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Abstract: This paper proposes a Gaussian mixture model-based (GMM) bearing fault band selection
(GMM-WBBS) method for signal processing. The proposed method benefits reliable feature extraction
using fault frequency oriented Gaussian mixture model (GMM) window series. Selecting exclusively
bearing fault frequency harmonics, it eliminates the interference of bearing normal vibrations in
the lower frequencies, bearing natural frequencies, and the higher frequency contents that prove to
be useful only for anomaly detection but do not provide any insight into the bearing fault location.
The features are extracted from time- and frequency- domain signals that exclusively contain the
bearing fault frequency harmonics. Classification is done using the Weighted KNN algorithm. The
experiments performed with the data containing the vibrations recorded from artificially damaged
bearings show the positive effect of utilizing the proposed GMM-WBBS signal processing to filter out
the discriminative data of uncertain origin. All comparison methods retrofitted with the proposed
method demonstrated classification performance improvements when provided with vibration data
with suppressed bearing natural frequencies and higher frequency contents.

Keywords: bearing; electric motor; fault diagnosis; feature extraction; feature selection; gaussian
window; machine learning; signal processing

1. Introduction

A permanent magnet synchronous motor (PMSM) is a type of synchronous machine
with symmetrical three-phase stator windings in which the conventional rotor field wind-
ings are replaced with special-shaped rare-earth permanent magnets [1]. PMSMs are widely
utilized as generators in renewable energy generation fields such as wind, wave, and tidal
power production, as well as in electric motors for cars and heavy-duty transport, such
as ship propulsion engines, and for electrification of aeronautical actuation systems [2–4].
As a part of various electro-mechanical systems, electric motors are subject to a number
of deleterious factors such as heavy-duty cycles, harsh working environments, flawed
installations, and factors related to the manufacturing process itself, which may lead to
a failure of the electric machine along with the whole system or plant. In [5], the failure
source of electrical machines is classified as a combination of different stresses acting on the
stator or rotor. In the stationary part, those failure sources are stator thermal stress, stator
electrical stress, or stator mechanical and environmental stresses, whereas in the rotary
part, those sources are rotor thermal stress, rotor electromagnetic stress, or rotor residual,
dynamic, mechanical, and environmental stresses.

While there are several sources that can cause the failure of electrical machines,
the failures themselves can be classified into two main categories of internal or external
depending on the location of the fault source. The causes of internal source failures are
manufacturing errors and material deterioration, whereas external faults are caused by
interaction with the operational environment, power supply, and load. The internal and
external source failures can be roughly split into subcategories such as mechanical, electrical,
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or environmental, and then into more specific faults types such as rotor strikes, dielectric
failure, eccentricity, unbalanced voltage, and poor mounting [6]. The diagram summarizing
the components where industrial electric motor faults occur and the occurrence frequency
fractions according to reliability studies is presented in Figure 1 [7].

Figure 1. Electric motor fault occurrence.

Since PMSMs operate in various complex systems, their failure can lead to degradation
of manufacturing quality and extensive damage of the plant, causing significant financial
loss and danger to the life and health of the operating personnel. A 45% occurrence of
bearing faults in the electric motor compels us to admit the importance of electric motor
bearing fault diagnosis study; therefore, the focus of this research work is on electric motor
bearing fault diagnosis.

During the history of the development of bearing fault diagnosis techniques, to avoid
dangerous accidents related to electric motor faulty operation, breakdown maintenance
techniques were replaced with time-based preventive maintenance approaches, which were
performed according to working time periods regardless of the true status of the machine.
However, nowadays, the application of time-based preventive techniques for modern
complex systems is expensive since, to perform the maintenance, the electric motor or even
the whole system it is operated in should be stopped; and the expensive system which
came up against the maintenance deadline may still have had a significant remaining useful
lifetime, but without regard to that, the maintenance would be performed. Therefore, to
reduce the cost by lessening the amount of unnecessary scheduled preventive maintenance
operations, non-invasive condition-based maintenance approaches are currently considered
more efficient; thus, condition monitoring (CM) and precise fault detection and diagnosis
systems have become essential for the industry [8].

Bearing fault diagnosis using the condition monitoring approach can be successfully
solved by either model-based or data-driven techniques. Model-based techniques rely
on an accurate model of a system, the development of which is based on a fundamental
understanding of the physics behind the process and is expressed in terms of mathematical
functional relationships between the inputs and the outputs of the system [9–11]. Unlike
model-based techniques, the data-driven approaches are based on historical data of the
operating process and depend only on the measured process variables. Compared to the
model-based methods, data-driven approaches require less design and engineering effort,
and with the implementation of modern machine learning techniques, they can easily
extract useful information about the system’s current state and greatly contribute to the
process of decision making by utilizing data from different sensors attached to the system
working in different conditions [12].

The bearing arrangement inside the electric motor makes it possible to use different
types of source data for fault diagnosis. For instance, Motor Current Signature Analysis
(MCSA), traditionally used for detecting and diagnosing electrical types of faults such
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as stator winding faults, broken rotor bar faults, rotor asymmetry, and abnormal air-gap
eccentricity, is now applied for the diagnosis of bearing faults in many works [13–17]. A
major advantage of MSCA is that it does not require mounting external sensors for data
collection. Another type of data, Acoustic Emission (AE), has been receiving attention due
to its ability to detect low-energy signals from low rotation speed bearings with early-stage
failure; however, usage of AE data requires working with tremendous amounts of data,
which requires a lot of time and computational resources for analysis [18]. Audible sound
data have an advantage in collection simplicity due to noncontact sensor installation and
are used in research works by Nakamura et al. [19] and Lu et al. [20]. The same noncontact
sensor installation advantage along with unique superiorities such as high precision and
high sensitivity are the attributes of usage of thermal data from infrared thermography,
which is another promising approach for bearing fault diagnosis [21]. Vibration data are
traditionally used for bearing fault diagnosis and are currently the industry standard in
the area. It is the prevalent method for condition monitoring due to its advantages such
as the ability to transfer intrinsic information of mechanical systems and to allow for
immediate reaction to changes, which allows it to be used for permanent and intermittent
monitoring [22]. Due to this status, vibration signals are considered for bearing fault
diagnosis in this work.

In recent times, data-based bearing fault diagnosis with applications of Machine
Learning (ML) has been rejuvenated with a multitude of research. The analysis of those
works shows that generally, the bearing condition monitoring approaches consist of two
main steps: (1) fault feature extraction and selection and (2) fault classification [23]. Feature
extraction and selection is a crucial step since it directly affects the fault classification per-
formance, and thus receives a lot of attention from researchers and industrial professionals,
leading to the publication of a significant number of feature extraction methods using vari-
ous kinds of signal processing techniques. Some of the most commonly used approaches
are time-domain statistical analysis methods. Tandon et al. investigated bearing fault
detectability using five statistical parameter measurements and performed the analysis of
how each feature parameter affected the fault detection performance [24]. The usage of
normalized skewness, kurtosis, and third-order statistical moment values from rectified
raw data for early bearing fault detection was proposed and investigated by Martin and
Honarvar [25,26]. Spectral methods proposed for compensating the shortcomings of Fast
Fourier Transform (FFT) such as power spectral density (PSD), second-order displaced
power spectral density (SDPSD), signal bispectrum, and Haar wavelets are discussed in [27].
This study showed the ability of SDPSD to reduce noise levels and retain pure harmonic
bearing fault signals; however, it could not distinguish narrowband signal resonances from
the harmonic signals. The signal bispectrum is more sensitive to phase coupling leaks in the
spectrum, which are invisible in PSD. Wavelet analysis based on Haar transform proved to
be useful for short transient detection after the periodic signals and noise are eliminated by
appropriate filtering. Rubini et al. compared Envelope and Wavelet analysis and also found
Wavelet to be more sensitive to the transient phenomena and to the bearing pitting faults
after evolution when the contact surface is flattened [28]. The application of the Wavelet
Packet Transform (WPT) filter helped to improve the kurtogram ability to denoise and take
out the fault features from the signal in comparison with the kurtogram with Short Time
Fourier Transform filter. Compared to Morlet wavelet-based kurtogram, WPT achieves
simple and fast computation [29]. Spectral kurtosis in combination with the Autoregressive
model and minimum entropy deconvolution was proposed by Sawalhi et al. [30].

The features of signals extracted using the methods described above are used for the
classification of system state. The classification is generally performed by ML techniques.
The state-of-the-art supervised ML approaches have gained strong popularity in fault
diagnosis at present. In recent times, Deep Learning (DL) techniques have gained in
popularity too. As state-of-the-art methods, supervised DL techniques are used for bearing
fault diagnosis are Artificial Neural Networks, Convolutional Neural Networks, and
Recurrent Neural Networks [31–35]. However, the features extracted by the DL-based
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methods suffer from a lack of interpretability and the quality of the actual extracted and
selected features can be better evaluated by traditional instance-based ML techniques.

In the research by Rauber et al. [36], the authors refer to an important issue on the
formation of the final feature model. They propose a concept of not limiting the feature
model to any single one such as, for example, using only wavelet coefficients, but instead
suggest using a fusion of features from different feature extraction methods. Their modus
operandi is utilizing all the discriminative information no matter where it comes from, as
long as it improves the classification performance. The unnecessary or low-quality features
can later be eliminated by the feature selection process.

However, there is another issue that arises before the feature extraction and selection
step. The problem of which portion of the time-based signal that should be analyzed for
reliable fault diagnosis is pointed out in research work by Kang et al. [37]. In that work,
signal processing using Gaussian mixture model (GMM)-based windows is performed to
select the fault frequency components from the envelope spectrum and later substitute
them into the full envelope spectrum to get the residual signals, which are then used for
the Health index calculation and fault classification. Later, Nguyen et al. used the same
GMM-windows with health index calculation technique for bearing fault diagnosis using a
Deep Neural Network [38].

In this paper, the broadened GMM-window-based signal processing approach is
proposed to avoid hidden misclassifications that arise from the presence of discriminant
information in the data, which is not necessarily related to the actual bearing fault state.
Here, for every type of bearing fault, GMM-windows are set for the first ten fault frequency
harmonics to reduce the negative effect of possible interference and masking effect inside
the selected frequency bands and to suppress the high frequency components. This method
allows for extracting reliable features from the selected frequency bands and performs
classification with higher accuracy and lighter utilization of computational resources.

The rest of the paper is organized as follows. The nature of bearing faults and
bearing fault frequencies are explained in the remaining Introduction section. Then, the
experimental testbed, data collection process, and dataset used in this paper are described
in Section 2. The proposed method is presented in Section 3 along with the details of signal
processing, feature extraction, feature selection, and classification steps. After that, the
results are compared with other methods in Section 4 and the important conclusions are
made in the final section of the manuscript.

1.1. Bearing Faults

Electric motors have two sets of bearings at either end of the rotor to support the
rotating shaft. These bearings are needed to reduce friction and to enable the rotor to
rotate smoothly. Bearings consist of four basic working parts: the outer race, inner race,
rolling elements, and separator (also known as the cage in literature). The main factors
causing damage to bearings are excessive load, improper lubrication, material fatigue,
lubrication contamination, corrosion, and incorrect installation. Bearing damage is visually
represented by inner or outer race indentations, spalls, discoloration, or abnormal ball wear
path as presented in Figure 2. Generally, bearing faults can be classified as inner race, outer
race, or rolling element faults; however, combinations of faults involving several elements
of bearing simultaneously are also possible. In this work, only outer race and inner race
damage are considered for investigating the capabilities of the proposed methodology.

During the operation of a bearing with a race fault, rolling elements pass the dam-
aged areas on the race surface. This process generates periodical impulses with a certain
rate known as the fundamental defect frequency. These four fault frequencies can be
distinguished as the ball spin frequency (BSF), fundamental train frequency (FTF), bearing
ball-pass frequency of the outer race (BFPO), and bearing ball-pass frequency of the inner
race (BPDI). These characteristic frequencies depend on the geometric parameters of the
bearing such as the diameter of the rolling element, the cage diameter, and the pitch di-
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ameter, as well as on the number of rolling elements and the angular velocity of the shaft.
Equations (1)–(4) for bearing characteristic frequency calculations are given below [16,39]:

BSF =
Dp

2db

(
1−

(
db
Dp

cos ϕ

)2
)

, (1)

FTF =
Ssh
2
×
(

1−
Dp

db
cos φ

)
, (2)

BPFI =
NbSsh

2

(
1 +

db
Dp

cos φ

)
, (3)

BPFO =
NbSsh

2

(
1− db

Dp
cos φ

)
, (4)

where Ssh is a shaft speed expressed in revolutions per minute (RPM), db is the diameter
of the rolling element, and Dp states for the pitch diameter, Nb is the number of rolling
elements, and theta is the angle of the load from the radial plane.

Figure 2. Examples of bearing damage visual representation: (a) Indentation at the raceway of the
outer ring; (b) Small pitting at the raceway of the inner ring.

There are four stages of bearing fault evolution. Every stage is defined by a frequency
range and contents. In Figure 3, the bearing vibration frequency spectrum is divided into
four ranges. A is the range where the normal components related to speed are present, B is
a fundamental bearing fault frequency range, C is a range of bearing natural frequencies,
and D is a range for bearing high frequencies.

In Stage 1, invisible subsurface microcracks are present at ultrasonic frequencies in
range D from 20 kHz to 350 kHz. The bearing should not be replaced at this moment. As
the wear progresses, the bearing defects start to ring the natural frequency of the bearing
components. As a result, in this stage spectral contents start to appear at 500–2000 Hz
frequency range C along with higher frequency information in range D. In stage 3, bearing
defects become visible. At this stage, bearing fundamental defect frequencies start to appear
in range B accompanied by well-formed sidebands and then it is possible to diagnose the
damaged bearing component. At stage 4, mainly rotor-related frequencies are present in
range A. The bearing damages come to a point where they cause increased rotor vibration.
Due to this bearing defect, frequencies decrease in amplitude and more random broadband
vibration develops. High frequencies in the range D may grow excessively just prior to
bearing collapse. At this stage, the bearing should be immediately replaced [40].



Sensors 2021, 21, 6579 6 of 24

Figure 3. Stages of bearing life.

2. Experimental Setup and Data Collection

In this work, the dataset was obtained from the KAt-DataCenter of the Chair of Design
and Drive Technology, Paderborn University, Germany [41]. Vibration data in this dataset
are collected from the modular test rig shown in Figure 4. The test rig consists of an
electric motor, measuring shaft, bearing module, a flywheel, and a load motor. Inside the
bearing module, ball bearings with different kinds of damage are mounted for experimental
data generation. The electric motor is PMSM type with nominal power of 425 W (Type
SD4CDu8S-009, Hanning Elektro-Werke GmbH & Co. KG), which is operated by a standard
industrial inverter with a switching frequency of 16 kHz (KEB Combivert 07F5E 1D-2B0A).

Figure 4. Modular test rig used for data collection.
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For the data acquisition experiment in [41], the authors used healthy and damaged
bearings. The tests were performed with 6 healthy bearings with different run-in periods
from 1 to over 50 hours and 12 bearings with artificially seeded damage caused by electric
discharge machine (EDM), drilling, and manual electric engraving for inner and outer
rings. The trenches on the bearing rings inflicted with EDM have a length in the rolling
direction of 0.25 mm and 1–2 mm depth. The holes drilled have diameters of 0.9 mm,
2 mm, and 3 mm. The damages inflicted with the manual electric engraver tool are 1–4 mm
in length. Visual representations of faults induced by EDM, drilling, and engraving are
demonstrated in Figure 5.

Figure 5. Artificially induced bearing faults: (a): EDM trench, (b): drilled hole, (c): electrically engraved pitting.

Faults of different types with various severity levels were inflicted at the same bearing
parts aiming to guarantee the higher robustness of the fault diagnosis methods devel-
oped using this dataset. To describe the physiognomy of bearing faults with different
parameters, the authors of the dataset introduced a method for general categorization and
detailed fault specification partially based on the methodology presented in ISO15243. The
method consists of four blocks of information concerning general bearing information,
manufacturer-specific information, application-specific information, and information about
the damage.

Additionally, the data were collected for 14 bearings with faults obtained by per-
forming accelerated lifetime tests (fatigue damage, damage by plastic deformation, pitting
damage, etc.). Totally, 32 different bearings were used to create the dataset.

Besides inflicting faults of the same type with different levels of severity, another way
to ensure the robustness of condition monitoring is to analyze its dependence on test rig
operation parameters. For that purpose, the test rig was operated under four different
conditions with three varying parameters: rotational speed, load torque, and radial force.
Specific parameter values for each of the four operating conditions are presented in Table 1.

Table 1. Test rig operating conditions.

No. Rotational Speed (rpm) Load Torque (Nm) Radial Force (N)

0 1500 0.7 1000

1 900 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

In this work, out of 32 time-series signals available, 18 were used to construct the
final dataset. These bearing fault vibration data were collected from artificially damaged
bearings. Artificial damages here are represented by single point damages that do not have
repetitions and are not combined with any other type of fault. For experimental purposes,
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the bearing data were arranged in three groups in the following way: six healthy bearings,
seven damaged bearings with outer ring faults, and five damaged bearings with inner ring
faults labeled as 1, 2, and 3, respectively, as shown in Table 2.

Table 2. Bearing data arrangement.

Bearing Type Bearing Code Class Label

Healthy

K001

1

K002
K003
K004
K005
K006

Outer Ring Damage

KA01

2

KA03
KA05
KA06
KA07
KA08
KA09

Inner Ring Damage

KI01

3
KI03
KI05
KI07
KI08

For vibration data acquisition, a piezoelectric accelerometer (Model No. 336C04, PCB
Piezotronics, Inc., New York, NY, USA) and a charge amplifier with a 30 kHz low-pass
filter were used. The acceleration was measured at the adapter at the top end of the testbed
bearing module, then the signal was digitized and saved with a 64 kHz sampling rate.
Each 4 second-length signal provided in the dataset was cut into 1-second pieces, and thus,
the complete dataset used for this research is an array with dimensions 5760 × 64,000.

Time-domain plots of raw vibration signals for a healthy state, inner ring, and outer
ring faults are presented in Figure 6. The visual inspection of the plots for preliminary
dataset understanding shows that there are noticeable differences between the healthy,
inner ring, and outer ring fault signals in time domain representation.

Figure 6. Time-domain raw vibration signal plots of: (a) Healthy bearing; (b) Bearing with inner ring fault; (c) Bearing with
outer ring fault.

FFT is a common technique for converting the time domain contents of bearing vibra-
tion signal into the frequency domain for spectrum assessment. Figure 7 shows frequency
spectra of bearing vibration signals under different health conditions obtained from FFT.
For each bearing state, 10 random signals were chosen, and their spectra were plotted
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for representative comparative analysis of each bearing fault condition. The positions
of fault frequency components in Table 3 that are obtained from Equations (3) and (4)
are highlighted with red lines on all three bearing fault conditions. However, due to the
high-frequency modulation by bearing natural resonance frequencies, BPFI and BPFO are
not observable in the frequency spectrum.

Table 3. Calculated bearing fault characteristic frequencies.

Bearing 6203 State 0 State 1 State 2 State 3

BFPO 76.36 45.81 76.36 76.36

BPFI 123.64 74.19 123.64 123.64

Figure 7. Raw vibration signal spectra of: (a) Healthy bearing; (b) Bearing with inner ring fault; (c) Bearing with outer ring fault.

3. Proposed Methodology

The overview of the proposed methodology is depicted in Figure 8. The whole
process is essentially composed of five steps, each of which is described in its separate
subsection. First, the Envelope spectra are obtained from raw vibration data by Hilbert
Transform and Envelope Analysis. The placement of Gaussian windows along the squared
envelope spectra is accomplished based on the computations involving bearing geometric
parameters, mechanical parameters of the system, and the rotation speed of the shaft.
After the multiplication with GMM-based windows, the obtained signal contains only the
bearing fault-related frequency bands. Inverse FFT is performed with the signal to extract
17 features from the time domain. Another three features are extracted from the frequency
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domain. Then, the feature selection is performed. Selected features are provided to the
Weighted KNN algorithm for classification.

Figure 8. The pipeline of the proposed methodology.

3.1. Envelope Analysis

As shown in Figure 7, the raw vibration signal spectrum does not provide sufficient
diagnostic information, because the bearing damage frequencies are amplitude-modulated
to the high-frequency region, which results in the bearing fault frequencies observed in the
spectrum using the conventional FFT method being visually indistinct. This predicament
is resolved utilizing demodulation using envelope analysis which is a prominent signal
processing method for bearing diagnostics [42,43]. The flowchart of the Envelope analysis
is shown in Figure 9 [18].

Figure 9. Envelope analysis flowchart.

Hilbert transform is applied to the bearing vibration signal to calculate the 90-degree
phase-shifted signal as follows in the continuous and discrete form:

_
x (t) =

1
π

∫ ∞

−∞

x(τ)
t− τ

dτ;
_
x (i) =

1
π

∞

∑
k=−∞

1− (−1)k

k
x(n− k), (5)

where t is the time, x(τ) is an input signal sample at τ,
_
x (t) is a sample of the transformed

signal at time t, for discrete from x(n) is the bearing vibration signal.
Then, the analytical signal is derived as a complex number:

z(t) = x(t) + i
_
x (t) , (6)

where z(t) is analytical signal, input signal x(t) and Hilbert-transformed signal i
_
x (t) are

real and imaginary components, respectively.
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The envelope signal e(t) is then computed as |z(t)|. Finally, the envelope spectrum,
f (ω), was calculated as the square root of the fast Fourier transform of e(t) as follows:

f (ω) =
∫ ∞

−∞
x(t)e−jωtdt; f (k) =

N−1

∑
n=0

x(n)e−jωn. (7)

It is important to notice that for further analysis, it is often advisable to use the spectra
of the squared envelope signal rather than the envelope signal itself. The reason behind it
arises from the comparison of spectra of squared signal with the spectra of rectified signal:
mathematically, the envelope of a signal is the square root of the squared envelope and the
rectified signal is as well the square root of the squared signal. However, application of
the square root operator results in extraneous components emerging that are not inherent
in the original squared signal. These high harmonic components extend to infinity and
appear because of the presence of sharp cusps in the rectified signal. Forasmuch as the
whole operation is performed with digital calculations, it is impossible to eliminate the
high harmonics using low pass filtration. Consequently, they generate the alias to the
measurement range, which causes masking.

The squared envelope spectra of a healthy bearing vibration signal, vibration sig-
nal of bearing with outer ring faults, and signal with inner ring faults are presented in
Figure 10. From this plot, it is evident that in the calculated bearing vibration signal fault
characteristic frequencies from Table 3, the BPFO and BPFI components are clearly present;
therefore, the bearing vibration signal squared envelope spectrum is further used for the
fault feature extraction.

3.2. GMM Window Generation

As discussed in Section 1.1, the squared envelope of the vibration signals contains
an abundant amount of information that may be irrelevant to the bearing fault diagnosis
task. Until the bearing fault develops to stage 3, there are no fundamental fault frequency
components present in the range B, and the components present in the ranges C and
D contain information useful for anomaly detection; however, there are no distinctive
components that could signify the location of bearing defect. Additionally, bearing normal
vibration frequencies are also present in the lower frequency range B and can interfere with
bearing fundamental defect frequencies which can complicate bearing fault diagnosis.

Figure 10. Squared envelope vibration signal spectra of: (a) Healthy bearing; (b) Bearing with inner
ring fault; (c) Bearing with outer ring fault.
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For this case, Gaussian windows are used to select the defect frequency components
that are useful for fault diagnosis in each specific application. The parameters of the
Gaussian window are determined as follows:

ωgmm(k) =


h
∑

i=1
exp

− 1
2

(
β
(k−Pi)

Nf req
2

)2


0, otherwise

, Pi − frange ≤ k ≤ Pi + frange, (8)

where h is the number of harmonics requiring observation for fault diagnosis task, Pi
indicates the ith harmonic of the bearing defect frequency, Nfreq is the number of frequency
bins surrounding each harmonic, and k is an index term of each frequency bin, β is a
coefficient inversely proportional to the standard deviation of Gaussian random variables
defined by Equation (10).

The Gaussian window generation procedure in this work consists of the following
steps: first, the bearing fault characteristic frequencies for the outer and inner ring faults
are calculated for each of the four operating conditions to be considered as the mean for the
GMM window. The bearing fault components in the real data are found in the vibration
squared envelope spectrum, relying on the results of computations with Equations (3)
and (4) and placed in Tables 4–7. Based on that information, the first point considered for
successful Gaussian window generation should be mentioned. In Tables 4–7, the calculated
and observed fault frequencies do not always match exactly and have some random relative
error. Thus, aiming to capture the bearing defect harmonics with Gaussian window using
Equations (3) and (4), this error is taken into consideration in the window parameter
selection process.

Table 4. Calculated bearing fault characteristic frequency harmonics for State 0.

Harmonics 1 2 3 4 5 6 7 8 9 10

BPFO (calculated) 76.36 152.72 229.08 305.44 381.80 458.16 534.52 610.88 687.24 763.60

BPFO (observed) 78 154 231 307 384 460 537 613 690 766

BPFI (calculated) 123.64 247.28 370.92 494.56 618.2 741.84 865.48 989.12 1112.76 1236.4

BPFI (observed) 124 248 371 494 618 741 864 988 1111 1235

Table 5. Calculated bearing fault characteristic frequency harmonics for State 1.

Harmonics 1 2 3 4 5 6 7 8 9 10

BPFO (calculated) 45.81 91.62 137.43 183.24 229.05 274.86 320.67 366.48 412.29 458.1

BPFO (observed) 47 93 139 185 231 277 322 369 414 460

BPFI (calculated) 74.19 148.38 222.57 296.76 370.95 445.14 519.33 593.52 667.71 741.9

BPFI (observed) 75 149 223 297 370 444 519 592 666 740

Table 6. Calculated bearing fault characteristic frequency harmonics for State 2.

Harmonics 1 2 3 4 5 6 7 8 9 10

BPFO (calculated) 76.36 152.72 229.08 305.44 381.80 458.16 534.52 610.88 687.24 763.60

BPFO (observed) 78 154 231 307 384 460 537 613 690 766

BPFI (calculated) 123.64 247.28 370.92 494.56 618.2 741.84 865.48 989.12 1112.76 1236.4

BPFI (observed) 124 248 371 494 618 741 864 988 1111 1235
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Table 7. Calculated bearing fault characteristic frequency harmonics for State 3.

Harmonics 1 2 3 4 5 6 7 8 9 10

BPFO (calculated) 76.36 152.72 229.08 305.44 381.80 458.16 534.52 610.88 687.24 763.60

BPFO (observed) 78 154 231 307 384 460 537 613 690 766

BPFI (calculated) 123.64 247.28 370.92 494.56 618.2 741.84 865.48 989.12 1112.76 1236.4

BPFI (observed) 124 248 371 494 618 741 864 988 1111 1235

The second point is that the inner and outer ring fault frequency harmonics have
different spectral shapes. The radial load influences the force of the impact caused by
rolling over a defect; thus, since the outer ring is a stationary component, its defects are
subject to the same force at each roll. However, the inner ring rotates at the speed of the
shaft, and the defects on the inner ring are subject to varying force; therefore, each harmonic
of bearing inner ring fault frequency is amplitude modulated by the rotating speed of the
inner ring. This results in the sidebands around BPFI harmonics which are caused by the
transitions of the inner ring defect into and out of the load area [44]. Figure 11 demonstrates
this difference between the inner ring and outer ring fault envelope power spectra.

From this figure, it is evident that the envelope power spectrum around the bear-
ing inner ring fault harmonics has a relatively less sharp bell shape due to the pres-
ence of the sidebands at both sides of the harmonic at RPM [Hz] distance, whereas the
shape of the spectrum around the bearing outer ring fault harmonics is relatively sharp.
Therefore, the frequency range for outer ring fault evaluation is chosen to be narrow
frange = 1/4 BPFO, and the frequency range for the inner ring fault evaluation is chosen to
be wider frange = 1/2 BPFI.

Figure 11. Defect frequency harmonics for: (a) Outer ring faults; (b) Inner ring faults.
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The analysis of frequency spectra of vibration signals with different damage gen-
eration methods shows that bearing faults generated by EDM have higher amplitude
than drilling faults or faults generated by electric engraver. When comparing the spec-
tra of healthy and faulty signals, it is evident that the spectra of the Inner Ring and the
Outer Ring faults generated by drilling and electric engraver contain the characteristic
frequency harmonics that can be masked by the harmonics of bearing normal vibration
signal; however, even though the drilling and electric engraver generated fault harmonics
have lower amplitudes, the profile of the sidebands remains inherent and symptomatic for
each bearing fault location.

Therefore, to prevent possible misclassification of these concurrent harmonics and
to achieve better isolation of informative frequency bands containing inherent sideband
profiles, the lower and higher-order harmonics containing useful information are segre-
gated using Gaussian windows. Therefore, 10 Gaussian windows are formed to select
and explore the first 10 harmonics of the Inner Ring fault signal. The same segregation
procedure is performed for the Outer Ring fault vibration signal. As a result of the analysis
of several isolated frequency bands, it is possible to distinguish faulty conditions with
low signal amplitude even though some of their harmonics can be masked by the healthy
bearing vibration frequencies.

Eventually, the parameters of GMM-based windows are defined as follows:

Nr f req = 2 · frange/ fresolution, (9)

where fresolution stands for frequency resolution, which in this work is 1 Hz. The coefficient
is inversely proportional to the standard deviation of Gaussian random variables and is
estimated as follows:

β =
Nr f req

Nw f req
·
√
−2 ln ε, (10)

where Nwfreq is the number of frequency bins that are considered as the defect components
around the bearing fault characteristic frequency harmonics, and the value ε is a constant
related to the convergence of Gaussian window which satisfies the condition 0 < ε < 1.
Adjustment of the ε value allows to obtain the necessary window width and flatness
according to the needs of the experiment. With the ε values close to 0, the window shape
will approach a rectangular window. With the ε values close to 1, the window shape will
approach an all-pass filter. In this study, the best-desired shape of the windows for fault
harmonics selection was achieved with ε = 0.15.

According to the methodology pipeline presented in Figure 8, the results of multi-
plication with OR and IR windows are merged to yield one signal, containing only the
frequency bands that are useful for bearing fault diagnosis. The result of the merging
process is presented in Figure 12 for Inner Ring and Outer Ring fault signals and must
be considered as the result of the multiplication of signal envelope power spectrum and
the set of OR and IR Gaussian windows, which are depicted by a broken line. After this
multiplication is performed, the signal is obtained with isolated fault components, which
is clearly seen in the signal envelope power spectrum. It is shown in Figure 12, where the
blue peaks are the two harmonics of bearing Inner Ring fault signal with their sidebands.
The orange trace is bearing the Outer Ring fault signal with three harmonics.

There is a profuse number of features for dimensionality reduction of time-series
data used in various research works in the bearing fault diagnosis field. To make the
time-domain feature extraction possible from the signal obtained after the previous steps,
the inverse Fourier transform is used to transform the signal from the frequency domain to
the time domain. Thus, after the inverse Fourier transform is completed, the time-domain
vibration signal envelope containing preselected bearing fault characteristic frequency
bands is provided to the feature extraction step.



Sensors 2021, 21, 6579 15 of 24

Figure 12. Merged OR and IR signal envelope power spectra after multiplication with OR and IR
window sets.

3.3. Feature Extraction

The bearing fault diagnosis task usually utilizes real-life physical data such as vibra-
tion, acoustic emission, or current data. For successful fault diagnosis, a large dataset
must be collected describing the state of the system under analysis with different types of
faults and operating conditions. There are 96 minutes of signal data in the dataset used
in this work and each one-second data sample consists of 64,000 variables (according to
the sampling frequency). If raw signals were used for classification, an inordinately large
amount of computational resources would be required; however, there would not be any
guarantee of good classification results.

The predicament of the high dimensionality of raw data is resolved utilizing feature
extraction. Feature extraction converts data into a set of features called a feature vector,
which is a compact informative representation of the data. In this work, 19 statistical
features are extracted in total. Specifically, 16 of them are extracted from time-domain
sequences and the remaining three are computed from the frequency domain. Those
features are widely used in research works on bearing fault diagnosis. The names and
equations for them are shown in Table 8 and are listed as peak value, root-mean square,
kurtosis, crest factor, clearance factor, impulse factor, shape factor SMR, entropy, skewness,
square mean root, 5th normalized moment, 6th normalized moment, mean, shape factor
RMS, peak-to-peak value, kurtosis factor, the energy of the signal, frequency center, RMS
frequency, and root variance frequency.

Table 8. Formulas of statistical features extracted from the vibration signal.

Statistical Feature Formula Statistical Feature Formula

Peak value Xp = max
i
|xi| 5th normalized moment HOMn5 =

1
n

N
∑

i=1
(xi−µ)5

(√
1

N−1

N
∑

i=1
(xi−µ)2

)5

Root-mean square XRMS =

√
1
N

N
∑

i=1
x2

i 6th normalized moment HOMn6 =

1
n

N
∑

i=1
(xi−µ)6

(√
1

N−1

N
∑

i=1
(xi−µ)2

)6

Kurtosis Xkurtosis =
1
N

 N
∑

i=1
(xi−µ)4

σ4

 Skewness Xkurtosis =
1
N

 N
∑

i=1
(xi−µ)3

σ3


Crest factor C f =

Xp
XRMS

Shape factor RMS SFRMS = XRMS
µ

Clearance factor
L =

Xp(
(1/N)

N
∑

i=1

√
|xi |
)2

Peak-to-peak value xptp = max|x| −min|x|
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Table 8. Cont.

Statistical Feature Formula Statistical Feature Formula

Impulse factor L = max{|xi |}(
(1/N)

N
∑

i=1
|xi |
)

Energy of signal e =
N
∑

i=1
x2

i

Shape factor SMR SFSMR = XSMR
µ Frequency center FC =

∞∫
0

f s( f )d f

∞∫
0

s( f )d f

Entropy H(x) = −
N
∑

i=1
P(xi) · log2 P(xi) RMS frequency RMSF =

√√√√√
∞∫
0

f 2
i s( fi)d f

∞∫
0

s( fi)d f

Mean µ = 1
N

N
∑

i−1
xi Root variance frequency RVF =

√√√√√
∞∫
0
( fi−FC)2s( fi)d f

∞∫
0

s( fi)d f

Square mean root XSMR =

 N
∑

i=1

√
xi

N

2

3.4. Feature Selection

After the feature extraction process is completed, it is necessary to evaluate the features
and eliminate the ones that contain irrelevant or redundant information to prevent the
reduction of performance of learning algorithms. This evaluation process is called feature
selection. Feature selection aims to form a subset of relevant features with high predictive
value, that will allow creating a learning model with the highest possible robustness [45].

In this work, feature selection is implemented to speed up the learning and classifi-
cation processes, avoid overfitting and to increase the accuracy of classifiers, as well as
to improve the interpretability of the model by yielding a reasonable number of features
that provide the best separation between different classes analyzed in this study. There-
fore, feature selection is performed based on the maximum separation distance between
different health states of the bearing. This feature selection method is an improved method
from [41].

Using the notation j = 1, 2, . . . , N f for the given feature set and notation c = 1, 2, . . . , Nc
for classes of bearing health states, feature selection is performed as follows:

1. The features are normalized between 0 and 1.
2. The mean µjc is computed for each feature f within class c as follows:

µjc =
1
n

n

∑
i=1

xijc, (11)

where x is the feature and n is the number of samples.
3. The mean squared Euclidean distance is computed between each feature data point f

and the mean of the same feature in each class.

d f =
1

nN2
C

∑NC
k=1 ∑NC

c=1 ∑NC
i=1

(
xijk − µjc

)2
(12)

4. The separation distance with the maximum feature separation is normalized to pro-
duce a performance evaluation criterion—Normalized Separation Distance (NSD).

dj =
dj

max(d)
. (13)
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The change of NSD leads to a different set of features being selected. In this work,
for every value of NSD starting from zero and increasing by 0.05, a new set of features
is obtained. Each set of features that corresponds with each NSD value is provided to
Weighted KNN for classification. The classification accuracies are shown in Figure 13. For
the feature sets that correspond to NSD higher than 0.4, the classification performance
abruptly decreases for some datasets, so the decision was made to ignore the feature sets
whose classification accuracy is less than 90% for the convenience of the plot scale and due
to the obvious disutility of such feature sets.

Figure 13. Classification accuracy and NSD value plot; (a) Mean value and variance of the classification accuracy for each
0.05 iteration of NSD; (b) Accuracy means, variances, and performance scores.

The experiments were performed on five datasets: four datasets with different oper-
ating conditions (states 0–3), parameters of which are presented in Table 1, and the fifth
dataset containing all these operating conditions (combined), which will be further used
for training.

It is evident that feature sets corresponding to the same NSD value do not guarantee
improvement of the classification performance for each dataset. Therefore, the NSD value
that corresponds to the feature set with the most stable performance on any part of data is
chosen based on the following performance stability evaluation method.

For each feature set corresponding to 0.05 iteration of NSD value shown in Figure 13a, mean
value and variance of the classification accuracy are calculated using Equations (14) and (15):

µacc =
1
n

n

∑
i=1

xiacc, (14)
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σ2 =
1

n− 1

n

∑
i=1

(xiacc − µacc)
2

, (15)

where xiacc is classification accuracy at one threshold for one dataset, µacc is the classification
accuracy mean for 5 datasets for one NSD value feature set, and σ2 is the accuracy variance
for 5 datasets for one NSD value feature set.

Here, the goal is to choose a NSD value which can provide a feature set that will have
the accuracies with the highest mean and lowest variance for all datasets. Hence, means
and variances for each examined iteration of NSD value are compared and ranked from
one to six in such a way that means are ranked from highest to lowest and variances are
ranked from lowest to highest, making the best NSD value have the least sum of rank
numbers (performance score) and the worst NSD value the most sum of rank numbers.

As can be seen from Figure 13b where the accuracy means, variances, and performance
scores are plotted, a feature set with the highest mean, lowest variance, and the least
performance score corresponds to the NSD value dj ≥ 0.25; therefore, this NSD value that
corresponds to feature set with the best stable performance for all datasets is chosen for
feature selection.

3.5. Weighted KNN

Weighted KNN is chosen as the machine learning classification algorithm due to its
instance-based nature. For this reason, the authors consider it an appropriate tool for
evaluating the results of frequency band selection and feature selection.

The selected features are provided as labeled data to the Weighted KNN classification
algorithm, which is a nonprobabilistic classification algorithm of the nearest-neighbor type
that weighs the evidence of a neighbor close to a new unclassified observation more heavily
than the evidence of another neighbor located at a greater distance from the unclassified
observation. Specifically, the algorithm uses the weighting function that depends on the
distance between the sample and the considered neighbor in such a way that its value
decreases with this increase in the distance [46,47]. The weighted KNN algorithm can be
described as follows:

1. The training set is given and denoted as:

T =
{
(xi

NN , yi
NN)

}N

i=1
, (16)

where xi ∈ <m is the training vector in the m-dimensional feature space, yi is the
corresponding class label, and x′ is a given query.

2. To start the assignment of a class for the new query x′, first, the distances of the
nearest neighbors of query x′ are computed for i = 1 to N:

d(x′, xi) =

√
(x′ − xi)

T(x′ − xi), (17)

3. Then, computed distances of the nearest neighbors are sorted in ascending order
forming the set:

T′ =
{
(xi

NN , yi
NN)

}k

i=1
, (18)

4. Out of the set, the search for k-nearest neighbors of the query x′ is performed for i = 1
to k:

xi
NN = xsorted_index(i), yi

NN = ysorted_index(i) (19)

5. The weights of k nearest neighbors are calculated for i = 1 to k:

W ′ =
{

w′1, . . . , w′k
}

(20)
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w′ i =


d(x′ ,xNN

k )−d(x′ ,xNN
i )

d(x′ ,xNN
k )−d(x′ ,xNN

1 )
, if d(x′, xNN

k ) 6= d(x′, xNN
1 )

1, if d(x′, xNN
k ) = d(x′, xNN

1 )
(21)

6. The classification result is computed based on majority weight voting:

y′ = argmax
y ∑

(xNN
i ,yNN

i )∈T′
w′ i × δ

(
y = yNN

i

)
, (22)

where y is an actual class label, yNN
i is the class label for the i-th nearest neighbor

among its k nearest neighbors. The Dirac delta function δ
(
y = yNN

i
)

takes a value of
one if y = yNN

i and zero otherwise.

The example in Figure 14 demonstrates the process of Weighted KNN classification.
In this figure, the training data set considers only two classes: A and B. A new query x′ is
given to the algorithm and its k (k = 5 for this example) nearest neighbors are identified.
The majority voting as in simple KNN algorithm would assign the query x′ to class A;
however, in the case of Weighted KNN, the lesser distances between the new query x′ and
the neighbors from class B add up to a larger weight than the neighbors from class A, and
thus, the new query will be assigned to class B.

Figure 14. Weighted KNN.

In this work, a weighted KNN model was retrained for the number of neighbors
(K-value) from three to 17 with a feature pool without feature selection. Then, the K-value
was chosen based on which number of neighbors gave the least classification error rate for
Weighted-KNN as is shown in Figure 15. Thus, the number of neighbors was chosen to
be 10.

Figure 15. Number of neighbors vs Error rate for the Weighted KNN.
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4. Fault Identification Performance

In this section, the proposed bearing fault diagnostic method is evaluated using the
vibration data collected from the real testbed that is described in Section 2. First, the
algorithm evaluation is performed on 4 different datasets with different states as described
in Table 1. Confusion matrices, recall, precision, F1-score, and total fault identification
accuracy (FIA) are calculated from the averaged results of 10 experiments performed for
each state. The expressions of these metrics are in Equations 23-26:

Recµ =
∑K

k=1 TPk

∑K
k=1(TPk + FNk)

× 100 (23)

Precµ =
∑K

k=1 TPk

∑K
k=1(TPk + FPk)

× 100 (24)

F1µ = 2×
(
Precµ × Recµ

)
× 100/

(
Precµ + Recµ

)
(25)

FIA =
∑K

k TPk

N
× 100, (26)

where TPk, FPk, and FNk are the true-positive, false-positive, false-negative values com-
puted for the data instances of the class k, respectively. K denotes the total number of signal
classes in the dataset and N states for the total number of data samples in the experimental
dataset. The metrics values computed when applying the proposed method to 4 datasets
are shown in Table 9.

Table 9. Performance metrics values for each operating state.

State No. Precision Recall F1-Score Total Fault Identification Accuracy

0 95.90 95.90 95.90 95.93

1 92.54 92.54 92.54 92.63

2 93.47 93.47 93.47 93.50

3 92.65 92.65 92.65 92.70

Performance comparison with state-of-the-art methods is performed according to
the pipeline presented in Figure 16. Each comparison method is substituted into the
“Classification method” block. The first method substituted in that block is a method that
was used in this work as described in Sections 3.3–3.5. The second and the third methods
are WPT-BE-MSVM and WPT-PCA-MSVM implemented in the same way as described
in [48]. Each classification method is trained and tested with the three types of data,
which are the same bearing vibration data processed by three types of signal processing
techniques. For each method and type of processed data, five experiments were performed.

Figure 16. Method comparison pipeline.

The reason for such comparison arises from the problem described in Sections 1.1 and 3.2.
For any classifier, the classification accuracy heavily depends on the presence of discrim-
inant information in the data. Signal processing allows the useful content in the data to
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become more visible and suppresses the signal information that deteriorates the classifica-
tion performance. Here, the comparison is provided which demonstrates the effectiveness
of the proposed method using three types of signal processing approaches:

1. The first approach (ENV) uses the whole vibration envelope squared signal frequency
spectrum.

2. The second approach (LP) eliminates bands with possible interconnections and hidden
relationships in frequency bands C and D that are useful only for bearing anomaly
detection, so the signal contains only the frequency band under 1250 Hz.

3. The third approach is GMM-WBBS. It processes the signal as described in Section 3.2
and outputs a signal that exclusively contains bearing ball-pass frequency harmonics.

Table 10 contains the classification accuracy results for the three state-of-the-art clas-
sification methods trained and tested with three types of data obtained after processing
the vibration signal by ENV, LP, and GMM-WBBS approaches in columns 1–3. Column
4 contains the difference in classification accuracy between the ENV and LP. The elimina-
tion of frequency bands C and D results in a significant performance decrease for each
method. The issue hidden here is that provided the whole spectrum, all classification
methods erroneously treat bearing natural frequencies and high frequency components as
fault signatures, which results in classification accuracy increase; however, as discussed in
Section 1.1, the information obtained from frequency bands C and D is useful for bearing
anomaly detection on the early stages of the fault. However, those bands provide no insight
into the defect location at Stage 2 bearing fault, and thus cannot be used for the diagnosis
of the bearing.

Table 10. Classification accuracy comparison.

Method (1) ENV
(acc%)

(2) ENV + LP
(acc%)

(3) GMM-WBBS
(acc%)

(4) abs(2–1)
(acc%)

(5) abs(3–2)
(acc%)

Proposed 97.22 91.66 93.1 5.56 1.44

WPT-BE-MSVM 93.60 90.00 91.40 3.60 1.40

WPT-PCA-MSVM 93.08 90.15 91.46 2.94 1.31

Column 5 contains the difference in classification accuracy between LP and GMM-
WBBS. Even though both methods remove frequency bands C and D, classification results
using GMM-WBBS are higher for all three classifiers. This difference is a result of the
utilization of fault frequency harmonics band selection using GMM-WBBS, which decreases
the interference of normal bearing vibration in the lower frequencies and allows for more
accurate classification in comparison with simple low pass filtering.

The difference in classification performance among the proposed method WPT-BE-
MSVM and WPT-PCA-MSVM can be explained by the difference in feature selection.
Feature selection in the proposed method described in Section 3.4 eliminates the features
that do not cross the NSD value, thus leaving only the features with low scatteredness
and high interclass separability. PCA, however, does not eliminate features, but instead
constructs a lower-dimensional representation utilizing all the given features and does not
consider the interclass separability, which in the current situation results in a slightly lower
classification compared with the proposed method due to the low quality of the initial
feature vector.

The confusion matrix for the GMM-WBBS method for all states data with Weighted
KNN is provided in Figure 17. The confusion matrix shows the capability of the proposed
method to classify healthy bearing, bearing with inner ring fault, and bearing with outer
ring fault. The data used in this research contain only single bearing faults, so it is unknown
how the proposed method will perform with mixed fault bearing data.
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Figure 17. The confusion matrix was obtained using the results achieved by the proposed method.

The limitations of the proposed method are within the following factors. Like in most
bearing fault diagnosis methods, it is necessary to have the information on RPM at any
moment to calculate the fault characteristic frequencies for the GMM-WBBS band selection.
The feature selection algorithm uses an NSD value, calculation of which is an iterative
process, and which is performed for every bearing operation state with the given data and
needs to be improved in the future. Furthermore, in the future, feature extraction quality
can be improved by using Deep Learning methods.

5. Conclusions

In recent years, the burgeoning intelligent bearing fault diagnosis field has attracted
a lot of researchers, and the performance of data-driven diagnosis techniques continues
to rise. However, at the current moment, a majority of proposed bearing fault diagnosis
methods that utilize vibration data do not perform the analysis of the raw data provided to
ML algorithms. Thus, the utilized bearing vibration signals may contain discriminative
data that may be irrelevant to the actual physical phenomenon of bearing fault. The
features extracted from this data can unpredictably both aid or degrade the performance
of classifiers.

Since this problem cannot be resolved by feature selection techniques, a GMM-WBBS
method is proposed to address it. To guarantee the immediate relation of the extracted
features to actual bearing fault signatures and prevent the use of irrelevant discriminant
data, the proposed method exclusively targets bearing fault-related frequency components,
that are selected based on construction and parameters of operation. Specifically, the
frequency bands in the demodulated bearing vibration signal irrelevant to the bearing
fault are suppressed. Then, time domain and frequency domain statistical features are
extracted from the demodulated signal containing exclusively bearing fault signature
frequencies and the feature selection technique was used to eliminate the low-quality and
redundant features. The bearing fault diagnosis was performed using the Weighted KNN
classification algorithm.

The performance of the proposed method is analyzed and compared to state-of-
the-art methods. The comparisons demonstrated the effect of utilization of non-relevant
discriminative information. WPT-BE-MSVM and WPT-PCA-MSVM methods retrofitted
with the proposed GMM-WBBS method show improved classification performance in all
cases for fault diagnosis in case of a single fault present. The method was not tested on
data with multiple faults occurring at the same time.

In future work, the feature extraction and selection part of the proposed method can
be improved by utilizing Deep Learning techniques. Techniques capable of extracting the
RPM information from the vibration data could be beneficial for the simplification of GMM
window generation and placement. Besides the improvement of the method, testing the



Sensors 2021, 21, 6579 23 of 24

method on data with multiple simultaneous faults will allow it to better evaluate its fault
diagnosis capability.
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