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AbstrAct
Objectives Unplanned readmissions to the intensive care 
unit (ICU) are highly undesirable, increasing variance in 
care, making resource planning difficult and potentially 
increasing length of stay and mortality in some settings. 
Identifying patients who are likely to suffer unplanned ICU 
readmission could reduce the frequency of this adverse 
event.
setting A single academic, tertiary care hospital in the UK.
Participants A set of 3326 ICU episodes collected 
between October 2014 and August 2016. All records were 
of patients who visited an ICU at some point during their 
stay. We excluded patients who were ≤16 years of age; 
visited ICUs other than the general and neurosciences 
ICU; were missing crucial electronic patient record 
measurements; or had indeterminate ICU discharge 
outcomes or very early or extremely late discharge 
times. After exclusion, 2018 outcome-labelled episodes 
remained.
Primary and secondary outcome measures Area under 
the receiver operating characteristic curve (AUROC) for 
prediction of unplanned ICU readmission or in-hospital 
death within 48 hours of first ICU discharge.
results In 10-fold cross-validation, an ensemble 
predictor was trained on data from both the target hospital 
and the Medical Information Mart for Intensive Care 
(MIMIC-III) database and tested on the target hospital’s 
data. This predictor discriminated between patients 
with the unplanned ICU readmission or death outcome 
and those without this outcome, attaining mean AUROC 
of 0.7095 (SE 0.0260), superior to the purpose-built 
Stability and Workload Index for Transfer (SWIFT) score 
(AUROC=0.6082, SE 0.0249; p=0.014, pairwise t-test).
conclusions Despite the inherent difficulties, we 
demonstrate that a novel machine learning algorithm 
based on transfer learning could achieve good 
discrimination, over and above that of the treating 
clinicians or the value added by the SWIFT score. Accurate 
prediction of unplanned readmission could be used to 
target resources more efficiently.

IntrOductIOn
Intensive care is expensive and, consequently, 
decisions regarding the timing of step-down 
to ward-level care must be made to ensure 

efficient allocation of this finite resource. 
However, premature intensive care unit 
(ICU) discharge may potentially expose 
a patient to the risk of inadequate levels of 
monitoring, and to limitations on the time-
liness of interventions. Both possibilities are 
associated with preventable clinical deteriora-
tion, as well as increased mortality, morbidity 
and healthcare costs.1–4

Although unplanned readmission to ICU 
is uncommon,5 6 the perceived high mortality 
in this group has led to readmission rates 
being widely adopted as local and national 
performance metrics and quality improve-
ment targets for transfers of care. Outreach 
and liaison services have been proposed to 
safeguard high-risk ICU step-down patients. 
However, recent studies examining the 
impact of outreach services on readmis-
sion rates have had mixed results,7–11 high-
lighting that local organisational factors and 
the configuration of outreach services may 
be particularly important. Overall, it seems 
plausible that unplanned ICU readmission 
remains harmful in some circumstances.

Even without an association with harm, 
unplanned ICU readmission is highly undesir-
able as it is resource intensive, disconcerting 
for patients and contributes to unexpected 
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variance in care delivery, making cost-efficient resource 
planning difficult. An accurate predictor of readmission 
likelihood would be helpful for planning step-down care 
and/or for focusing outreach and monitoring resources 
on those patients who have the highest chances of 
deterioration.

The timing of readmission may also be clinically signif-
icant. Readmission correlates strongly with severity of 
illness. Whether a readmission is determined by ICU 
management, or represents an event more closely related 
to chronic disease, is time dependent, with an inflec-
tion point around 48 hours.2 A number of authors have 
attempted to develop tools for predicting readmission, 
and this literature has been the subject of a systematic 
review.5 Given that later readmissions are more likely to 
be associated with chronic diseases,2 and less predicted 
by ICU factors, it follows paradoxically that prediction of 
early (say before 48 hours) readmission is a more chal-
lenging problem than late readmission.

It is important to appreciate that predicting readmis-
sion is a far more complex problem than, say, length of 
stay prognostication,12 or the early identification of the 
deteriorating patient on the ward. Discharge from the 
ICU is not a random event, but instead represents a clin-
ical assessment of whether the underlying condition has 
resolved sufficiently13 to make the likelihood of subse-
quent deterioration on the wards low. Arguably, this deci-
sion is made in light of more investigatory results and 
monitoring observations than at any other point in the 
patient journey. To improve over the physician, a more 
sophisticated system or algorithm is needed that is able 
to appreciate subtle and multidimensional time trends.

‘Machine learning’ (ML) refers to a collection of algo-
rithmic techniques for data representation and analysis 
that have been successfully applied to prediction prob-
lems in many domains. Although these techniques may 
lack the transparency of simple regression modelling, 
they are typically better able to deal with the non-linearity, 
high dimensionality and heterogeneity of complex data. 
We have previously applied such techniques to several 
problems, including sepsis detection14–16 and mortality or 
stability prediction.17 Due to the prevalence of electronic 
patient record (EPR) systems, structured patient data are 
widely available and enable sophisticated computer algo-
rithms to be implemented at the bedside. In this paper, 
we studied a cross-sectional group of ICU patients, and 
built and trained an ML algorithm. We hypothesised 
that this algorithmic predictor would deliver statistically 
significantly superior performance over the purpose-
built Stability and Workload Index for Transfer (SWIFT)18 
score, as measured by area under the receiver operating 
characteristic curve (AUROC) in 10-fold cross-validation.

MethOds
We adopted a cross-sectional design, in which we used the 
set of all ICU patients admitted to a tertiary care centre 
during a 2-year period. After excluding some patients 

on the basis of care units visited, incomplete data, inde-
terminate or out-of-limits onset time, or indeterminate 
outcome, we used the remaining patients to construct 
a data set. We then measured the ability of AutoTriage 
to learn the ICU readmission problem by training and 
testing on these data using a 10-fold cross-validation 
scheme.

data
After local institutional review and approval (local 
approval number PRN5086), a set of 3326 ICU episodes 
was collected at Cambridge University Hospitals NHS 
Foundation Trust (CUH) between October 2014 and 
August 2016. This facility provides routine and tertiary 
services. All records were of patients who visited an ICU 
at some point during their stay, specifically, the hospital’s 
general and neurosciences ICUs. We excluded admis-
sions to the paediatric ICU, and therefore all patients 
were adults (>16 years). We also excluded admissions to 
the transplant high dependency unit and coronary care 
units.

Both ICUs included were tertiary referral centre 
specialist units: the 20-bed general unit providing 
specialist liver and transplant services and the 23-bed 
neurosciences unit providing specialist neurosurgical, 
neurological and major trauma intensive care. Both units 
also provide general ICU services for the hospital. One 
important characteristic of both ICUs is that the caseload 
almost entirely comprised emergency admissions with 
very few routine (eg, elective postoperative) admissions. 
The cases are approximately equally divided between the 
two units.

Routinely recorded patient age, and clinical measure-
ments of various types, namely vital signs (here repre-
sented as systolic blood pressure, pulse pressure, heart 
rate, temperature, respiration rate and SpO2), labora-
tory measurements (bilirubin, creatinine, international 
normalised ratio (INR), lactate, white cell count, platelet 
count and pH), FiO2 and total Glasgow Coma Score 
(GCS) were obtained from the hospital EPR system. 
These measurements were available throughout the 
patient’s stay, including in the emergency department, 
ICU and wards. Physiological data were typically sampled 
approximately hourly (although clinical monitoring is 
continuous, standard institutional practice is to store 
nurse-validated ‘end-of-hour’ values in the EPR and these 
EPR values were used in this study). For inclusion, all 
patients were required to have at least one measurement 
for each of the listed vital signs and GCS at some point 
during their stay. Diagnostic codes were deliberately 
excluded from the data set to minimise the risk of reiden-
tification of patients with rare conditions.

Along with this record of patient clinical state and 
laboratory test results, the Electronic Medical Record 
contained information on the patient’s location by ward. 
From this information on transfer within the hospital, 
we determined whether the patient was receiving inten-
sive care or not at each time point during their stay. We 
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Figure 1 Transfers undergone by an example class 1 patient. In this example, a patient is admitted to the hospital via the ED, 
which is classed as a non-ICU-type unit. From the ED, the patient is transferred to an ICU-type unit. After some time in the ICU, 
the patient is transferred down to a ward (a non-ICU-type unit), but within the next 48 hours, the patient is transferred back to 
the ICU. The patient survives, and is ultimately discharged. Since the patient’s first ICU stay was followed by another ICU stay, 
starting less than 48 hours later, this patient is given a class 1 (failed down-transfer) label under the gold standard definition. 
When training or providing test predictions, the patient’s condition at the time of the first down-transfer from the ICU is used to 
predict this label. ED, emergency department; ICU, intensive care unit.

divided all units into ICU, non-ICU and specialist diag-
nostic and therapeutic units (eg, endoscopy, dialysis and 
surgery). If patients were in an ICU at a particular time, 
they were deemed to be receiving intensive care, non-in-
tensive care if they were in a non-ICU unit, and a contin-
uation of the most recent care type if they were visiting 
a specialist diagnostic or therapeutic unit (see figure 1).

Using this information, we determined the first time 
each patient was transferred out of the ICU, and attempted 
to predict, at this time, whether the patient would die or 
return to the ICU within 48 hours. If this time was earlier 
than 5 hours after ‘first vitals’ (the first time any of vitals 
or GCS were recorded) or after the 500 hours limit of data 
discretisation (see the Processing section) the patient 
was discarded. We consulted the remaining portion of 
the patient’s transfer and discharge history during the 
hospital stay to determine if this prediction was correct. 
Any patient who returned to the ICU or died in hospital 
within 48 hours was labelled as ‘Class 1’ (having an adverse 
outcome); this assumes that a patient who died in another 
ward should have been transferred back to the ICU. 
Patients who were down-transferred and discharged are 
‘Class 0’ (no adverse outcome) if this discharge occurred 
at least 4 hours after down-transfer. Any patient who did 
not fall into either of these categories was excluded as 
indeterminate, such as those discharged less than 4 hours 
after down-transfer or not down-transferred from the ICU 
at any point in their record (eg, by dying in their first 
ICU visit). In the absence of follow-up after the end of 
the hospital stay, it is also possible that patients departed 
the hospital and subsequently died within the 48 hours 
period following ICU discharge, while still receiving a 
class 0 label.

The final number of examples (hospital admissions) 
was 2018. The process by which the raw data from the 
EPR were condensed down to this data set is shown in 
figure 2 (Exclusion flow chart), and characteristics of the 
final study population are presented in table 1.

Processing
We used data automatically and routinely collected from 
laboratory instruments and monitoring equipment and 
stored in the EPR at CUH (Epic Systems, Verona, WI, 
USA). The data fields were extracted from the EPR 
using custom structured query language queries written 
in-house. The data were fully anonymised for analysis. 
To this end, patient ages were subjected to a random 
jitter, and all variable dates and times were subjected to  
patient-specific random offsets to further ensure 
anonymity. The patient identifiers were then stripped, 
and the set entity/attribute/value data were converted 
into flat files. Only fully anonymised data were passed to 
the analysis team.

These flat files were then loaded into a custom data struc-
ture in MATLAB (The MathWorks, Natick, MA, USA). 
All subsequent computational procedures described in 
this work were also carried out in MATLAB. Each patient 
record was associated with an onset (ICU down-transfer) 
time and a class label (1 or 0) as described above.

Several steps were involved in measurement prepro-
cessing. Data from each channel (eg, heart rate) were 
screened for non-physiologic outliers. Each channel was 
then binned, using at most 500 one-hour bins, starting 
from the first available measurement (of any channel). 
Values in each bin were averaged, yielding a single value. 
Empty bins were imputed (filled) with the value of the 
measurement in the most recent, non-empty bin of that 
type, if any was available. In particular, some measure-
ments could be missing at time of ICU discharge.

The basic measurements of GCS and vitals were 
used for classification. As described above (see the 
Data section), every patient was required to have one 
value recorded for each for study inclusion. As avail-
able, we also used bilirubin, platelet count, creatinine, 
INR, lactate, FiO2, white cell count and pH. For each 
measurement, we extracted five values, the four binned 
values before prediction time and the one binned value 
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Figure 2 Exclusion diagram. Individual hospital admissions are screened to produce a final data set (n=2018; 88 class 1; 1930 
class 0; 4.36% prevalence). HDU, high dependency unit; ICU, intensive care unit.

at prediction time, and concatenated these values into 
a feature vector x with 76 elements (15 measurement 
channels, plus age). Because this representation is only 
the recent past relative to prediction time, the classi-
fier is using roughly the same amount of information to 
make its predictions, regardless of the time of predic-
tion, up to effects from the imputation scheme. Crit-
ically, because those patients with first ICU discharge 
before 5 hours postfirst vitals or after 500 hours from 
hospital admission were eliminated from the study 
population, all predictions were based on a 5-hour data 
window falling within the discretisation.

Prediction and training
Non-transfer learning methods
We divided the final data set into 10 cross-validation folds. 
For each fold, we normalised the data and trained our 
predictor (a boosted ensemble of 1000 decision trees) on 
the other folds. We calibrated this output using a logistic 
regression on the training data and then predicted on the 
left-out fold.

All classifiers were constructed using AdaBoost,19 20 an 
ensemble technique which combines the results from 
multiple weak decision trees in an iterative fashion. 
This algorithm also handles splitting or thresholding of 

quantitative predictor variables. We limited each tree to 
split no more than eight times, and no more than 1000 
trees were then aggregated in the iteration through 
gradient boosting to generate a robust risk score. When 
the predictions of individual trees are evaluated, missing 
data are handled by returning the tree evaluation at the 
node where the requisite data are missing. Because many 
trees are involved, the ensemble’s overall dependence 
on each predictor variable can be computed, but it is 
difficult to causally attribute any particular prediction to 
particular inputs.

The results were combined across all 10 folds to assess 
system performance. We compared this method with our 
implementation of SWIFT,18 which is designed for this 
clinical task, on the basis of AUROC curve values (see 
eg, ref 21 for definitions and discussion). Our data set 
lacks PaCO2 measurements; these provide one of the 
summed terms in the SWIFT score. In their absence, we 
compared with the sum of the remaining terms.

Transfer learning methods
In transfer learning, some information from one collec-
tion of data (the ‘source’ collection, typically large) is 
‘transferred’ to help prediction on another (the ‘target,’ 
on which the system is to be deployed; typically small) 
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Table 1 Demographic information for the final study population, all of whom were ICU patients at CUH. The final study 
population was somewhat more heavily male than female. Among those who were readmitted to the ICU, the distribution of 
this second ICU stay’s length skewed strongly to the right (towards longer, second ICU stays)

Total patients 2018

Male 1230 (60.95%)

Age: mean (SD) (years) 55.43 (19.08)

Age: median (IQR) 57.00 (42.00, 70.00)

Total hospital length of stay: mean (SD) (days) 27.44 (31.19)

Total hospital length of stay: median (IQR) (days) 18.04, IQR (9.16, 33.42)

First ICU: Neurosciences 1255 (62.19%)

First ICU: General 763 (37.81%)

Patients with class 1 gold standard (death or ICU readmission within 48 hours of 
down-transfer from ICU)

88 (4.36%)

Time from down-transfer to death or ICU readmission: mean (SD) (hours) 16.24 (15.40)

Time from down-transfer to death or ICU readmission: median (IQR) (hours) 9.65, IQR (2.49, 29.43)

Patients who died before ICU readmission 21

Patients who began second ICU stay 67

Patients who died at the end of this second ICU stay 2

Duration of second ICU stay: mean (SD) (hours) 122.06 (150.77)

Duration of second ICU stay: median (IQR) (hours) 66.53, IQR (23.52, 144.58)

CUH, Cambridge University Hospitals NHS Foundation Trust; ICU, intensive care unit.

(see ref 22 for a review). We employed the Medical Infor-
mation Mart for Intensive Care (MIMIC-III) database 
(V.1.3)23 as our source collection, and treated the CUH 
down-transfer problem as our target. MIMIC-III is a collec-
tion of over 50 000 ICU stays from Beth Israel Deaconess 
Medical Center, in Boston, Massachusetts, USA, between 
2001 and 2012. The data set contains vital signs and labo-
ratory data, along with information on procedures, and 
patient demographics, along with transfer and outcome 
information.

We defined a similar, longer term failed down-
transfer prediction problem on the source MIMIC-III 
set. A class 1 label was given to those patients who either 
returned to the ICU within the same hospital stay, or 
those who died within 2–30 days from ICU discharge. 
Class 0 patients were those who were discharged from 
the ICU without returning during the same hospital 
stay, and who did not die within the next 30 days. The 
definitions were consistent with MIMIC-III’s different 
handling of non-ICU information and its inclusion of 
postdischarge death information from Social Security 
death records. We defined prediction time as the time 
of the last measurement (usually at the end of the ICU 
stay) and we extracted feature vectors as in the CUH 
data set. After applying a similar exclusion scheme, the 
resulting source set had 44 741 ICU visit records and 
associated outcomes with class 1 prevalence of 12.56%. 
We used the entire source MIMIC-III collection for our 
transfer training procedure.

Identical to the non-transfer ensemble trained above, 
we applied 10-fold cross-validation and predicted on 

each of the 10 test sets, with a predictor trained on the 
MIMIC-III source collection, plus the non-testing 9/10ths 
of the target CUH set. The predictor used was trained 
using the same structure and the same training algorithm 
as the non-transfer learning experiments.

We chose a simple method to combine the source and 
target data sets (similar to ref 24), in which the sets were 
concatenated to form a single training data set. While 
using a fixed set of examples from the target and source 
sets (the latter containing many more encounters), 
we changed the relative degree to which the training 
process ‘paid attention’ to the target over the source. 
This was controlled by adjusting the relative weight of 
the training loss on the target and source examples. For 
w in the interval (0, 1), target data were weighted by a 
factor w, source data by (1 w), and the total training loss 
was then normalised. Since the classifier is constructed 
to minimise the loss, w close to 1 emphasises learning 
the target data. However, this may fit to spurious 
‘noise’ features of this small set, known as ‘over-fitting.’ 
Conversely, for w close to 0, the classifier avoids over-
fitting by supplementing its training data, but accepts 
bias due to mismatch between the sets. For w=0, the 
target data are ignored entirely, equivalent to applying 
an ‘off the shelf’ source-trained classifier. If target and 
source are the same, the ‘source’ and ‘target’ designa-
tion becomes meaningless and each example should be 
weighted equally; the correct value of w is the ratio of the 
target data set’s size over the total number of examples, 
here 0.043. Any larger w indicates that target examples 
are more informative than source examples. By testing 
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Table 2 Performance characteristics for the trained ensembles and SWIFT. CUH, Cambridge University Hospitals NHS 
Foundation Trust; MIMIC III, Medical Information Mart for Intensive Care; SWIFT, Stability and Workload Index for Transfer.

Ensemble: transfer Ensemble: MIMIC-III only Ensemble: CUH only SWIFT

AUROC 0.7095 (0.0260) 0.6079 (0.0256) 0.6092 (0.0320) 0.6082 (0.0786)

Sensitivity 0.5917 0.5792 0.5972 0.5682

Specificity 0.6640 0.5700 0.5030 0.6234

F1 0.1321 0.1074 0.0956 0.1156

DOR 2.8635 1.8243 1.5007 2.1780

Brier score 0.0402 (0.0009) 0.1830 (0.0048) 0.0462 (0.0015) NA

AUROC and Brier score are presented as mean (SE) over 10 cross-validation folds. All characteristics other than AUROC and Brier score are 
computed from a particular operating point on the ROC curves (figure 2) and prevalence; this operating point is chosen such that sensitivity is 
the highest available value less than or equal to 0.60. The best value for each performance measure is in bold.
AUROC, area under the receiver operating characteristic curve; Brier score, mean square forecast error, where the forecast is the 
probabilistic output of the classifier; CUH, Cambridge University Hospitals NHS Foundation Trust; DOR, diagnostic OR, the ratio of true 
positives to positive test results, divided by the ratio of true negatives to negative test results; F1, two times the harmonic mean of precision 
and sensitivity (recall), where precision is the ratio of true positives to the sum of true positives and false positives; NA, not applicable; 
Sensitivity, the ratio of detected positive examples to all positive examples; Specificity, the ratio of true negatives to the sum of true negatives 
and false positives.

Figure 3 ROC curves for prediction performance on CUH 
test data. The choice of detection threshold determines 
a trade-off between sensitivity (true positive rate) and 
1−specificity (false positive rate). The superiority of the 
transfer-learning-trained ensemble (solid) over SWIFT is 
clear throughout the operating regime, except at the very 
low-sensitivity, high-specificity portion of the curve (far left), 
where they perform similarly. CUH, Cambridge University 
Hospitals NHS Foundation Trust; ROC, receiver operating 
characteristic curve; MIMIC III, Medical Information Mart 
for Intensive Care; SWIFT, Stability and Workload Index for 
Transfer.

selected w values in the interval (0, 1), we empirically 
determined an effective w.

results
Performance characteristics for our prediction algorithm 
and the SWIFT score are summarised in table 2. We 
computed receiver operating characteristic (ROC) curves 
for the thresholded scores given by each classifier, and 
averaged the area under these curves (AUROC) across 
each of the 10 test folds. Average ROC curves are presented 
in figure 3. ROC curves show sensitivity (the fraction of 
positive cases which receive a positive label) as a function 
of 1−specificity (the fraction of negative cases receiving 
a positive label). The CUH-trained ensemble without 
benefit of transfer learning (green, solid, AUROC 0.6092, 
SE 0.0320; w=1) and a naive, MIMIC-III-trained classifier 
(pink, solid, AUROC 0.6079, SE 0.0252; w=0) applied to 
the CUH down-transfer problem fail to do substantially 
better than SWIFT (green, dash-dot, AUROC=0.6082, SE 
0.0249). The transfer classifier trained using a combina-
tion of MIMIC-III and CUH data, where individual CUH 
examples are weighted two times as heavily as MIMIC-III 
examples (blue, solid), yields AUROC 0.7095 (SE 0.0260), 
superior performance to SWIFT (p=0.014 in per-cross-val-
idation-fold, one-tailed pairwise t-test). This best weight is 
equivalent to w=0.075. The AUROC of each ensemble is 
plotted with respect to mixture weight w in figure 4. For 
every tested mixture weight other than 0 or 1 (MIMIC-III 
only and CUH only, respectively), the AUROC obtained is 
approximately 0.07 better than these extremes.

dIscussIOn
The use of scoring systems and ML algorithms for 
predicting deterioration has attracted much interest. 
Such efforts represent an attempt at automating clinician 
evaluation when logistic constraints mean that important 

diagnoses may be otherwise missed. However, discharge 
from ICU is conceptually quite different; an expert clini-
cian, often with a detailed knowledge of the patient’s 
condition and progress, is generally available to make the 
decision as to the safety of the down-transfer. Since the 
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Figure 4 Target test set AUROC changes with mixture 
weight w (the proportion of total training example weight 
allocated to CUH examples). The results shown in figure 3 
are at the left (MIMIC-III only) and right (CUH only) extremes 
of this interval, and at the peak of the curve (optimal 
transfer mixture weight). Equal per-example weighting 
corresponds to w=0.043; the maximal w value of 0.075 
indicates that target examples are indeed more informative 
than source examples. AUROC, area under the receiver 
operating characteristic curve; CUH, Cambridge University 
Hospitals NHS Foundation Trust; MIMIC III, Medical 
Information Mart for Intensive Care.

clinician would not intentionally discharge a patient from 
the ICU knowing that this would result in readmission, 
any prediction that an algorithm makes must be over and 
above the prediction of the clinician. Our experiment 
shows that it is possible to construct an algorithm that 
solves this problem, achieving an AUROC of ~0.7. While 
this has modest predictive power, it should be remem-
bered that this result is achieved in a group of patients 
that the ICU clinician had already assessed as being fit 
for down-transfer, making this a particularly hard predic-
tion problem. The fact that even such predictive power 
is possible suggests that there are factors that clinicians 
do not systematically appreciate. From our work, it is not 
possible to know whether our set of predictors is optimal 
and further studies are warranted to exhaustively examine 
this question.

The data set studied in this work, while modest in size 
by ML standards, was relatively large and complete by 
clinical standards, and represented nearly 2 years of ICU 
patients in a large hospital. From a ML perspective, it may 
be that the small size of the data set limits the predictive 
power of models that can be learnt from this data set. In 
particular, for models that are too expressive and flexible 
to be supported by the existing collection of data, there 
exists a danger of overfitting, that is, training to recog-
nise spurious elements of the training data set that do not 
actually aid prediction performance. With more training 
data, more powerful and expressive classifiers could be 
used, which would be expected to improve predictive 

performance. In this study, we addressed training data 
scarcity by using transfer learning with data from an anal-
ogous problem in another hospital.

As illustrated in figure 3, a simple transfer learning 
approach offers performance advantages over training 
with either source domain data only or target domain 
data only. In particular, transfer learning appears to offer 
a ‘regularizer,’ which helps prevent overfitting to the 
target domain data, and so results in much better predic-
tion performance on the target test sets. Indeed, the best 
choice of mixture weight, w=0.075, represents a compro-
mise whereby w was small enough to regularise the target 
domain classifier, but large enough that the resulting 
classifier benefited from access to target domain training 
data (figure 4). With this choice of w, the corresponding 
predictive performance is significantly better than that 
of SWIFT. The degree of performance enhancement is a 
function of w, which controls the strength of this regular-
iser. Fairly strong regularisation (w=0.075) yields superior 
performance in these experiments. Since this w is larger 
than 0.043=2018/(2018+44 741), the ratio of target exam-
ples to the sum of target and source examples, this result 
indicates that target data are indeed more informative, 
and that each should be weighted approximately twice as 
heavily as source examples.

Importantly, transfer learning techniques offer the 
opportunity to improve the performance of predictors 
trained on small to medium-sized data sets. This is precisely 
the setting that exists in many clinical institutions, which 
cannot themselves assemble a multiyear collection of tens 
of thousands of patient records, such as MIMIC-III. This 
transfer learning method is straightforward and produces 
AUROC margins of at least 0.07 versus training on only 
the target (CUH) data or the source (MIMIC-III) data for 
a wide range of mixture weights w. This is a direct, clear 
means by which publicly available data can be leveraged 
to add value by producing a substantial performance 
boost.

Some limitations apply to this study’s generalisation. 
First, the predictions were made in a selected, retrospec-
tive population of patients in a single tertiary care facility; 
while encouraging, the present work does not necessarily 
imply that the system would perform as well prospectively, 
or in another clinical setting. Second, a classifier of fixed 
architecture was used in this work, for both transfer and 
non-transfer training. It is likely that other methods could 
improve a target-facility-only classifier, without resorting 
to transfer learning; such techniques would strengthen 
the baseline used in comparison against the transfer 
method, but might be incorporated into the transfer 
method as well, improving its performance. Third, the 
post hoc optimisation of the transfer weight w is illustra-
tive, rather than deployable. However, very similar results 
can be obtained by nesting another cross-validation inside 
the training to select the transfer weight.25

Our data were limited to approximately hourly record-
ings, as is common UK ICU practice. As a result, transient 
changes in patient state are often not captured and it is 
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possible data of higher temporal resolution may improve 
prediction although such data also may contain a higher 
number of artefacts. The caseload in the ICUs considered 
is that of a specialist tertiary referral centre with very little 
routine elective care. Approximately half of the cases 
were specialist neurosciences and major trauma. This 
focus may limit the external generalisability of our work. 
However, it seems reasonable to believe that emergency 
work is more unpredictable and heterogeneous than elec-
tive intensive care and therefore similarly reasonable that 
the prediction task in our data set is a more difficult task. 
Further studies are required to evaluate the algorithms 
in differing case mixes. Our study comprised two units 
with diverse clinical caseloads (general/transplant and 
neuroscience/trauma)—it is possible that better classi-
fiers could be built taking account of this, but our sample 
size was too small for us to attempt this extension in the 
present work.

It is likely that other institutional factors affect ICU 
readmission. Our ICU bed occupancy is consistently high 
(>95%) and so this pressure does not vary. However 
demand for ICU beds may vary (seasonally, for example) 
and other institutional factors, such as ward service inten-
sity, are also likely to be important. Our data set was of 
modest size and so further work is merited to examine 
the incremental predictive impact of such institutional 
effects.

cOnclusIOns
This work demonstrates a method that provides improved 
prognostic performance for the difficult and important 
problem of failed patient down-transfer. Such a tool may 
find application either in helping with ICU discharge 
decisions, or in better targeting ward resources towards 
patients with a high chance of unplanned readmission, 
so that this can take place in an ordered and timely 
manner before harm can occur. The performance of the 
predictive framework we have developed for this problem 
is quantitatively superior to that of the purpose-built 
SWIFT score. Our work also demonstrates the potential 
of transfer learning to improve the performance of our 
predictive tools for comparable problems.
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