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Statistical methods to detect pleiotropy
in human complex traits

Sophie Hackinger and Eleftheria Zeggini

Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK

In recent years pleiotropy, the phenomenon of one genetic locus influencing

several traits, has become a widely researched field in human genetics. With

the increasing availability of genome-wide association study summary stat-

istics, as well as the establishment of deeply phenotyped sample collections,

it is now possible to systematically assess the genetic overlap between mul-

tiple traits and diseases. In addition to increasing power to detect associated

variants, multi-trait methods can also aid our understanding of how differ-

ent disorders are aetiologically linked by highlighting relevant biological

pathways. A plethora of available tools to perform such analyses exists,

each with their own advantages and limitations. In this review, we outline

some of the currently available methods to conduct multi-trait analyses.

First, we briefly introduce the concept of pleiotropy and outline the current

landscape of pleiotropy research in human genetics; second, we describe

analytical considerations and analysis methods; finally, we discuss future

directions for the field.
1. Introduction
The field of human complex trait genetics aims to elucidate how genetic vari-

ation affects differences in phenotypes. Most complex phenotypes are highly

polygenic (i.e. they are influenced by a large number of genetic variants with

moderate effects, rather than a handful of variants with large effects [1]).

Since their inception in the early 2000s [2–4], genome-wide association studies

(GWAS) have become the tool of choice for complex trait analysis. In the clas-

sical GWAS approach, the association of genetic variants across the entire

genome with a single phenotype of interest is tested in a group of individuals.

Recent years have seen a shift towards the joint analysis of related phenotypes.

As a consequence of active method development in this field there are now a

number of statistical tools available to detect cross-phenotype genetic associ-

ations. This review is intended to provide an overview of available methods

and their relative strengths and limitations.

1.1. Types of pleiotropy
The term ‘pleiotropy’ was coined over 100 years ago by German scientist

Ludwig Plate to describe the phenomenon of a hereditary unit affecting more

than one trait of an organism [5]. Since then, pleiotropy has been a topic of

extensive research and debate. Before human genetics began to gain traction,

pleiotropy was mainly studied in model organisms and, on a more theoretical

level, in evolutionary biology [5,6]. Over the course of the past decades there

have been several proposals on how to classify different types of pleiotropy

[5,7–9]. With regards to GWAS, it is important to note that cross-phenotype

associations can arise due to several reasons, not all of which are biologically

meaningful [7,8]. Solovieff and colleagues [8] described three broad categories

of pleiotropy in the context of complex traits:

In the case of biological pleiotropy, causal variants of different traits fall into

the same gene or regulatory unit (e.g. transcription factor binding sites) [8]. In

GWAS this could manifest itself in the form of two different variants in the
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same region tagging the same or two separate causal variants,

or as one variant tagging the causal one (figure 1a,b). In prac-

tice, fine-mapping and molecular studies are required to

confidently distinguish between these different scenarios [8].

Mediated pleiotropy refers to the case where a variant

directly affects one trait, which in turn affects another

(figure 1c). GWAS will still pick up an association of the

variant with the second trait, but this association will disap-

pear when conditioned on the first. Causal inference can be

achieved through Mendelian randomization studies, which

have been widely used in genetic epidemiology [8,10–12].

An example is the association of the FTO gene with osteoar-

thritis (OA) [13], which was shown to exert its effect on OA

through body mass index (BMI) [14].

Finally, cross-phenotype associations can also arise due to

spurious pleiotropy. At the planning stage of a study, design

artefacts may lead to inaccurate results. For example, ascer-

tainment bias or misclassification of cases can both inflate

genetic overlap estimates. At the analysis stage, causal var-

iants in different genes may be tagged by the same GWAS

variant (figure 1d ). A classic example of this is the human

leucocyte antigen (HLA) region on chromosome 6. Due to

its high gene density and extensive linkage disequilibrium

(LD), GWAS signals within the HLA region are difficult to

map finely. While the HLA locus has been associated with

a range of diseases [13,15–20], most prominently immune-

mediated ones, it remains unclear to what extent these

disorders share the same causal risk variants or genes.
1.2. Pleiotropy in human complex traits
In 2011, a systematic evaluation of associations reported in

the NIHGR GWAS catalogue found that 4.6% of variants

were associated with more than one trait [21]. This number is

likely to have grown, as GWAS signals have been continuously

added to the database.

Many cross-phenotype effects are not surprising. For

example, variants in the DSP gene are associated with chronic

obstructive pulmonary disease, as well as pulmonary fibrosis

and lung function traits [22]. Others are perhaps less intuitive

and can shed light into hitherto unknown connections

between traits. For example, variants in the ASTN2 gene

have been shown to affect both risk to osteoarthritis [13]

and migraine [23,24]. These seemingly unrelated diseases

might share pathways involved in pain perception.

Until a few years ago, the focus of many consortial efforts

was to combine datasets of one phenotype for large-scale

GWAS and meta-analyses [15,25,26]. For many traits, results

from these studies are now publicly available, providing an

excellent resource for cross-phenotype analyses using sum-

mary statistics. As the appreciation of pleiotropic effects has

gained traction in the scientific community, cross-disorder

analyses of several related traits have been increasingly car-

ried out to disentangle shared and disease-specific genetic

determinants [27–30].

The establishment of genome-wide genotyped biobanks

[31] and cohorts with in-depth phenotype information [32]

has also made it possible to perform multi-trait analyses on

the same sample set [12,33], for example through phenome-

wide association studies (PheWAS), where the association

of each genetic variant with all phenotypes in a dataset is

tested [34–37].
One challenge of the PheWAS approach is the high

multiple-testing burden that grows as the number of traits

and variants tested increases [9]. Although this can be

partly circumvented by performing targeted PheWAS at a

selected number of variants hypothesized to exert pleiotropic

effects [9,38], other challenges such as consistent phenotyping

and selection of appropriate covariates remain [34].

Investigating pleiotropy in human traits not only holds

the potential to uncover additional associations, but could

additionally help to redefine disease classifications. This is of

particular interest in disorders for which the aetiopathology

is unclear, and for which current diagnostic tools might be

inadequate. For example, psychiatric conditions are highly

comorbid, and until recently [15,39] have been mostly refrac-

tory to GWAS [40]. Comparisons of different psychiatric

disorders have shown that the genetic overlap among them is

extensive [27,41], and that certain pairs of diseases are geneti-

cally more similar than others [41]. Together these findings

suggest that shared biological mechanisms cross diagnostic

boundaries, and might aid the development of more accurate

disease classification systems.
2. Analytical approaches
2.1. Study design considerations
There are some practical considerations to be taken into

account when selecting an appropriate method for multi-trait

analysis.

First, the type of data available will determine which stat-

istical approach is applicable. Due to limitations of

data sharing policies it might not be possible to obtain

individual-level genotype data for all traits analysed.

Second, the type and number of traits to include must be

considered: some approaches require all traits to be continu-

ous, while others also allow for dichotomous traits or a

combination of both. Several methods, such as colocalization

tests [42,43] or genetic correlation analyses [44], can currently

only accommodate two traits at a time, while others lose

power with an increasing number of traits [45].

Finally, if each trait is measured on a different set of indi-

viduals, sample overlap between each dataset will need to be

accounted for. This has been implemented in several methods

[43,44,46]. Ideally, the exact number of overlapping individ-

uals will need to be accounted for. However, this is often

not possible when using data from publicly available GWAS.

One way to estimate the extent of overlap is to calculate the

Pearson’s correlation of the Z-scores of all independent, non-

associated variants from two studies [43], although other

methods have also been proposed [47–49].

2.2. Overview of methods
Pleiotropy analyses can be broadly classified into three cat-

egories according to the level at which they assess genetic

overlap: genome-wide, regional and single variant.

Genome-wide methods are currently only available for

pairwise trait comparisons, and can be used as an initial

assessment of the global genetic overlap between two traits.

The latter two approaches aim to detect cross-phenotype

effects at distinct genomic regions and at a single variant,

respectively.
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Figure 1. Schematic representation of different scenarios for cross-phenotype associations. Such effects might arise due to biological pleiotropy, whereby causal
variants for two traits colocalize in the same locus (a,b), due to mediated pleiotropy, whereby a variant exerts an effect on one trait through another one (c), or due
to spurious pleiotropy, whereby causal variants for two traits fall into distinct loci but are in LD with a variant associated with both traits (d ).
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Region-based methods bin variants into groups based

on pre-defined criteria, such as LD-blocks or gene bound-

aries, and then test for cross-phenotype effects within each

group. An advantage of such approaches is that they alleviate

the multiple testing penalty incurred by single-point ana-

lyses; furthermore, they can increase power by combining

information across biologically meaningful units.

Since variant-level methods test each variant separately,

they provide the highest resolution. On the other hand,

they are less powerful in situations where each trait is associ-

ated with a different variant in the same functional unit, and

might fail to identify these cross-phenotype effects unless all

relevant variants are in at least moderate LD.

The above analysis approaches can be further sub-divided

based on their underlying statistical framework into univari-

ate and multivariate. Univariate methods combine summary

statistics of single-trait GWAS to search for cross-phenotype

effects. This means that analyses can be carried out with

each trait measured on a distinct set of individuals. Multi-

variate methods, on the other hand, jointly model all traits

in a statistical framework, which requires that all individuals

included in the study have phenotype information for all

traits analysed. The statistical difference between uni- and

multivariate methods is best illustrated by the example of

linear regression analysis: for univariate regression, the

response variable (i.e. the phenotype) will be a vector, with

one data point for each individual in the study; for multi-

variate regression, the response variable will be a matrix,

where each row represents an individual and each column

represents one phenotype. Although there are exceptions,

these categories are often analogous to distinguishing between

methods requiring only summary data and individual-level

information, respectively.

2.3. Genome-wide methods
Polygenic risk scores (PRS; or genetic risk scores) were

initially used in genetic epidemiology to test how well a set

of variables could predict, or distinguish between, case-con-

trol status in a study sample [50–53]. In the context of

GWAS, the risk variables comprise variants known to be

associated with a given trait. Odds ratios (ORs) for these var-

iants from a ‘base’ GWAS are then used to construct scores

for each individual in an independent ‘target’ dataset.
Using logistic (binary trait) or linear (continuous trait)

regression to relate phenotype and score, the proportion of

phenotypic variance explained in the target data by the

base risk variants can be directly estimated.

This framework can also be applied to two different traits

[27,36,54,55]. Using this approach, Purcell and colleagues [54]

showed that risk scores for bipolar disorder are significantly

associated with schizophrenia, and that the variance in phe-

notype captured by the risk variants could be increased by

relaxing the p-value threshold for variant inclusion (rather

than using only genome-wide significant variants). One

reason for this could be that many variants with a true

effect on the phenotype did not reach genome-wide signifi-

cance in the base study. This is especially likely for highly

polygenic traits, for which only a fraction of the heritability

can be explained by currently known risk variants.

Genetic correlation (rg) captures the extent to which gen-

etic factors influence the covariance of two traits. Multivariate

methods for genetic correlation analysis include GCTA

[28,56], BOLT-REML [57] and mvLMM [58]. GCTA and

BOLT-REML use restricted maximum-likelihood estimation

to compute rg between two traits of any type (i.e. two binary,

two continuous, or one binary and one continuous), while the

mvLMM algorithm is more similar to GEMMA and can only

accommodate normally distributed traits. Individual-level

genotype data are required as input, and samples need to

have phenotype values for both traits analysed. For disease

traits, overlap between the cases and controls for each trait

should be negligible. While all three methods use similar

algorithms, BOLT-REML and mvLMM are more efficient

than GCTA in terms of run time and memory usage [57,58].

More recently, a univariate method for genetic correlation

analysis, cross-trait LD score regression (LDSC), requiring

only summary statistics, has been developed [44,59]. Like its

multivariate counterparts, LDSC can handle any combination

of traits and can adjust for sample overlap. The method

requires the use of a reference panel for LD estimation. This

is of particular importance when analysing distinct GWAS

performed on populations of different ancestries. The LD

Hub database, which acts as both a central aggregation of

public summary statistics and an online interface for LDSC,

enables systematic comparisons between a range of traits

[60]. As the authors of LDSC point out, it is important to dis-

tinguish genetic correlation from pleiotropy [44]. A near-zero
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estimate of genetic correlation between two traits does not

necessarily mean that they share no common risk loci. For

example, there could be no directionality to their genetic

relationship (i.e. at some shared loci the risk allele is the same

for both traits, while at others the risk allele for one trait is pro-

tective of the other). An example of the latter scenario is the

rs7501939 variant in TCF2, for which the C allele confers

increased risk for prostate cancer and decreased risk for type

2 diabetes [61]. As for PRS, if either or both of the input data-

sets are underpowered, this could also lead to a falsely low

estimate of rg. Conversely, in the case of disease traits, genetic

correlation could be inflated due to ascertainment bias or

misclassification of cases [8].

2.4. Regional methods
The pleiotropic region identification method (PRIMe) [62]

defines regions by designating the most strongly associated

variant among the included traits as a ‘driver’, and all variants

in LD with it as ‘passengers’. The next most strongly associ-

ated variant is then considered: if it has been already

assigned as a passenger, it is skipped; otherwise it is desig-

nated as a driver, and so on. This process is repeated

iteratively until the genome is divided into non-overlapping

blocks consisting of one driver and zero or several passengers.

The pleiotropy index of each region is defined as the number

of traits with association p-values below some threshold in

that region. The statistical significance of the index can be cal-

culated using two separate approaches for traits measured on

overlapping or non-overlapping datasets, respectively.

In 2013 Giambartolomei and colleagues described a Baye-

sian colocalization model to identify genomic regions of

colocalizing expression quantitative trait loci (eQTL) and

GWAS signals [42]. This method was then extended to

account for sample overlap, and implemented in a software

package (GWAS-PW) to enable simplicity of use for the pairwise

comparison of GWAS summary statistics [43]. The model

integrates the effects of all variants in a pre-defined region,

such as approximately independent LD blocks [63]. It gener-

ates posterior probabilities for each of five hypotheses, the

two most relevant being that in a given region the traits

share one causal variant, and that they each have a separate

causal variant. An advantage of this approach over many

variant-level methods is that it evaluates the evidence for

both traits being associated with a given region, thus

making it possible to distinguish from the scenario of one

trait driving an observed signal.

Multivariate methods for locus-based analysis also exist:

Tang & Ferreira [64] extended a previously developed

method using canonical correlation analysis (CCA; see §2.6)

to perform association analysis between two traits and sets

of genetic markers, for example within genes. Further develop-

ment of the method also allowed for multiple gene-multiple

phenotype tests [65]. A recently published method, metaCCA,

performs CCA on summary data from single-trait GWAS at

both a variant- and locus-level (see §2.5) [66]. The use of func-

tional linear models for the analysis of multiple variants and

multiple traits has also been proposed [67]. A limitation of

this and of CCA-based approaches is that they are not appli-

cable to disease or non-normally distributed traits. This was

overcome by Lutz and colleagues [68] by using a permu-

tation-based approach that accommodates any combination

of traits (see §2.6). Finally, mtSET uses a multivariate mixed
model with two variance components to account both for

inter-individual variation (e.g. due to population structure

or relatedness) and for variation among the variants being

tested together [69].

2.4.1. Rare variant tests

The substantial drop in sequencing costs over the past decade

together with the establishment of better reference panels for

imputation have made association studies of low frequency

and rare variants feasible [70,71]. Methods for rare-variant

studies usually group several variants together and perform

an association test with this composite genotype. They are

generally more powerful than testing individual rare variants

[72], and have been the tool of choice for single-trait studies

[73]. Two of the most popular burden test methods are

kernel-based tests (such as SKAT [74]) and collapsing tests

[75]. These and other approaches have been reviewed in

detail elsewhere [73].

While some of the multi-trait methods described above

are applicable to both common and low-frequency markers

[67–69], approaches have also been specifically designed

for rare variants. The methods described below all rely on

individual-level data with phenotypes measured in the

same set of individuals.

Wu and Pankow extended univariate SKAT for the appli-

cation to multiple continuous traits [76]. Another method,

MAAUSS, also builds on the SKAT algorithm, including a

variance-covariance matrix that allows for the joint modelling

of multiple phenotypes [77]. Multiple binary or a mixture of

binary and continuous traits can be analysed by MAAUSS

through integration of the generalized estimating equation

framework (see also §2.6).

In adaptive weighting reverse regression (AWRR) [78],

the genotypes in a set of variants are first combined,

weighted by the strength of association and direction of

effect of each variant; the resulting variable is then regressed

on multiple traits and a score test used to assess significance.

This reverse regression approach is similar to other methods

discussed here (see §2.6), and can incorporate large numbers

of traits of any kind.

2.5. Single-point univariate methods
With the increasing availability of summary data from large-

scale GWAS, an important question has been how to harness

these data to perform pleiotropy analyses. Perhaps the sim-

plest way to search for cross-phenotype effects is to decide

on a p-value threshold and declare all variants that fall below

this threshold for a group of traits as cross-phenotype associ-

ations [8]. However, this approach can be underpowered, as

even with large sample sizes truly associated variants with

sub-threshold p-values will be missed. Consequently, a

number of methods to statistically combine summary data

for multiple traits have been developed (table 1).

2.5.1. Extensions to meta-analysis

In the classical meta-analysis approach, p-values or effect

sizes are combined across multiple studies of the same trait

[89]. For the latter, effects are typically either assumed to be

consistent across studies (fixed effects meta-analysis) or

allowed to vary (random effects meta-analysis). However, a



Table 1. Univariate methods for single-point association analysis and variant prioritization. impl., implementation.

method ref. PMID year data n traits trait type impl.

CPMA [79] 21852963 2011 p-values .2 any R

ASSET [45] 22560090 2012 betas, SEs �2 any R

CPASSOC [80] 25500260 2015 Z-scores �2 any R

MultiMeta [54] 25908790 2015 betas, SEs �2 any R

MTAG [81] NA 2017 betas, SEs �2 any Python

cFDR [82] 25658688 2015 p-values 2 any R

Bayesian overlap [83] 26411566 2015 p-values 2 any NA

metaCCA [66] 27153689 2016 betas, SEs �2 any R

GPA [84] 25393678 2014 p-values 2 any R

GPA-MDS [85] 27868058 2016 p-values �2 any R

fastPAINTOR [86] 27663501 2017 Z-scores �2 any Cþþ
EPS [87] 27153687 2016 p-values 2 any Matlab

RiVIERA-MT [88] NA 2016 p-values, betas, SEs �2 any R
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genetic variant might have the opposite effect on two traits.

While this can be circumvented by applying a directional-

ity-agnostic p-value-based meta-analysis, there are some

limitations, such as the inability to obtain an overall effect

estimate [89]. Therefore, these standard approaches are best-

suited to groups of traits/disorders assumed to have similar

underlying biological mechanisms [27]. The meta-analysis

framework has been adapted to accommodate this and other

issues that arise when combining several different traits.

Cotsapas and colleagues developed a cross-phenotype

meta-analysis (CPMA) method that tests for the presence of

two or more trait associations at a variant [79]. This has the

advantage of protecting against the scenario of one trait driv-

ing the association. CPMA only requires p-values as input

and is thus robust to heterogeneous effect directions. Since

CPMA compares the distribution of p-values for all traits at

a variant to the null hypothesis of uniformity, it is well

suited for moderate to large numbers of phenotypes, but

less so for pairs of traits.

In a generalization of fixed-effects meta-analysis, all

possible subsets of traits are evaluated to identify the one

with the maximum absolute Z-statistic at a variant [45]. The

approach, termed ASSET, takes effect estimates as input,

and can also be used to identify disease subtypes within

case-control data. Extensions were also proposed to account

for sample overlap and effect heterogeneity between traits

[45]. The method expects all traits to be of the same type,

and the number of tests performed grows exponentially

with the number of traits, decreasing power. Using ASSET,

investigators have identified three loci associated with five

autoimmune disorders, as well as risk loci associated with

different cancers [90].

Zhu and colleagues developed two meta-analysis test

statistics to detect cross-phenotype associations assuming

homogeneous and heterogeneous effects across studies,

respectively [80]. The tests are implemented in the R package

CPASSOC, and work with both univariate (i.e. one trait per

cohort) and multivariate summary statistics (i.e. several

traits measured in each cohort). CPASSOC requires the

specification of an inter-cohort correlation matrix. Since the

true phenotypic correlation is unknown in the absence of
raw data, this can be derived from summary statistics

and—similarly to approaches outlined above—accounts for

overlapping samples. Applying CPASSOC to anthropometric

trait summary data from the GIANT consortium identified

one novel genome-wide significant locus within the TOX
gene missed by conventional meta-analysis [91].

A recently published method, MultiMeta, enables the joint

analysis of summary statistics obtained from multivariate

GWAS, such as multivariate LMM analysis (see §2.6) [92].

MultiMeta generalizes single-trait inverse variance weighted

meta-analysis to allow each variant to have a vector of

effect estimates (one for each trait included).

The Multi-Trait Analysis of GWAS (MTAG) tool takes a

slightly different approach to the above-mentioned methods:

in a generalization of inverse variance weighted meta-analysis,

it incorporates effect estimates from multiple traits and outputs

adjusted effect estimates for each trait separately [81]. Sample

overlap is accounted for by LD score regression. If there is no

genetic correlation between any of the traits, and each trait

has been measured on an independent sample, the MTAG

effect estimates are equivalent to the single-trait estimates.

2.5.2. Bayesian methods

Conditional false discovery rate (cFDR) can detect variants

associated with one ‘principal’ trait, given its p-values of

association with both the ‘principal’ and the ‘conditional’

trait fall below a certain p-value threshold [82]. An extension

to allow for shared controls has also been developed [46].

Conditional FDR can be used as a variant prioritization

tool, to detect additional associated variants with one trait

by leveraging information on their association with a

second trait; furthermore, the method can serve to detect

cross-phenotype effects explicitly by taking the maximum

of the cFDRs computed for each of two traits [93].

Asimit and colleagues developed a Bayesian approach

that adjusts for sample size (and, consequently, power) differ-

ences between studies [83]. Based on p-values from two input

studies, the method tests for an excess of shared signals and

can be used to identify a list of variants with evidence of

association for both traits.
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2.5.3. Other approaches

In metaCCA, a method based on canonical correlation analy-

sis (CCA), single-trait summary statistics together with

genotype data from a reference panel are used to reconstruct

the genotype–phenotype covariance matrix for each study

[66]. Weighted averages of these matrices are then combined

across studies, and can be used to perform a multi-trait meta-

analysis at a single variant or a genetic locus (based on LD).

2.5.4. Variant prioritization and fine-mapping

In order to aid variant prioritization and fine-mapping, the

integration of GWAS data and functional annotations (such

as chromatin marks) as well as transcriptomic data has

become popular [94–96]. Some methods now allow for the

inclusion of multiple GWAS of one or several traits.

The first tool allowing for the simultaneous modelling of

multiple GWAS and annotation data was GPA [84]. The

model tests for enrichment of annotations of (multi-)trait

associated variants in functional datasets (e.g. eQTL or his-

tone modifications). Although it can be easily extended to

more than three traits/GWAS datasets, the degrees of free-

dom of the resulting chi-squared test grow with every trait

tested, leading to a loss of power. As only binary annotations

can be included in this model, the investigators built a revised

approach, GPA-MDS, which combines multidimensional

scaling with the GPA algorithm to draw visual representations

of the relationships between multiple phenotypes [85].

FastPAINTOR, an extension to the single-trait fine-

mapping algorithm PAINTOR [97], additionally models the

LD structure at a locus which can improve accuracy [86]. Follow-

ing a similar model to GPA, a Bayesian method entitled EPS also

accounts for LD, but infers association at the gene- rather than

the variant-level, and can incorporate gene expression data

from a large number of tissues [87]. RiVIERA-MT further

allows for multiple causal variants within one locus [88].

2.6. Single-point multivariate methods
As the availability of large-scale genetic datasets with multiple

phenotype measurements increases, the focus of method

development for multi-trait analyses has shifted towards

multivariate methods that use individual-level data rather

than summary statistics (table 2).

These approaches are generally more powerful than com-

bining test statistics from univariate GWAS, as the inter-

trait covariance can be accounted for [117,118]. In this section

we will outline some of the methods available to conduct

cross-phenotype analyses with individual-level data. Unless

otherwise stated, all methods described in this section are

based on multivariate models. For a more detailed discussion

of the statistical properties of different multivariate approaches

we refer the reader to two excellent reviews [117,119].

2.6.1. Dimension reduction

One efficient way to deal with multivariate phenotypes is

to first apply a dimension reduction technique that collapses

the individual trait values, and then perform an association

between genotype and this new set of variables. Principal

component analysis (PCA) derives linear combinations of

the phenotypes that explain the greatest possible covariance
between them [117]. This approach was first used in linkage

studies with multiple trait measurements, where principal

components (PCs) were calculated to maximize the heritabil-

ity in the data [120]. Extensions of this method were

developed for family [98] and population-based studies

[99]. The latter method, called PCHAT, requires splitting of

the study sample into a ‘training set’ to derive the PCs and

an ‘analysis set’ to perform the association, which can lead

to a loss of power.

Recently, it has been shown that PCs can also be com-

bined across individual multi-trait studies for meta-analysis.

Average PCs are derived from the weighted means of

the loadings (i.e. the linear combination of traits) in each

study [100].

In contrast to PCA, CCA derives linear combinations of

the traits that explain the greatest amount of covariance

between a given variant and the traits. The first implemen-

tation of CCA for multivariate phenotypes was developed

by Ferreira & Purcell [101], and later extended for

gene-based analyses [64,65] (see §2.4).

2.6.2. Multivariate mixed models

Linear mixed models (LMMs) are an extension of standard

regression analysis incorporating both fixed and random

effects, and have gained popularity in GWAS due to their

ability to handle relatedness among individuals [121,122].

Multivariate LMMs can be used for association testing with

multiple phenotypes. They model association between a gen-

etic marker and the traits as the fixed effect, and the inter-trait

covariance as the random effect [117]. While multivariate

mixed models are generally more powerful than standard

univariate association tests, they perform les well when the

traits under consideration are only weakly correlated [102],

and assume phenotypes to be normally distributed, which

does not allow for the inclusion of disease traits.

Korte and colleagues first applied multivariate LMMs

to pairwise quantitative trait measurements in a human

cohort [102]. The method, MTMM, showed increased power

to detect loci compared with single-trait LMMs, and can also

be used to decompose overall trait covariance into genetic

and environmental factors.

Fitting multivariate LMMs requires a computationally

intensive parameter estimation step, which until recently

impeded their application to more than two traits

[58,102,103]. A multivariate extension of the GEMMA

algorithm [103] can accommodate a moderate number of phe-

notypes (between 2 and 10) and also shows substantially

faster computation times compared with MTMM. A further

improvement was achieved by Furlotte & Eskin with their

matrix-variate linear mixed model (mvLMM), with runtime

scaling linearly, rather than cubically, with the number of

samples included [58]. The same research group also devel-

oped GAMMA, a mixed model that accurately adjusts for

population structure, with computation time scaling linearly

with the number of phenotypes, enabling it to jointly analyse

large numbers of traits (more than 100) [104].

2.6.3. Generalized estimating equations

Generalized estimating equations (GEEs) are a multivariate

method to jointly analyse non-normally distributed pheno-

types [119,123]. As the standard GEE approach requires



Table 2. Multivariate methods for single-point association analysis. impl., implementation; ND, normally distributed.

method ref. PMID year data n traits trait type impl.

FBAT-PC [98] 16646795 2004 raw �2 any C

PCHAT [99] 17922480 2008 raw �2 any Fortran

AvPC [100] 27876822 2016 raw �2 any NA

mvPlink [101] 19019849 2009 raw �2 any Cþþ
MTMM [102] 22902788 2012 raw 2 ND R

GEMMA [103] 24531419 2014 raw �2 ND C/Cþþ
mvLMM [58] 25724382 2015 raw �2 ND Python

GAMMA [104] 27770036 2016 raw �2 ND R

B_EGEE [105] 18924135 2009 raw 2 any Fortran

PleioGRiP [106] 23419378 2013 raw 2 binary Java

mvBIMBAM [107] 23861737 2013 raw �2 ND C/Cþþ
Kendall’s tau [108] 20711441 2010 raw �2 any NA

MultiPhen [109] 22567092 2012 raw �2 any R

ATeMP [110] 26479245 2015 raw �2 any NA

BAMP [111] 26493781 2015 raw �2 any NA

TATES [112] 23359524 2013 p-values �2 any R/Fortran

extension to O’Briens [113] 20583287 2010 raw �2 any upon request

Trinculo [114] 26873930 2016 raw �2 categorical C

log-linear model [115] 21849790 2011 raw �2 binary NA

PET [116] 25044106 2014 raw 2 ND R

PLeiotropySNP [68] 27900789 2016 raw �2 any R
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traits to have the same underlying distribution, combining

binary and continuous traits is not straightforward. B_EGEE

was developed to overcome this constraint, using a regression

procedure to incorporate two models with different under-

lying link functions into a unified equation system [105].

This method is implemented for two traits, although the

authors suggest that the incorporation of multiple traits be

possible [105]. While not as powerful as LMMs, GEEs have

been used in family-based tests for both single- and multi-

trait analysis due to their ability to model the random effects

of relatedness [124,125].

2.6.4. Bayesian methods

Bayesian statistics allow for a model comparison between

several alternative hypotheses, making them an attractive

tool for pleiotropy analysis [42,43,107,126]. PleioGRiP is

based on naive Bayesian classifiers that can be used to both

test for association of a variant with two or more phenotypes

and to perform genetic risk prediction [106,126].

A model-selection framework proposed by Stephens

returns Bayes factors for each possible partitioning of pheno-

types into one of three categories: unassociated, directly

associated, or indirectly associated with a genetic marker

[107]. The weighted average of these Bayes factors gives the

overall evidence that any phenotype be associated. At mar-

kers where the evidence against this global null is strong,

the individual Bayes factors can be used to determine which

traits are likely to drive the association. The framework is

implemented in the software MVBIMBAM and has been

used to identify variants associated with low- and
intermediate-density lipoprotein subfractions [127]. While it

has the advantage of accepting either individual-level or sum-

mary data as input, it is not applicable to non-normally

distributed traits.

A Bayesian multivariate regression framework was

also implemented in the widely used GWAS software

SNPTEST [128].

2.6.5. Other approaches

A non-parametric score test based on Kendall’s tau makes no

assumption about the distribution of traits being analysed,

and can thus incorporate any type of trait [108]. A limitation

is the inability to adjust for covariates.

Another way to allow for the inclusion of traits with

mixed distribution is to reverse the regression of standard

GWAS. MultiPhen performs ordinal regression of the geno-

type (number of minor alleles at a marker) on multiple

phenotypes and tests for association using a likelihood ratio

test [109]. Alternatively, a score statistic can be used to test

for association, which is computationally more efficient and

equivalent to Kendall’s tau. To prevent loss of power for

non-normally distributed phenotypes, ATeMP first standar-

dizes traits using a normalized rank or ordinal residual

transformation [110]. Alternatively, allele-specific information

can be related to trait values in binomial regression [111].

The latter approach, termed BAMP, is slightly more powerful

in the case of non-normally distributed phenotypes [111,129].

Trait-based Association Test that uses Extended Simes

procedure (TATES) is a model-free approach that combines

univariate p-values of different traits while taking into
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account the correlation between the traits [112]. Even though

the test is based on summary statistics, individual-level data

need to be available to calculate the correlation matrix. All

samples are expected to be phenotyped across all traits.

Based on a univariate method developed by O’Brien [113],

which derives a weighted sum of univariate test statistics,

Yang and colleagues proposed two approaches that allow

for effect heterogeneity among studies [130]: a sample-splitting

approach, similar to that used in PCHAT [99], and a cross-

validation approach. An advantage of this framework is that

it can deal with missing phenotype data well (i.e. not all

traits being measured on the same set of samples).

Multinomial models are a generalization of logistic

regression, where the outcome variable (in this context the

phenotype) can take more than two possible outcomes

[131]. Such models are applicable to disease traits where

cases can be classified into two or more sub-classes, for

which risk variants might exhibit heterogeneous effects.

While not technically multivariate, this type of analysis

requires individual-level data. Bayesian and frequentist mul-

tinomial regression has been implemented in the software

package TRINCULO [114]. The Bayesian approach was recently

used to determine which of a group of six immune disorders

was associated with previously identified risk loci [132].

2.6.6. Explicit tests of pleiotropy

Model selection procedures are effective tools to discern

associated from non-associated traits. A log-linear framework

proposed by Lee and colleagues [115] distinguishes between

different causal models of association, and can identify effects

specific to a subgroup of individuals using information cri-

teria. The method is only applicable to disease traits, and

has been used to identify subtype-specific effects in migraine

[133] and schizophrenia [134], as well as cross-disorder

associations in psychiatric diseases [28,135]. Information

criteria can also be used in an ordinal regression frame-

work, such as MultiPhen [109], to identify the group of

traits driving an association [129].

The pleiotropy estimation and test (PET) tool determines

the pleiotropic effect of a variant on two continuous traits as

the proportion of inter-trait correlation explained [116]. This

quantity is assessed against the null hypothesis that neither

trait is influenced by the variant.

Lutz and colleagues extended the above method for non-

continuous traits and for more than two phenotypes, as well

as for rare variant or region-based tests (see also §2.4) [68].

The approach is based on performing standard univariate

association analyses for each phenotype, followed by permu-

tations of the phenotypes; evidence for pleiotropy is assessed

by two alternative ways each of which compare the univari-

ate p-values to the permutation-derived ones. The method

tests for evidence against the null hypothesis of no associ-

ation with all included phenotypes, and thus excludes the

possibility of a signal being driven by one trait only. There-

fore, if all but one of the analysed traits are associated with

a variant or gene, the method will not reject the null.

2.7. Single-point methods summary
Several comparisons of different multi-trait methods have

been conducted to date, testing power and type I error

rates, as well as computational performance under different
scenarios [118,129,136–138]. Since each report focused on a

different combination of methods, the emerging picture

seems to be that the most suitable method depends on

individual study set-up.

Multivariate approaches are generally more powerful

than univariate methods [138], unless only one trait is associ-

ated with a genetic marker or all traits are very highly

correlated [102]. It is therefore advisable to perform both

multivariate and univariate association tests in a complemen-

tary way [103]. This will not only enable the detection of

additional signals, but also aid the interpretation of a multi-

variate association (i.e. which trait(s) is/are driving the

signal). Since only a handful of currently available methods

explicitly test for cross-phenotype effects, considering uni-

variate association statistics also guards against false

positive multi-trait associations.

When combining summary statistics across multiple traits

in a univariate fashion, an important consideration is the

power of individual studies. As for regional or genome-

wide methods, single-point methods will fail to detect

cross-phenotype associations if the input datasets are under-

powered. Another important aspect is the ancestry of input

study samples, especially for methods requiring the specifica-

tion of reference panels [66], for which combining studies

from different populations might lead to spurious results.

The implementation and computational efficiency of

different methods are additional important considerations.

This is especially relevant to multivariate methods using indi-

vidual-level genotype data, which generally require more

memory and processing power. Most of the multivariate

approaches outlined above have been tested on small to mod-

erate sample sizes (n , 5000), making it hard to predict their

performance on large datasets. For example, methods

implemented in the programming language R will generally

be less memory-efficient than programs implemented in C

or Cþþ.
2.8. Detecting mediated pleiotropy
Determining whether the correlation between two traits is

due to a causal link (i.e. trait 1 is a causal risk factor for

trait 2) or due to confounding factors such as environmental

exposures can be achieved through Mendelian randomization

(MR). Notably, while most methods outlined in this review

aim to detect biological pleiotropy and are confounded by

mediated pleiotropy, the opposite is true for MR. MR uses

information on the association of one or several genetic mar-

kers—instrumental variables (IVs)—with each trait to infer

whether or not trait 1 causally influences trait 2 [11,139–

142] (figure 2). An early example of MR is a study published

in 2005 which concluded that, contrary to prior belief,

C-reactive protein levels were not causal for metabolic syn-

drome [11]. If both traits were measured on the same

samples an MR can be performed via two-sided least-squares

analysis, where trait 1 is first regressed onto the IVs, and trait

2 is then regressed on the predicted values of trait 1 from the

first regression. The effect size derived from the second

regression is the MR estimate. If only summary data are avail-

able, or the associations for each trait were derived from

different studies (referred to as two-sample MR), the Wald

estimator can be used instead: this is the ratio of the effect

of the variant on trait 1 over its effect on trait 2 [143].



trait 1

trait 2

IV

confounders

Figure 2. Directed acyclic graph of the Mendelian randomization model.
IV, instrumental variable.
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In order to be a valid IV, three key assumptions about the

genetic marker must be met: first, the marker is associated with

trait 1; second, the marker is not associated with any confound-

ing variables, such as environmental exposures; and third,

the marker is not associated with trait 2 when conditioning

on trait 1. The first two assumptions are usually easy to fulfil

in a GWAS context. The first assumption also implies that

the function of the gene or marker used as an IV is known

a priori. Consequently, MR is not a method to detect new

genotype–phenotype associations [141]. Some consideration

should be given to assumption 2, which can be violated in

the case of population stratification [141,144]. Arguably the big-

gest uncertainty is the third assumption, which will not hold if

the variant or variants used independently affect both trait 1

and trait 2 (i.e. if the variants are truly pleiotropic).

To overcome this limitation, several approaches have been

proposed to both detect and subsequently adjust for pleio-

tropy in MR settings [145–147]. The inclusion of multiple

independent variants is a prerequisite for such analyses: if

all of the variants satisfy the IV assumptions there should

be no heterogeneity between their individual MR estimates

[141,145]. In other words, in the case of no pleiotropy, MR

estimates of each variant will only vary by chance.

If individual-level data are available and both traits have

been measured on the same sample, the Sargan test can be

used to assess evidence against the null of all MR estimates

being the same [144]. For two-sample MR, an adaptation of

inverse-variance weighted meta-analysis can be used to com-

bine Wald estimators across several variants [148]. This

approach assumes that the three IV assumptions hold. The

Cochran Q-statistic and the related I2 index can be used to

test for heterogeneity between individual IV estimates [145].

In Egger regression, variant-trait 2 effect sizes are regressed

on the variant-trait 1 effect sizes with an unconstrained

intercept [147]. An intercept term significantly different

from zero is indicative of pleiotropy. If the distributions of

the variant(s)-trait 1 effects and variant(s)-trait 2 effects are

independent, the effect estimate obtained from Egger

regression is equivalent to the MR estimate obtained from

inverse variance weighted analysis and can thus be used to

infer causality between trait 1 and 2. Recently, Bowden and

colleagues proposed a summary data-based step-wise analy-

sis framework which applies all three of the above methods

to differentiate between the scenarios of no pleiotropy,

pleiotropy without heterogeneity and pleiotropy with hetero-

geneity [146]. By applying this framework to summary data

from two GWAS the authors showed that the observed

association between plasma urate levels and cardiovascular

disease was likely to be due to pleiotropy rather than a
causal link, as evident from heterogeneity in the MR

estimates from the 31 variants analysed.

2.9. Detecting spurious pleiotropy
In addition to methods for detecting cross-phenotype effects,

a recently published tool (BUHMBOX) aims to distinguish

heterogeneity in disease cases from true pleiotropy between

two diseases [149]. It compares risk allele frequency of var-

iants associated with one disease (D1) in the cases of a

second disease (D2). By deriving a test statistic from the cor-

relation matrix between all risk loci, BUHMBOX tests

whether the D1 risk alleles are enriched in a subgroup of

D2 cases (high correlation) or whether they are evenly distrib-

uted across all D2 cases (low correlation). The former yields a

significant test statistic and is indicative of heterogeneity. On

the other hand, a non-significant statistic could be the result

of either true pleiotropy or insufficient power.

To our knowledge, BUHMBOX is currently the only

method aimed at identifying spurious pleiotropy. BUHM-

BOX is not agnostic (i.e. D1 and D2 need to be specified by

the user) and it is only applicable to disease traits.
3. Future directions
Pleiotropy will continue to grow as a key research area of

human genetics as data availability increases.

A key question that has been the subject of debate in evol-

utionary biology [6] and is likely to receive more attention in

human genetics is how to define a trait. For example, if two

different anthropometric traits always covary, is it accurate

to treat them as separate traits or are they actually two

measurements of the same underlying biological phenotype?

Such questions will be especially important in multivariate

models where the inclusion of highly correlated traits can

be costly in terms of power.

A further consideration is whether functional measure-

ments, such as gene or protein expression, constitute traits

in themselves or simply intermediate steps between genes

and phenotype. This is especially important when attempting

to draw biological conclusions from multi-trait analyses. MR

approaches will be necessary to correctly infer causality, and

indeed some work has already been done with regard to this

question [150].

It is increasingly common for researchers to be confronted

with sample numbers in the hundreds of thousands, and an

important next step will be to develop fast and efficient algor-

ithms with good scalability. In contrast to single-trait GWAS,

where analysis approaches are now fairly standardized,

multi-trait methods vary considerably in the statistical

approaches they employ. Ensuring comparability and replic-

ability of results will be a key challenge in pleiotropy research

moving forward.

As data on cross-phenotype associations accumulate and

our understanding of molecular links between diseases grows,

these insights will be invaluable for drug development and

repurposing, and for personalized medicine.
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