimentation sites
(0.6% and 1.7% at NGHP-1-14 and U1343, respectively) and lowest at the
moderate sedimentation sites (0.1 and 0.02% at EQP1 and EQP8, respec-
tively). The maximum sampled sediment depths range from 27 m below
seafloor (mbsf) at EQP8 to 404 mbsf at U1343 (see Table S1 in the sup-
plemental material). The concentration profiles of the dissolved meta-
bolic products and substrates (dissolved inorganic carbon [DIC], meth-
ane, ammonium, oxygen, nitrate, and sulfate) indicate that microbial
activity occurs throughout the sampled sequences (15).

Shipboard sampling and geochemistry. Immediately after core re-
covery, we cleaned the cut face of the remaining core section with a sterile
blade. For DNA analysis of NGHP-1-14, we cut 10-cm whole-core rounds
from the core sections. For EQP1, EQP8, and U1343, we took samples for
DNA analysis from the center of the cleaned core face using sterile 60-cm®
cutoff syringes. We froze the samples at —80°C for shore-based DNA
analysis. Concentrations of DIC, sulfate, and, for site U1343, methane
were measured during the expeditions, according to standard procedures
(2, 13, 14, 16). We made TOC measurements, as previously described
(17), on a Costech elemental analyzer. All geochemical and environmen-
tal data for site U1343 are deposited in the IODP database and accessible
online in the IODP expedition 323 proceedings (13), except for the post-
cruise TOC (see the supplemental material). All dissolved geochemical
measurements for sites EQP1, EQP8, and NGHP-1-14 are deposited at
EarthChem (www.earthchem.org). The cell count data for EQP1, EQPS,
and U1343 are available in a study by Kallmeyer et al. (4). The chlorophyll
data are from a study by Gregg (18). We used the method of Sauvage et al.
(19) to account for changes in DIC and alkalinity that resulted from the
precipitation of carbonate during the recovery and processing of core
samples from EQP1, EQP8, and U1343 (see the supplemental material).

Pyrosequencing, clustering, and diversity analyses. We extracted
DNA from the sediment samples using commercial kits (MoBio Power-
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Soil). We amplified the V4 to V6 hypervariable region of the 16S rRNA
gene using the bacterial primer pair 518{-1064r and pyrosequenced the
amplicons according to standard protocols on a 454 GS-FLX sequencer at
the Josephine Bay Paul Center, Marine Biological Laboratory, Woods
Hole, MA (20). To reduce error, we removed low-quality sequences (such
as those with low average quality scores or deviations in read length) prior
to analysis, as described in Huse et al. (21). Sequencing protocols, analy-
ses, and initial results are accessible at the VAMPS website (https://vamps
.mbl.edu/index.php) under the projects DCO_WAL_Bv6v4, KCK_EQP_
Bv6v4, and JBK_IO_Bv6v4. For further analysis, we determined the tax-
onomy of each sample at the genus level using the SILVA database (22) on
the VAMPS website. From EQP1 samples, we removed all sequences that
correspond to Vibrio, because it was actively cultured in the laboratory
used for EQP1 DNA extraction. No Vibrio DNA occurs in samples from
the other sites, which were extracted in a different dedicated laboratory.

We used QIIME (23), as made available on N3phele (24), to cluster
each sample into operational taxonomic units (OTUs) at the 3% similar-
ity-level. To remove the effects of sampling intensity (number of reads) on
downhole or intersite comparisons of richness estimates (25), we first
randomly subsampled the number of reads in each sample to the lowest
number found in any sample (n = 2,800). OTUs were picked from sub-
sampled sequences using Uclust (26) with the furthest neighbor approach.
Representative sequences for each OTU were assigned RDP taxonomy (27),
aligned with PyNAST (28), and a distance matrix was calculated using
UniFrac (29). Clustering average-neighbor OTUs with mothur’s MiSeq stan-
dard operating procedures (SOP) (30, 31) identified more OTUs than with
QIIME but exhibited similar trends of richness with sediment depth and age.
To investigate patterns of diversity with changes in depth, we also clustered
samples at multiple levels of similarity to generate comparisons between dif-
ferent similarity cutoff levels (see the supplemental material).

We used the distance matrix and OTU tables created with QIIME for
statistical analyses of diversity. We calculated the Chaol index (25) using
QIIME. We compared these results to richness metrics calculated with
CatchAll (32) (see the supplemental material). We performed Bray-Curtis
similarity analyses, nonmetric multidimensional scaling, and Spearman
rank correlation tests using the Primer 6 program (33).

Sediment age calculations. We calculated sediment age estimates for
U1343 using the sediment age model of Takahashi et al. (13). The U1343
age model is based on biostratigraphic and magnetostratigraphic data
(13). No detailed chronostratigraphic data are available for EQP1 or
EQPS; consequently, we estimated their sediment ages from their average
sedimentation rates (sediment thickness [50] divided by basement age
[41]). Because no published chronostratigraphic data are available for
NGHP-1-14, our age model for that site is based on the biostratigraphi-
cally determined sedimentation rates of other NGHP sites in the same
basin (ca. 110 m/Ma and ca. 125 m/Ma at NGHP-1-16 and NGHP-1-10,
respectively [42]). The shallowest NGHP-1-14 samples may be younger
than our age estimates, since relatively shallow vertical variation in its
dissolved chemical profiles may have resulted from the deposition of ca.
13 m of sediment by a mass transport event about 1,400 years ago (34).

Reaction rate calculations. To quantify the net rates of organic-fueled
respiration from dissolved chemical data of EQP1, EQPS8, and U1343, we
used a modified version of the Matlab-based numerical procedures of
Wang et al. (35). Similar calculations are not possible for continental
margin site NGHP-1-14, because its dissolved chemical concentration
profiles are not in diffusive steady state. We modified the approach of
Wang et al. (35) by using an Akima spline, instead of a 5-point running
mean, in order to generate a best-fit line to the chemical concentration
data. We determined standard deviations through use of a Monte Carlo
simulation (n = 30). For EQP1, EQP8, and U1343, we calculated organic-
fueled respiration from DIC concentration profiles after first correcting
DIC and alkalinity concentrations to account for carbonate precipitation
during sediment recovery, processing, and storage (19). For U1343, we
also calculated net organic-fueled respiration from the ammonium con-
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FIG 2 Nonmetric multidimensional scaling (nMDS) plot. Bray-Curtis dis-
tances between samples represent the degree of community similarity (samples
that contain similar communities are closer together in ordination space
[stress = 0.01]). Symbol color indicates redox zone, and symbol shape indi-
cates site location as shown in Fig. 1.

centration profile to independently check the organic-fueled respiration
rates calculated from DIC concentrations.

RESULTS

Abundance-weighted community composition broadly varies with
the vertical succession of chemical redox zones (36, 37), with Bray-
Curtis similarity scores exhibiting a clear gradient through (i) the
oxygenated zone immediately beneath the seafloor, (ii) a deeper an-
oxic zone with abundant dissolved sulfate, (iii) a still-deeper sulfate/
methane transition zone (SMTZ), and (iv) the deepest zone, with
little or no sulfate but abundant dissolved methane (Fig. 2). This
result expands on earlier discoveries that dominant microbial taxa in
the SMTZ or in subseafloor hydrates differ from the dominant taxa in
overlying or underlying sediment (38—40).

In contrast to abundance-weighted community composition, to-
tal bacterial diversity does not demonstrate a vertical succession of
redox zones. Bacterial taxonomic richness, as measured by both
Chaol estimates and numbers of operational taxonomic units
(OTUs) in samples normalized to equal numbers of reads, is highest
near the seafloor and drops exponentially with increasing sediment
depth at all four sites (Fig. 3). The trend is the same for parametric
analyses (CatchAll [32]) (see the supplemental material). The rate of
decrease in richness with depth varies greatly from site to site; OTU
richness approaches low relatively stable values several tens of meters
below the seafloor at site U1343 but within a couple of meters below
seafloor at site EQP8. This exponential decline in richness occurs at
every phylogenetic level: whether defined by similarity as high as
100% or as low as 85%, the number of operational taxonomic units in
normalized samples declines with increasing sediment depth (see the
supplemental material).

The rate of decrease in OTU richness is not clearly associated
with any particular geochemical zone or transition between zones.
The inflection from rapidly declining richness to relatively stable
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FIG 3 Comparison of OTU richness to redox zones. Filled circles identify
numbers of OTUs. Open squares show Chaol richness values. Dark gray bar
indicates oxygen penetration depth, light gray grid indicates the presence of
sulfate, and white background indicates sulfate is below detection levels.

richness occurs within sulfate-replete sediment at EQP1 and
EQPS, at or near the SMTZ at NGHP-1-14, and within the meth-
ane-rich sulfate-poor zone at site U1343.

The bacterial richness of our shallowest samples varied consid-
erably from site to site, with richness of 97%-similar OTUs rang-
ing from 1,951 at U1343 to 572 at EQP1 (Fig. 3). This variation is
not surprising, because there are large environmental differences
between sites (they underlie different oceanographic regimes and
sample very different kinds of sediment), and because the shallow-
est samples differ greatly in sediment age (ranging from a few
hundred years at U1343 to ~10,000 years at EQP8). At greater
depths, OTU richness at all sites decreases to values in a similar
range (150 to 300 OTUs).

The transformation of sediment depth to sediment age shows
that OTU richness decreases exponentially with age at all four sites
(Fig. 4). It decreases rapidly in the youngest sediment and then
stabilizes or decreases more slowly with greater age. Despite the
large site-to-site differences in sedimentation rate, oceanographic
context, and predominant electron acceptor regimes, OTU rich-
ness consistently takes a few hundred thousand years to decline
from near-seafloor sediment levels to much lower values in deep-
subseafloor sediment.

Vertical patterns of richness covary with DIC production rates
atopen-ocean sites U1343, EQP1, and EQP8 (Fig. 5). At EQP1 and
EQPS8, DIC production neatly represents gross organic-fueled res-
piration; the cored sequence is rich in external electron acceptors
(nitrate and sulfate) and there is no evidence of major DIC sinks in
the cored sediment (e.g., dissolved calcium or magnesium sinks
indicating carbonate precipitation). The situation is slightly more
complicated at U1343, where (i) the DIC profile is slightly modi-
fied by net DIC consumption (carbonate precipitation) in some
intervals at depths greater than 100 mbsf (15) (Fig. 4) and (ii)
external electron acceptors are scarce below the sulfate-methane
interface at ~8 mbsf (13). A comparison of the U1343 DIC pro-
duction rates to net ammonium production rates demonstrates
that these modifications are of secondary importance, because the
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FIG 4 OTU richness relative to sediment age. To normalize OTU counts
between sites, we set the most OTU-rich sample for each site (always the
shallowest sample, in the upper right corner) to 100% and calculated the rich-
ness of deeper samples calculated as percentages of that number. Symbol shape
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calculated profile of DIC production broadly matches the vertical
profile of organic-fueled degradation estimated from ammonium
production (see the supplemental material).

At all three sites (U1343, EQP1, and EQPS), the rate of organic
degradation indicated by net production of DIC and ammonium
is highest near the seafloor, where OTU richness is also highest
(Fig. 5). At U1343, organic degradation, like OT'U richness, takes
tens of meters to decline to extremely low values. At EQP1 and
EQP8, the large declines in both organic degradation and OTU
richness occur within the first few meters below the seafloor.

DIC Production Rate

DIC Production Rate
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DISCUSSION

The relationships between abundance-weighted community compo-
sition and redox zones (Fig. 2) indicate that some taxa are influenced
by the predominant terminal electron-accepting activity. In contrast,
the lack of clear correspondence between bacterial richness and redox
zonation suggests that the predominant terminal electron-accepting
pathway does not exert primary control on OTU richness of sub-
seafloor bacterial communities. Possible explanations of this lack of
relationship between OTU richness and predominant terminal elec-
tron acceptors include the following: (i) most OTUs may represent
taxa that are not involved in terminal electron acceptance and that
operate similarly in successive redox zones (for example, fermenta-
tive taxa may be active in all of the anoxic zones), (ii) taxa directly
involved in terminal electron acceptance may be capable of process-
ing multiple kinds of electron acceptors, and (iii) terminal electron
acceptance may not be limited to the predominant pathway, with
terminal electron-accepting activity predominant in one redox zone
also existing in other zones (for example, iron reducers may be pres-
ent and active where sulfate reduction, methanogenesis, or sulfide
oxidation predominate [51, 52, 53]).

The exponential decline in bacterial richness from seafloor to
greater sediment depth is consistent with recent comparisons of
bacterial OTUs in the ocean to OTUs in marine sediment (43).
Based on the relative abundance of 16S V6 tags in the water col-
umn, shallow sediment (0 to 0.1 mbsf), and subseafloor sediment,
these studies show that (i) marine sedimentary bacteria are dis-
persed via the ocean, and (ii) subseafloor sedimentary lineages are
selected from the community present in shallow sediment (43).

The close match between the exponential decline in bacterial
richness and the depth distribution of organic degradation rates at
our open-ocean sites indicates that vertical variation in richness is
closely tied to organic-fueled community activity. The pattern of
organic degradation exponentially declining from seafloor to
greater sediment depth was first observed decades ago. It is often
explained with a “multi-G model,” in which organic matter is
assumed to be composed of diverse organic compounds with dif-
ferent levels of reactivity (44). In such models, the most labile or
biologically reactive organic substrates are respired at much
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FIG 5 Relationship of OTU richness to organic respiration rate (as indicated by DIC production) at the open-ocean sites (U1343, EQP1, and EQP8). Black
symbols indicate numbers of OTUs. Black lines and gray bars indicate reaction rates and two times the standard deviation, respectively. The data are plotted

against sediment depth (mbsf) for each site.
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higher rates than the least-labile substrates, leading the net rates of
organic-fueled respiration to decrease exponentially with increas-
ing sediment depth (44, 45).

A single EQP1 sample at 7.21 mbsf constitutes the only excep-
tion to the close correspondence between exponentially declining
richness and exponentially declining organic degradation at these
sites. This relatively OTU-rich sample contains an unusually high
concentration of organic matter relative to adjacent sediment; its
exceptionality is consistent with previous research that showed
that discrete horizons of organic-rich sediment may sustain lo-
cally high respiration for millions of years (46).

Near continental shelves (such as the Indian Margin) and in
upwelling regions (such as the Bering Sea and the equatorial Pa-
cific), organic matter is the primary electron donor for subseafloor
sedimentary communities (2). Consequently, the close corre-
spondence between vertical patterns of richness and vertical pat-
terns of organic degradation suggests that selection for organismal
properties related to either total catabolic activity or electron do-
nor diversity exerts the primary influence on bacterial OTU rich-
ness in anoxic subseafloor sediment. This correspondence also
indicates that many bacterial taxa that are poorly adapted for sub-
seafloor sedimentary conditions are degraded in the geologically
young sediment where respiration rates are high.

This result sets a clear boundary for understanding bacterial
OTU richness in anoxic subseafloor sediment. It also provides a
potential basis for ultimately integrating OTU richness with other
key properties that appear to be broadly related to total catabolic
activity in subseafloor sedimentary communities, such as cell (4)
or viral particle abundance (47) and activity (48). However, the
exact traits that preferentially aid survival as catabolic activity
and/or electron donor diversity decline remain to be determined;
candidate traits include specialization to metabolize recalcitrant
organic substrates, specific energy-conserving properties, such as
membrane permeability (6), use of sodium ions for energy storage
(6), spore formation (6), prophage modulation of metabolic ac-
tivity (49), and/or a wide range of other properties (12).
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