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Gene-based tests are valuable techniques for identifying genetic
factors in complex traits. Here, we propose a gene-based testing
framework that incorporates data on long-range chromatin inter-
actions, several recent technical advances for region-based tests,
and leverages the knockoff framework for synthetic genotype
generation for improved gene discovery. Through simulations
and applications to genome-wide association studies (GWAS) and
whole-genome sequencing data for multiple diseases and traits,
we show that the proposed test increases the power over state-
of-the-art gene-based tests in the literature, identifies genes that
replicate in larger studies, and can provide a more narrow focus on
the possible causal genes at a locus by reducing the confounding
effect of linkage disequilibrium. Furthermore, our results show
that incorporating genetic variation in distal regulatory elements
tends to improve power over conventional tests. Results for UK
Biobank and BioBank Japan traits are also available in a publicly
accessible database that allows researchers to query gene-based
results in an easy fashion.

gene-based association tests | long-range chromatin interactions | knockoff
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Gene-based association tests are commonly used to identify
genetic factors in complex traits. Relative to individual vari-

ant or window-based tests, they have appealing features, includ-
ing improved functional interpretation and potentially higher
power due to lower penalty for multiple testing. Due to the
recent advances in massively parallel sequencing technologies,
a large number of gene-based tests have been proposed in the
literature to test for association with genetic variation identified
in sequencing studies (1–6). One important limitation of the
current gene-based tests is that they often fail to incorporate
the epigenetic context in noncoding regions. Moreover, how to
best analyze the noncoding part of the genome to increase power
remains unclear. Recently, several sliding window approaches
have been proposed to scan the genome with flexible window
sizes and appropriate adjustments for multiple testing, while
accounting for correlations among test statistics (7, 8). However,
these approaches are essentially scanning the genome in a one-
dimensional (1D) fashion and fail to take into account the three-
dimensional (3D) structure of the genome (9). Furthermore, be-
cause they scan the genome agnostically, the burden of multiple
testing is high, which may lead to low power to identify true
associations. These 1D approaches also suffer from interpretabil-
ity issues similar to genome-wide association studies (GWAS)
and therefore require follow-up analyses to be performed in
order to identify the target genes. Several existing tests, such as
multimarker analysis of genomic annotation (MAGMA), high-
throughput chromosome conformation capture (Hi-C)-coupled

MAGMA (H-MAGMA), and an omnibus test in the variant-
set test for association using annotation information framework
(STAAR-O) (10–12), attempt to link variants to their cognate
genes based on physical proximity or chromatin-interaction data.
We will compare our proposed tests to these existing approaches
both conceptually and empirically, and we will show that our tests
are more flexible and powerful than these existing tests. Further-
more, when individual-level data are available, the proposed tests
can produce a more narrow list of associated genes at a locus by
reducing the confounding effect of linkage disequilibrium (LD),
a unique aspect of our gene-based test.

A related and popular gene-based strategy is the transcriptome-
wide association studies (TWASs) (13, 14) that use GWAS
data for a specific trait combined with genetic-variation gene-
expression repositories, such as GTEx (15), to perform gene-
based association tests. However, TWASs are limited to
expression quantitative trait loci (eQTLs) being present in the
reference datasets, and the majority of genetic associations
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cannot be clearly assigned to existing eQTLs (16, 17). Therefore,
they may have reduced power to identify the relevant genes for
the trait of interest.

Regulatory elements, including enhancers and promoters, play
an important role in controlling when, where, and to what degree
genes will be expressed. Most of the disease-associated variants
in GWAS lie in noncoding regions of the genome, and it is
believed that a majority of causal noncoding variants reside
in enhancers (18). However, identifying enhancers and linking
them to the genes they regulate is challenging. A number of
methods have emerged in recent years to identify promoter–
enhancer interactions. These techniques range from chromatin
conformation capture (3C), which is limited to the detection
of a single interaction, to circular chromosome conformation
capture (which can detect all loci that interact with a single locus),
to many-to-many mapping technologies possible using targeted
enrichment. Hi-C maps the complete DNA interactome and
elucidates the spatial organization of the human genome (19–21).
Hi-C provides direct physical evidence of interactions that may
mediate gene-regulatory relationships and can aid in identifying
putative regulatory elements for a gene of interest. However,
due to the prohibitive sequencing costs of the Hi-C experimental
technique, it is challenging to obtain high-resolution (e.g., 1 Kb)
Hi-C data in a large number of cell types and tissues at multiple
developmental times.

We propose here comprehensive gene-based association tests
for common and rare genetic variation in both coding and non-
coding regions, putative regulatory elements, and which incor-
porate several recent advances for region-based tests, including
1) scanning the genic and regulatory regions with varied win-
dow sizes; 2) the aggregated Cauchy association test (ACAT)
to combine P values from single-variant, burden, and dispersion
(sequence kernel association test [SKAT]) tests; 3) incorporation
of multiple functional annotations; and 4) the saddlepoint ap-
proximation for unbalanced case-control data (22–25). To fur-
ther improve the power and the ability to prioritize putative
causal genes at significant loci when individual-level data are
available, we leverage a recent development in statistics, namely,
the knockoff framework for knockoff genotype generation (26)
that helps control the false discovery rate (FDR) under arbitrary
correlation structure and attenuates the confounding effect of
LD. One can think of the knockoff genotypes as synthetic, noisy
copies of the original genotypes, which resemble the original
data in terms of LD structure, but are conditionally independent
of the trait of interest, given the original genotypes. Although
conventional methods, such as the Benjamini–Hochberg (BH)
procedure, are also designed to control the FDR (27), they
cannot guarantee FDR control at the target level with arbi-
trarily correlated P values. Furthermore, unlike the knockoff
framework implemented here, the conventional methods do not
naturally account for correlations due to LD. The proposed
gene-based test is related to a recently proposed window-based
test, KnockoffScreen (8). Specifically, we employ the knockoff
generation algorithm for genotype data that we have introduced
in KnockoffScreen (8) and develop knockoff-based inference
for gene-based tests. We demonstrate below that the proposed
test has important advantages compared with the window-based
test KnockoffScreen in terms of controlling the FDR at gene
level. While KnockoffScreen can identify significant windows
with valid FDR control at window level, functional interpretation
of significant windows is still needed, which means that post hoc
analyses need to be done to link those windows to relevant genes.
However, as we show in simulations, this procedure can lead to
highly inflated FDR at gene level.

We evaluate the performance relative to existing methods
using simulations and applications to multiple studies, including
GWAS studies for neuropsychiatric and neurodegenerative dis-
eases, whole-genome sequencing studies for Alzheimer’s disease
(AD) from the Alzheimer’s Disease Sequencing Project (ADSP),

and for lung function from the National Heart, Lung, and Blood
Institute Trans-Omics for Precision Medicine (TOPMed) Pro-
gram. We also provide results of applications to UK Biobank and
BioBank Japan binary and continuous traits.

Results
Overview of the Proposed Gene-Based Association Tests. We pro-
vide here a brief overview of the proposed gene-based tests that
aim to comprehensively evaluate the effects of common and
rare, coding, and proximal and distal regulatory variation on a
trait of interest. A workflow depicting the overall gene-based
testing approach proposed here is shown in Fig. 1. Briefly, we
build our final test, GeneScan3DKnock, progressively, starting
with a test focused on scanning the gene body region (i.e., the
interval between the transcription start site [TSS] and the end
of the 3′ untranslated region [UTR]) with varied window sizes.
We refer to this test as GeneScan1D. We extend this test by
incorporating genetic variants residing in putative regulatory
elements, such as promoters and enhancers. In particular, we
use chromatin immunoprecipitation sequencing (ChIP-seq) peak
data extracted from the ChIP-Atlas database to identify pro-
moter regions and data from the GeneHancer database to link
enhancers to their target genes (28). We also use the activity-
by-contact (ABC) model to predict functional enhancer–gene
connections for five cell types and tissues (29). This is the GeneS-
can3D test. Finally, when individual-level data are available, we
implement the knockoff framework for a more powerful gene-
discovery and fine-mapping approach and refer to this test as
GeneScan3DKnock.

We take advantage of recent advances in region-based tests
for sequencing data (4, 22, 24) to perform computationally ef-
ficient and comprehensive tests with genetic variation in a gene
(including variants located in proximal and distal regulatory
elements), while scanning the gene with a range of window sizes
for improved power. The framework allows for the incorporation
of a variety of functional genomics annotations as weights for
individual variants included in the tests. Furthermore, an aspect

Enhancer R

- 5-Kb buffer region

AA GeneScan1D:

Gene + 5-Kb buffer region
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5-Kb
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Scan gene buffer regions using 1-Kb, 5-Kb and 10-Kb 1D windows

BB GeneScan3D:
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Scan gene buffer regions, then generate 3D windows by 
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CC GeneScan3DKnockck: Knockoff-enhanced gene-based test for causal gene
discovery, priori�ze poten�al causal genes

Fig. 1. Workflow of the proposed gene-based tests. (A) GeneScan1D, a 1D
scan of the gene and buffer region. (B) GeneScan3D, a 3D scan of the gene
and regulatory elements linked to it. (C) GeneScan3DKnock, the knockoff-
enhanced test, implementing a knockoff-based version of GeneScan3D.
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of our testing framework is the derivation of knockoff statistics
based on the generation of knockoff (synthetic) genetic data that
resemble the original genotypes in terms of correlation structure,
but are conditionally independent of the outcome variable given
the true genotypes (8, 26, 30). The knockoff genotypes are es-
sentially noisy copies of the original genotypes and serve as neg-
ative controls for the original genotype data; they help to select
important genes while controlling the FDR. GeneScan3DKnock
computes for each gene a knockoff statistic W that measures
the importance of each gene (similar to a P value) and then
uses the knockoff filter to detect genes that are significant at
a specified FDR target level (26). We also compute a q value
for each gene. A q value is similar to a P value, except that
it measures significance in terms of FDR rather than family-
wise error rate (FWER) and already incorporates correction for
multiple testing. The knockoff version of the gene-based test
has unique features relative to the standard gene-based tests,
including improved power and the ability to prioritize causal
genes over associations due to LD. The details on these specific
tests can be found in Materials and Methods.

We compare with the nearest competitor gene-based tests
in the literature, namely, MAGMA/H-MAGMA (10, 11),
TWAS/FUSION (14), and STAAR-O (12). We also show
comparisons with the recently proposed window-based test
KnockoffScreen (8).

Simulation Studies.
Power and type I error-rate evaluation for a single gene. We
conducted simulation studies in order to 1) examine the type I
error rates of the proposed tests, GeneScan1D and GeneScan3D,
under different significance levels; and (2) evaluate the potential
power gain by incorporating the regulatory elements. For power
comparisons, we considered the nearest competitor gene-based
tests, MAGMA/H-MAGMA and STAAR-O.

For type I error-rate simulations, we used real Genetic
Epidemiology of COPD (COPDGene) TOPMed whole-genome
sequencing data, with n = 5,593 for a continuous trait and
n = 4,450 for a binary trait. We randomly selected 10 genes
(average gene length 25 Kb), and for each selected gene, we
randomly selected R = 2 GeneHancer and ABC enhancers
(average enhancer length 1.35 Kb). For each selected gene and
the corresponding enhancers, we used the real genotype data,
while the phenotype data are simulated as below:

• For a continuous trait: Yi = Zi + εi ,
• For a binary trait: logit(P(Yi = 1| Zi)) = α0 + Zi ,

whereZi ∼ N (0, 1) is a covariate and εi ∼ N (0, 1) is the standard
normal error; Zi and εi are independent. For the binary trait,
an equal number of cases and controls were simulated. For
GeneScan1D and GeneScan3D, we used two window sizes, 1
Kb and 5 Kb, to scan the gene region. All variants and common
variants only were considered in the type I error-rate simulation
studies.

To evaluate power and compare with existing tests such as
MAGMA/H-MAGMA and STAAR-O, we used the same whole-
genome sequencing data. We randomly selected 10 genes (av-
erage length 25 Kb), and, for each selected gene, we randomly
selected R = 10 GeneHancer and ABC enhancers (average en-
hancer length 1.87 Kb). Power was computed for each gene
separately, and the average over the 10 genes was reported. We
made use of the real genotypes for the selected genes plus and
minus a 5-Kb buffer region and for the corresponding enhancers.
For each gene, the phenotype data were generated as follows:

• For a continuous trait: Yi = β1Gi1 + · · ·βsGis + Zi + εi ,
• For a binary trait: logit(P(Yi = 1| Zi ,Gi)) = α0 + Zi +

β1Gi1 + · · ·βsGis ,

where Gij denotes the genotypes of randomly selected causal
variants and βj ’s are the corresponding effect sizes. For the
binary trait, an equal number of cases and controls were
simulated. We set 2% of the variants in the gene and buffer
region to be causal, all within a 2-Kb signal window. For each
enhancer, we set 2% (uniformly distributed) variants to be
causal. The effect size of the causal variant j was assumed
to be βj = c|log10MAFj |, where MAF is the minor allele
frequency. We assumed c = 0.25 for the continuous trait and
c = 0.6 (e.g., OR = 6.05, when MAF = 0.001) for the binary
trait.

For GeneScan1D and GeneScan3D, we used three window
sizes for scanning: 1, 5, and 10 Kb. We applied MAGMA on the
gene plus and minus the 5-Kb buffer region. For GeneScan3D
and H-MAGMA, we incorporatedR = {2, 5, 10} enhancers. We
also conducted STAAR-O gene-centric analyses on 1) the entire
gene body and 2) the same R = {2, 5, 10} enhancers, and then
we combined the STAAR-O P values for these elements using the
Cauchy combination method. As detailed in SI Appendix, to allow
for fair comparisons, for STAAR-O we used the same weighting
and MAF/minor allele count (MAC) thresholds, as used for the
proposed tests. For the sake of completeness, we also ran the
default setting of STAAR-O gene-centric analyses focused on
rare variants. Finally, we adjusted for 10 principal components
of ancestry.

Type I error rate. We conducted 107 replications to examine
the empirical type I error rate under both continuous and binary
traits (SI Appendix, Table S1). For continuous traits, the type I
error rates were well controlled in all analyses under moderate
significance levels 10−3, 10−4, and 10−5. Even for a stringent
significance level of 2.5× 10−6, the type I error rates fell within
the 95% CI: (1.52× 10−6, 3.48× 10−6). For binary phenotypes,
the type I error rates were slightly conservative at different
levels.

Power. We evaluated the empirical power at significance level
2.5× 10−6 using 10,000 replications (Fig. 2A and SI Appendix,
Fig. S1A). As shown, GeneScan3D and STAAR-O have impor-
tant power advantages relative to H-MAGMA, likely due to
their better tolerance of noisy variation, as also demonstrated
below. GeneScan3D also exhibited higher power than STAAR-
O, likely due to the sliding window scanning implemented in
GeneScan3D. The 3D tests overall tended to be more power-
ful than the 1D tests, with the relative benefits diminishing as
the number of signal enhancers decreased. STAAR-O with the
default settings (focused on rare variants only) had lower-power
performance (SI Appendix, Fig. S2A), as expected, given that our
simulations included common causal variants, in addition to rare
causal variants.

Robustness to noisy enhancers. When performing the 3D
analyses, it is likely that some of the putative regulatory elements
do not contain any signal variants. We conducted additional
power simulation studies to evaluate the performance when
only R = {2, 5} enhancers of a total of 10 enhancers for a
gene contained any signal variants. We compared with the
power of the oracle approach, i.e., when only the signal-
containing enhancers were included in the analyses (Fig. 2A
and SI Appendix, Figs. S1A and S2A). GeneScan3D and STAAR-
O exhibited negligible power loss, suggesting that they are
robust to inclusion of noisy enhancers, unlike H-MAGMA,
which is less robust in such realistic settings. This empirical
observation is consistent with the theoretical expectation:
While GeneScan3D/STAAR-O combined signal from individual
enhancers using the Cauchy P value combination method and,
hence, are expected to maintain strong power in the presence of
noisy enhancers, H-MAGMA is based on a principal component
regression approach and, hence, combines genetic variants across
multiple enhancers, rendering it less robust in the presence of
noisy enhancers.
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A

B

Fig. 2. Power and FDR of the proposed gene-based tests and binary and continuous traits with tests including only common variants. (A) Power and
robustness to noisy enhancers. A, Upper shows power for the GeneScan3D, GeneScan1D, H-MAGMA, MAGMA, and STAAR-O tests. The number of enhancers
(R) ranges from 2 to 10. A, Lower shows power for the GeneScan3D, H-MAGMA, and STAAR-O tests, assuming causal variants in R = {2, 5} causal enhancers.
Power is compared between using only the R = {2, 5} causal enhancers (the oracle approach) vs. using all 10 enhancers (including noisy enhancers). (B)
Power and FDR for GeneScan3DKnock using different numbers of knockoffs and the BH procedure for GeneScan3D, STAAR-O, and H-MAGMA.

Power and FDR evaluation with multiple causal genes. One as-
pect of the proposed knockoff-based test is that it allows for
selecting significant genes by controlling the FDR in the presence
of complex correlations due to LD. For the knockoff-based test,
GeneScan3DKnock, we evaluated the empirical FDR and power,
assuming multiple causal and noise genes. We randomly selected
10 causal genes and 250 noise genes (gene length 10 to 100
Kb, average length 39 Kb) as follows. Among the noise genes,
some were selected to be physically close to the causal genes, i.e.,
within ± 2-Mb region, and others were randomly selected across
the genome. For each gene, we only included the corresponding
GeneHancer and ABC enhancers that fell within a 150-Kb region
(± 75 Kb from the gene midpoint). This restriction to a 150-Kb
region was done for computational reasons and only for these
power simulations. On average, there were 10 enhancers for each
gene, with an average length of 1.25 Kb. We generated multiple
knockoff genotypes for 250-Kb regions spanning each gene (± 50
Kb on either side of the 150-Kb region), as detailed in Materials
and Methods. Note that to avoid enhancer sharing across genes
and too-strong LD among causal and noise genes (which leads to
false discoveries for all the statistical tests considered here), we
selected the genes such that the corresponding 150-Kb regions
were disjoint.

For each replicate, we randomly selected a 10-Kb causal win-
dow in each causal gene ±5-Kb buffer region and set 3.5%
variants in the window to be causal. We also set 3.5% variants in
all enhancers to be causal. We generated the continuous/binary
traits using the selected causal variants as follows:

• For a continuous trait: Yi = Zi + β1Gi1 + · · ·+ βsGis + εi ,
• For a binary trait: logit(P(Yi = 1| Zi ,Gi)) = α0 + Zi +

β1Gi1 + · · ·+ βsGis .

As above, Zi ∼N (0, 1) is a covariate, and εi ∼ N (0, 1) is the
standard normal error; Zi and εi are independent; α0 is chosen
such that the prevalence is 10%. Again, we set the effect size
βj = c|log10MAFj | for the j-th causal variant, with c = 0.2 for
the continuous trait and c = 0.6 for the binary trait.

The empirical power and FDR for GeneScan3DKnock were
averaged over 100 replicates. We present results for single knock-
offs, as well as multiple knockoffs (M = 3 and 5). We calculated
the original and knockoff P values from the GeneScan3D test
(for all variants and common variants), adjusting for 10 principal
components of ancestry. We computed q values for 10 causal
and 250 noise genes in order to identify significant genes using
the GeneScan3DKnock test at different target FDR levels, up
to 0.15. The empirical power was defined as the proportion of
causal genes being identified; the empirical FDR was defined
as the proportion of detected genes that are noise. We show
that GeneScan3DKnock can control the FDR at the target level
and that using multiple knockoffs can improve power substan-
tially, especially at lower levels of target FDR, where the single-
knockoff approach has very low power, as expected (Fig. 2B and
SI Appendix, Fig. S1B).

For comparisons, we evaluated the empirical power and
FDR for competitor methods, including STAAR-O and H-
MAGMA, using the standard BH procedure for FDR control.
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A gene is significant if the corresponding q value is ≤ the
target FDR level. The results show that the conventional BH
procedure may not control the FDR at the target level, and,
therefore, the proposed knockoff-based approach provides a
valid alternative when FDR control is desirable, such as for
polygenic traits with multiple underlying causal genes (Fig. 2B
and SI Appendix, Figs. S1B and S2B).

Although our main comparisons are with gene-based tests, we
performed additional comparisons with the recently proposed
window-based method KnockoffScreen (8) in order to illustrate
the need for a gene-based knockoff filter when our interest is
controlling the FDR at the gene level. We applied Knockoff-
Screen by scanning each 150-Kb region using several window
sizes (1, 5, and 10 Kb), and we computed the empirical power
and FDR of KnockoffScreen at both gene level and window
level (SI Appendix). Although KnockoffScreen can control the
window-level FDR, as shown in SI Appendix, Fig. S3, the em-
pirical gene-level FDR can be quite high, suggesting that the
proposed framework designed to control the FDR at the gene
level is more appropriate for gene discovery. Essentially, as a
window-based test, KnockoffScreen leads to a larger number of
rejections, i.e., higher power, but also higher FDR at gene level
(SI Appendix, Fig. S3).

Applications to Individual-Level Data from Whole-Genome Sequenc-
ing Studies.
AD. We present results from an application to whole-genome
sequencing data from the ADSP. The data include 3,085 whole
genomes from the ADSP Discovery Extension Study and 809
whole genomes from the Alzheimer’s Disease Neuroimaging Ini-
tiative, for a total of 3,894 whole genomes (more details are avail-
able in SI Appendix). We adjusted for age, age2, gender, ethnic
group, sequencing center, and the leading 10 principal compo-
nents of ancestry. Seven tissue/cell-type specific GenoNet func-
tional scores (31) related to brain were incorporated, including
E071 (brain hippocampus [HIP] middle), E074 (brain substantia
nigra), E073 (brain dorsolateral prefrontal cortex [DLPFC]),
E068 (brain anterior caudate), E067 (brain angular gyrus),
E069 (brain cingulate gyrus), and E072 (brain inferior temporal
lobe).

We show results for several tests, including GeneScan1D
and GeneScan3D tests; the proposed knockoff-based approach,
GeneScan3DKnock, based on five random knockoffs; as well
as existing tests, including MAGMA/H-MAGMA, STAAR-O,
and TWAS. We do not include the results from KnockoffScreen
since we have shown in the simulations that at the gene level, it
can have inflated FDR. For all the tests except for the knockoff-
based GeneScan3DKnock test, we identified significant genes
using the Bonferroni method for FWER control since, as shown
in the simulations, the conventional BH procedure does not
control the FDR at the target level. For GeneScan3DKnock,
we used the implemented knockoff filter procedure to identify
significant genes at an FDR threshold of 10%. We present results
for common variants only (those with MAF > 1/

√
2n , where n is

the sample size) and all variants (rare variant-only analyses are
not well powered at these sample sizes).

Overall, all tests considered identify the well-known signal at
the apolipoprotein E (APOE) locus (Fig. 3 and SI Appendix,
Table S2 and Fig. S4). The GeneScan3D, H-MAGMA, and
STAAR-O tests detected additional significant genes on chro-
mosome 19 (chr19), mostly due to signals residing in the
promoters and/or enhancers overlapping genes at the APOE
locus (Fig. 4). These results suggest that the APOE region is
a central nucleating point for loops that regulate expression of
potentially AD-associated genes. Therefore, it is possible that
the strong signal observed at the APOE locus can be linked to
genes that are farther away (Fig. 4 and SI Appendix, Table S3).

GeneScan3DKnock has improved power and reduces false-
positive associations relative to existing tests. False-positive
signals can arise due to possible coregulation of multiple genes
by the same “causal ” enhancers, or simply due to LD among
causal and noncausal variants in genes or associated regulatory
elements. The knockoff-based test GeneScan3DKnock cannot
help eliminate false positives due to coregulation, but can
attenuate the effect of LD-induced confounding. We computed
the knockoff statistic W and the q value for each gene. A
scatterplot of genome-wide W knockoff statistics vs. −log10(P
values) based on the GeneScan3D test illustrates how almost half
of the significant genes at the APOE locus based on GeneScan3D
(using the conventional FWER control) are no longer significant
in the GeneScan3DKnock test, despite the less stringent FDR
control (Fig. 3 and SI Appendix, Fig. S4 and Tables S2 and S4).
Similarly, GeneScan3DKnock identified a lower number of
significant genes relative to STAAR-O with stringent FWER
control. These include a large number of genes linked to
GH19F044889 and several overlapping ABC enhancers, which
contain variants in high LD with variants in the APOE gene
(Fig. 4). Indeed, we obtained a narrower list of significant
genes on chr19 related to the APOE locus, which includes the
main genes from the 1D tests, i.e., APOE, TOMM40, APOC1,
and NECTIN2, but other interesting genes as well, including
BCAM, RELB, and QPCTL. For example, rare variants in BCAM
and RELB have recently been identified to be associated with
AD and neuroimaging biomarkers of AD after adjusting for
APOE genotypes (32, 33). QPCT, an important paralog of
QPCTL, has been shown to be involved in AD pathogenesis
and cognitive decline by glutaminyl cyclase-catalyzed pGlu-
Aβ formation (34). This ability to remove a substantial
proportion of false-positive signals due to LD is a unique
and appealing feature of the proposed GeneScan3DKnock
test.

Interestingly, GeneScan3DKnock detected several associa-
tions outside chr19 that were missed by the competitor gene-
based tests. These include NECTIN1, ZNF843, ZNF646, and
PPP1R17 (for common variants) and HIPK3 (for all variants),
which were previously found to be involved in AD-related
pathophysiology. Nectin-1 is a member of the immunoglobulin
superfamily and a Ca(2+)-independent adherens junction
protein involved in synapse formation (35). The important role
of nectin in synaptic development and maintenance can explain
how genetic variation in NECTIN1 can perturb synaptic activity
and play a role in AD. ZNF646 lies within the KAT8 locus,
recently identified in two large-scale GWAS studies focused on
clinically diagnosed AD and AD-by-proxy individuals (36, 37).
Furthermore, ZNF646 was prioritized at the KAT8 locus based
on high posterior probability for the colocalization between AD
GWAS single-nucleotide polymorphisms (SNPs) at the KAT8
locus and eQTLs from both brain (DLPFC) and microglia (38).
Similarly, PPP1R17 was found to be significantly underexpressed
in the brains of 14-mo-old Sgo1−/+ mice (a murine AD model
of chromosome instability with chromosomal and centrosomal
cohesinopathy) compared with age-matched wild-type animals
(39). The protein encoded by this gene is found primarily in
Purkinje cell bodies and projections in the cerebellum and
subsets of neurons in the hypothalamus. An SNP located in the
promoter of PPP1R17 was previously found to be associated with
hypercholesterolemia (40). Finally, homeodomain-interacting
protein kinase 3 (HIPK3) belongs to a group of HIPKs, including
HIPK2, which is down-regulated by elevated amount of Amyloid
β (Aβ), a hallmark of AD (41). Protein HIPK3 levels were also
found to be significantly different between individuals with mild
cognitive impairment that converted to AD vs. the nonconverters
(42).

Replication of significant genes using summary statistics from a
large meta-analysis AD study. To provide more objective evidence
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Fig. 3. Applications to ADSP whole-
genome sequencing data, common variants
only. (A–F) Manhattan plots of MAGMA,
H-MAGMA, TWAS, STAAR-O, GeneScan1D,
and GeneScan3D results, respectively. (G)
Manhattan plot of GeneScan3DKnock
results. Genes within the zinc-finger-
containing (ZNF) gene cluster on chr19 are
unlabeled and shown in blue in H-MAGMA,
GeneScan3D, and GeneScan3DKnock
analyses for clear visualization. G, Right
shows a heatmap with P values of the
GeneScan3D test (truncated at 10−20)
for all genes passing the FDR = 0.1
threshold and the corresponding q values
that already incorporate correction for
multiple testing. The genes are shown in
descending order of the knockoff statistics.
(H) Scatterplot of W knockoff statistics
(GeneScan3DKnock) vs. −log10 (P value)
(GeneScan3D) for common variants. Each
dot represents a gene. The dashed lines
show the significance threshold defined by
Bonferroni correction (for P values) and the
data-adaptive threshold for FDR control
(for W statistic).

of replication, we leveraged a large meta-analysis of clinical AD
and AD-by-proxy studies [71,880 AD or proxy cases and 383,378
controls (36)] and performed gene-based tests (GeneScan1D and
GeneScan3D) using the available GWAS summary statistics for
58 significant genes identified for AD across all the different tests,
including the BH-adjusted tests. We constructed 3D windows
using the same procedure as before (Materials and Methods).
For each 3D window, we then applied the ACAT procedure (22)
to combine P values for single variants within the 3D window.
Since we did not have access to individual-level data, we did not
conduct Burden and SKAT tests for these replication studies.
Results are shown in SI Appendix, Table S5. Note that most of the
genes identified by GeneScan3DKnock at FDR 10%, including
genes at the APOE locus, ZNF646 and ZNF843, had a replica-
tion P value based on GeneScan3D < 0.05/58 = 8.62× 10−4,
while genes identified by conventional BH controlling proce-
dures (SI Appendix, Figs. S5 and S6) failed to replicate for the
most part, concordant with simulation studies showing that the
BH procedure can result in inflated empirical FDR values, and,
therefore, it is not a rigorous procedure to identify significant
genes at a desired FDR level.
Lung function (FEV1). The COPDGene study includes chronic
obstructive pulmonary disease (COPD) cases, controls, and
additional smokers with varied lung function. In addition to
COPD case/control status, lung-function measurements are also
available, including forced expiratory volume in 1 s (FEV1),

forced vital capacity (FVC), and their ratio (FEV1/FVC). We
analyzed whole-genome sequencing data from the TOPMed
freeze5b dataset, which includes a subset of 5,593 Non-
Hispanic White individuals for continuous traits and 4,450
individuals for COPD case/control binary trait. We present
results from the application to FEV1, adjusting for sequencing
center, 10 principal components of ancestry, age, age2, gender,
height, height2, smoking pack-years, and current smoking. We
incorporated five tissue/cell-type specific GenoNet functional
scores (31) related to lung, namely: E017 (IMR90), E088 (fetal
lung), E096 (lung), E114 (A549), and E128 (normal human lung
fibroblast).

As with the AD example, GeneScan3DKnock identified signif-
icant genes that were missed by the other tests. Specifically, we
identified a cluster of significant genes on chromosome 12 that
included FRS2, CCT2, RAB3IP, LRRC10, and BEST3 and that
was missed by all the other gene-based tests considered (Fig. 5).
Notably, an intronic SNP (rs10444582) in FRS2 was identified
to be significantly associated with FEV1 in the UK Biobank and
SpiroMeta (P = 1.2× 10−10, n = 396, 723) (43). This locus was
not included in the final list of loci released by Shrine et al.
(43), as the P value in the replication cohort (SpiroMeta) was
only 3.5× 10−3, above the predetermined significance threshold.
As COPDGene was not part of the Shrine et al. study (43),
our findings on chromosome 12 provide additional, independent
evidence for this signal. Another significant and potentially in-
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Fig. 4. Visualization of promoter–enhancer interactions of significant
genes at the APOE locus. (A) The promoter–enhancer links are shown for the
significant genes in the GeneScan3D analyses for common variants, where
arcs in blue point to those genes identified by the knockoff procedure only.
Genes with a signal enhancer are shown in green; those with no signal
enhancer are in orange (A, Middle). The APOE locus is the location of a
tight cluster of several enhancers (shown in purple in A, Bottom), with arcs
connecting the enhancers to many different gene promoters. (B) The LD
structure in the APOE region. The locations of the enhancers in the region
are also shown.

teresting gene is RAB7A. A common SNP (rs9847178) residing
in the promoter-flanking region of RAB7A has been found to
be genome-wide significant in a recent large GWAS study on
smoking (44). A nearby SNP (rs7650872) in the same promoter-
flanking region has been found to be genome-wide significant
with eosinophil counts in the UK Biobank (45). High eosinophil
counts predict decline in FEV1 (46). Interestingly, a recent study
has shown that loss of RAB7A confers resistance to SARS–CoV-
2 by reducing ACE2 levels (47), concordant with reports in the
literature of loci associated with susceptibility and/or response to
infection that have been previously associated with lung-function
phenotypes (48).

Replication of significant genes using summary statistics from
the UK Biobank data. We performed similar replication studies
for 40 significant genes identified for FEV1 across all the differ-
ent tests, including the BH-adjusted tests, using 383,471 Euro-
pean individuals with FEV1 measurements in the UK Biobank
(SI Appendix, Table S6). The covariates adjusted for in the anal-
yses include 10 principal components of ancestry, age, age2,
gender, age· gender, and age2· gender. Note that the number
of available covariates in the UK Biobank is limited, and some
important covariates for FEV1, such as height and smoking, are
not adjusted for in these analyses. Despite this caveat, most of
the genes identified as significantly associated with FEV1 in our
COPDGene study replicated in the UK Biobank study (replica-
tion P value based on GeneScan3D < 0.05/40 = 1.25× 10−3).

Applications to GWAS Summary Statistics.
GWAS for neuropsychiatric and neurodegenerative diseases. We
applied the different gene-based tests to summary statistics from
nine GWAS studies of brain disorders, including five neuropsy-
chiatric traits: attention-deficit/hyperactivity disorder (ADHD)
(49), autism spectrum disorder (ASD) (50), bipolar disorder
(51), schizophrenia (52), and major depressive disorder (53); and
four neurodegenerative traits: AD (36), Parkinson’s disease (54),
amyotrophic lateral sclerosis (ALS) (55), and multiple sclerosis
(MS) (56). We do not include STAAR-O here since the current
implementation is not applicable to summary statistics.

Since these applications focus on brain disorders, we leveraged
two existing Hi-C human brain datasets for the DLPFC in adult
brain (57) and for the germinal zone (GZ) and cortical and
subcortical plate (CP) in fetal brain (58) and used the Fit-Hi-C
method to identify statistically significant promoter–enhancer
interactions from these data (59) (SI Appendix). Similarly,
we applied MAGMA/H-MAGMA (11) to the same datasets
using the same significant Hi-C interactions. We also applied
TWAS/FUSION (14) based on 13 brain regions from GTEx
version 7 (amygdala [AMY], anterior cingulate cortex, caudate,
cerebellar hemisphere, cerebellum, cortex, frontal cortex, HIP,
hypothalamus, nucleus accumbens, putamen, spinal cord, and
substantia nigra). The Cauchy P value combination method
was used to combine TWAS P values from different brain
regions.

We used a liberal significance threshold (10−3) to select genes
from these analyses (because some of the GWAS studies, e.g.,
AD, ADHD, and MS, are underpowered) and investigated their
expression patterns using spatiotemporal and single-cell tran-
scriptomics data, as described below. The number of significant
genes at this threshold and the overlap across the different
tests are shown in SI Appendix, Table S7 and Fig. S11. Compared
with 1D analyses (GeneScan1D and MAGMA), GeneScan3D
and H-MAGMA detected a much larger number of disease-
associated genes, as expected, given that they incorporate signals
from distal regulatory elements. GeneScan3D and H-MAGMA
also detected a substantially higher number of significant genes
relative to TWAS, a possible reflection of the limitation of
eQTL-based approaches to discover significant associations that
cannot be explained by eQTLs in the reference datasets.

Developmental and single-cell expression profiles. We used
spatiotemporal transcriptomic data from embryonic and adult
brains measured at 15 time periods, ranging from four postcon-
ceptional weeks to age ≥ 60 y (60). The gene-expression data are
available for six brain regions: neocortex (NCX), mediodorsal
nucleus of the thalamus, cerebellar cortex, HIP, AMY, and stria-
tum. We focused here on the cortical expression profiles (NCX
area), with 410 samples for the prenatal stages (periods 1 to
7) and 526 samples for the postnatal stages (periods 8 to 15).
We centered the developmental expression matrix to the mean
expression level for each sample.

We computed the average expression values across the
significant genes for each brain sample and then compared
the values for prenatal and postnatal brain samples. For
psychiatric diseases, the genes detected by GeneScan3D tended
to have significantly higher expression in prenatal relative to
postnatal periods, as expected, and the trajectories highlight
developmental windows in early or midgestation periods
(Fig. 6A). For neurodegenerative diseases, the pattern was
reversed, with higher expression in the postnatal periods
(except for MS), concordant with the expectation that genes
for neurodegenerative disorders have increased expression with
aging. The results for H-MAGMA suggest similar patterns,
but with reversed patterns for ASD and ALS and less signif-
icant differences for AD (SI Appendix, Fig. S12A). Results for
GeneScan1D, MAGMA, and TWAS showed similar patterns
(SI Appendix, Figs. S13–S15), although there were some discrep-
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Fig. 5. Applications to COPDGene whole-
genome sequencing data (trait FEV1) for
common variants only. (A–F) Manhattan
plots of MAGMA, H-MAGMA, TWAS,
STAAR-O, GeneScan1D, and GeneScan3D
results, respectively. (G) Manhattan plot of
GeneScan3DKnock results. G, Right shows a
heatmap with P values of GeneScan3D test
for all genes passing the FDR = 0.1 threshold
and the corresponding q values that already
incorporate correction for multiple testing.
The genes are shown in descending order
of the knockoff statistics. (H) Scatterplot of
W knockoff statistics (GeneScan3DKnock) vs.
−log10 (P value) (GeneScan3D) for common
variants. Each dot represents a gene. The
dashed lines show the significance threshold
defined by Bonferroni correction (for P
values) and the data-adaptive threshold for
FDR control (for W statistic).

ancies, including the higher postnatal expression vs. prenatal
expression for the ASD-significant genes and significantly higher
prenatal expression for ALS-significant genes (MAGMA).

Additionally, we also leveraged existing single-cell expression
profiles (57) on 285 single cells from six adult brain-cell types,
including neurons (131 cells), astrocytes (62 cells), microglia (16
cells), endothelial (20 cells), oligodendrocytes (38 cells), and
oligodendrocyte progenitor cells (18 cells). For each single cell,
we centered the expression data to the mean level of genes and
then computed the average across the significant genes for a
given disease. For each specific cell type, we averaged across the
multiple cells in this cell type. We computed standardized ex-
pression levels (i.e., subtracted the mean and divided by the SD)
for the six adult cell types. Genes identified by GeneScan3D for
psychiatric disorders tended to show higher expression levels pri-
marily in neurons and, to some extent, in astrocytes compared to
other cell types, whereas genes for neurodegenerative disorders
tended to show higher expression levels primarily in microglia
(Fig. 6B). In particular, genes significant for ADHD showed the
highest expression in astrocytes, consistent with recent evidence
suggesting a key role of astrocytes in the regulation of attention-
deficit disorder and hyperactivity (61).

Results for the other tests showed similar overall patterns
as the GeneScan3D (SI Appendix, Figs. S12–S15), although with

some differences, including less pronounced evidence for the
role of astrocytes in ADHD (except for TWAS). These results
serve as a proof of concept for the proposed 3D test, showing
that genes identified by GeneScan3D and other existing tests
exhibit expression patterns consistent with existing literature, i.e.,
an important role for neurons for neuropsychiatric diseases and
microglia for neurodegenerative diseases (62).
Browser for results on UK/Japan Biobank data.

UK Biobank. We applied GeneScan3D to 1,403 UK Biobank
binary phecodes and 827 continuous phenotypes using summary
statistics on 28 million imputed variants. We have created a
browser that displays phenome-wide results for a given gene
and genome-wide gene-based results for a given trait and pro-
vides summary tables for significant genes. These gene-based
results for the UK Biobank traits complement existing databases
for single-variant tests (63) and rare variant-focused tests, such
as SAIGE-GENE, a scalable generalized mixed-model region-
based association test (6).

BioBank Japan. For non-European populations, we applied
GeneScan3D to BioBank Japan binary phenotypes using avail-
able case-control GWAS summary statistics on 8,712,794 autoso-
mal variants and 207,198 × chromosome variants with 212,453
Japanese individuals across 42 diseases (64). Results can be
queried using the aforementioned browser.
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Fig. 6. (A) Human brain developmental
expression of GeneScan3D significant genes
for each brain disorder, combined Hi-C for
adult brain and fetal brain GZ and CP layers.
P values of Wilcoxon rank sum tests are
shown in the boxplots to compare inde-
pendent prenatal and postnatal samples.
(B) Cell-type expression profiles of GeneS-
can3D significant genes. BD, bipolar disor-
der; MDD, major depressive disorder; PD,
Parkinson’s disease; SCZ, schizophrenia.

Discussion
We propose gene-based tests that integrate genetic variation re-
siding in putative regulatory regions and implement the knockoff
framework for increased power and improved causal gene prior-
itization. This framework provides a rich toolkit for the analysis
of GWAS and whole-genome sequencing data with applications
to gene discovery and fine mapping. Based on empirical studies,
we show that the proposed gene-based tests are more powerful
and help attenuate the confounding effect of LD relative to state-
of-the-art gene-based tests. They also have distinct advantages
compared with the recently proposed window-based test, Knock-
offScreen, in terms of functional interpretation and appropriate
FDR control at the gene level. Indeed, our simulation results sug-
gest that the knockoff filter procedure needs to be performed at
the gene, rather than window, level if our interest is in identifying
genes and controlling FDR at the gene level.

Our gene-based tests can be seen as complementary to the
TWAS approach. Like TWAS, they attempt to incorporate the
effect of distal regulatory elements into the test. TWAS, however,
is limited to common eQTLs detectable in reference datasets,
which appear to account for a minority of GWAS signal (16, 17).
In contrast, our approach has the ability to assess the effects of
coding, noncoding, rare, and common variants, including those
with no detectable effects on gene expression, and can scan
the gene with varied window sizes. Furthermore, the knockoff
framework can attenuate the confounding effect of LD and is
able to produce a narrower list of possible causal genes, likely
removing some of the false gene discoveries.

In this paper, we have focused on using existing external data
on gene–enhancer links, and we recognize the limitations of these
databases, both in terms of the accuracy of these links and the

number of cell types with available data. Single-cell Hi-C is an
emerging technology that could help overcome issues of tissue
heterogeneity and expand these maps across many more cell
types (65).

Like all gene-based tests that incorporate genetic variation in
distal regulatory elements, our tests are also susceptible to false-
positive associations due to, for example, causal variants residing
in putative enhancers that may show significant interactions with
promoters of multiple genes based on Hi-C data. Identifying the
actual causal gene(s) requires follow-up experimental studies,
such as CRISPR gene-perturbation experiments (66).

In summary, we propose comprehensive gene-based tests for
common and rare variation, both coding and regulatory variation,
that are more powerful than competitor gene-based tests in the
literature. The GeneScan3DKnock approach is implemented in
a computationally efficient R package.

Materials and Methods
GeneScan3DKnock: Proposed Gene-Based Association Test Incorporating Regu-
latory Elements and Knockoff Statistics. We describe here the details of the
proposed gene-based test that aims to comprehensively evaluate the effects
of rare and common, coding, and proximal and distal regulatory variation
on a trait of interest. Details of existing gene-based association tests and ad-
ditional tests for comparison, including GeneScan1D, MAGMA/H-MAGMA,
and STAAR-O, as well as KnockoffScreen, are in SI Appendix.
Joint testing of rare and common variation within a window. For a fixed
window Φ, we incorporated several recent advances for association tests for
sequencing studies to compute the corresponding P value pΦ, as follows.
For each window, we conducted:

a. Burden and SKAT tests for common and low-frequency variants (MAF≥
1/

√
2n) with Beta(MAFj ; 1, 25) weights. These tests aimed to detect the

combined effect of common and low-frequency variants.
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b. Burden and SKAT tests for rare variants (MAF< 1/
√

2n and MAC ≥ t)
with Beta(MAFj ; 1, 25)weights. These tests aimed to detect the combined
effect of rare variants.

c. Burden and SKAT tests for rare variants, weighted by cell-type-specific
functional annotations. These tests aimed to utilize functional annota-
tions for improved power (24, 67).

d. Burden tests for aggregation of ultrarare variants (MAC< t). These tests
aimed to aggregate effects from extremely rare variants (e.g., singletons,
doubletons, etc.).

e. Single-variant score tests for common, low-frequency, and rare variants
(MAC≥ t) in the window.

We then applied the ACAT (22) to combine P values from tests in a–e
to compute P values of each 1D window Φ for all variants, including
common and rare variants. Note that for the current analyses, we used MAC
threshold 10.
GeneScan3D: Integrating proximal and distal regulatory elements for a
gene. For a given gene G, we considered the gene body (i.e., the interval
between the TSS and the end of 3′ UTR) ± 5-Kb buffer regions and
integrated a single ChIP-seq promoter and R putative enhancers into the
analyses (Fig. 1). A set of overlapping 1D windows Φm, m = 1, . . . , M with
window sizes 1 Kb, 5 Kb, and 10 Kb were generated to scan the gene
and buffer regions together (each 1D window was overlapping with half
of its adjacent windows for a given window size). Then, we constructed
3D windows for the gene by adding a ChIP-seq promoter and R putative
enhancers to each 1D window Φm, m = 1, . . . , M as follows (details on how
to identify the regulatory elements for each gene are in SI Appendix):

Φ
3D
m,0 = Φm + ChIP-seq promoter

Φ
3D
m,1 = Φm + ChIP-seq promoter + Enhancer1

3D windows: . . . . . .

. . . . . .

Φ
3D
m,R = Φm + ChIP-seq promoter + EnhancerR.

For each such 3D window, we computed a P value p
Φ3D

m,r
, with 1 ≤ m ≤

M, 0 ≤ r ≤ R using the proposed combined test for a window. Finally, we
computed a gene-level P value pG by combining the (1 + R) × M P values
using the Cauchy’s combination method (22), as follows:

Q =

∑R
r=0

∑M
m=1 tan[(0.5 − p

Φ3D
m,r

)π]

(1 + R) × M
.

The P value of the Cauchy statistic is pG = 1/2 − arctan(Q)/π.
Note that the GeneScan3D analysis can be easily adapted for GWAS

summary statistics by applying the ACAT procedure to combine P values for
single variants within the 3D window.
GeneScan3DKnock: Knockoff-enhanced gene-based test for causal gene
discovery. An advantage of the proposed GeneScan3D test is that it allows
the discovery of multiple possible causal genes by incorporating information
from proximal and distal regulatory elements. However, it is likely that some
of those genes are false positives, owing to confounding due to LD and/or
coregulation. Extensive LD at a locus of interest can confound the results
and lead to many genes being significant. For example, if the LD region
overlaps several enhancers, all genes regulated by such enhancers may
show a significant signal. The knockoff framework (26), a recent advance
in statistics, can be leveraged to reduce the effect of LD in such cases and
can help prioritize a narrow list of potential causal genes. Furthermore,
the knockoff-based test is of independent interest, as by design, it controls
the FDR at a target level under arbitrary correlation structure and can have
higher power to identify additional significant genes that are missed by the
conventional gene-based test, as we show empirically in the applications.
The knockoff-based test has two steps: the knockoff generation and the
filtering of the results using the knockoff filter.

Model-X Knockoff Generation. The idea of the knockoff-based procedure is
to generate artificial or knockoff genotypes G̃ such that for any subset K
of variants the distribution of (G, G̃) is invariant when swapping GK and

G̃K , i.e., (G, G̃)swap(K)
d
= (G, G̃). Additionally the knockoff genotypes have

the property that G̃ ⊥ Y|G. Note that the well-known permutation proce-
dure that permutes the samples does not guarantee these exchangeability
properties between the original and knockoff genotypes. To generate valid
knockoff genotypes, we can use a sequential model for knockoff generation
that leverages the local patterns of LD, as previously proposed based on the

Hidden Markov Models (HMMs) (30, 68), or an auto-regressive model (8), in
such a way that the knockoff genotypes are exchangeable with the original
(true) genotypes G, but are independent of the phenotype conditional on
the original genotypes. The knockoff genotypes serve as negative controls
and are designed to mimic the correlation or LD structure found within the
original genotypes. Specifically, we sequentially sampled for each variant j
the corresponding knockoff genotype L(Gj|G−j , G̃1...(j−1)), independent of
the observed value of Gj . Because of the HMM’s significant computational
complexity with unphased genetic data, in order to generate knockoff
genotypes, we relied on a recently introduced, computationally efficient,
auto-regressive model that follows from the assumption that genotypes can
be approximately modeled by a multivariate normal distribution:

Gj = α +
∑
k �=j

βkGk +
∑

k≤j−1

γkG̃k + εj ,

where εj is a random error term. (Note that we can leverage the approximate
block structure for LD in the genome to only include variants in a neigh-
borhood of the current variant j.) We estimated (α, β, γ) by minimizing
the mean squared loss. We calculated the residual ε̂j = Gj − Ĝj and its
permutation ε̂j

∗, and then we defined the knockoff feature as G̃j = Ĝj + ε̂j
∗.

More details on this knockoff-generation procedure and its theoretical and
empirical properties can be found in ref. 8.

Knockoff Filter. Once the knockoff genotypes G̃ were generated, the knock-
off filter was used to select significant genes. Specifically, we performed
a gene-based test, as described above (GeneScan3D), in both the original
cohort and the knockoff one. Let pG and pG̃ be the resulting P values. We
defined a feature statistic by contrasting the observed P value for each gene
to its counterpart based on the knockoff data. More precisely, the feature
statistic for a gene G is defined as WG = TG − TG̃, where TG = − log10(pG)

and TG̃ = − log10(pG̃) are the importance scores for gene G in the original
and knockoff cohort, respectively. This feature statistic has the flip-sign
property, meaning that swapping the genetic variants in gene G with their
knockoff counterparts changes the sign of WG. A data-adaptive threshold
τ for WG can be determined by the knockoff filter (26) so that the FDR is
controlled at the nominal level q, as follows:

τ = min

{
t > 0 :

1 + #{G : WG ≤ −t}
#{G : WG ≥ t}

≤ q

}
.

We selected all genes with WG ≥ τ since genes with large feature statis-
tics are more likely to be causal (nonnull) genes. This follows from the
exchangeability property between the original and the knockoff genotypes,
which ensures that the importance scores (TG and TG̃) for the null genes are
exchangeable, and therefore the feature statistic WG is symmetric around
zero for the null genes, but tends to be larger than zero for nonnull
genes.

We additionally computed the corresponding q value for a gene, qG. The
q value already incorporates correction for multiple testing and is defined
as the minimum FDR that can be attained when all tests showing evidence
against the null hypothesis at least as strong as the current one are declared
as significant. In particular, we define the q value for a gene G with feature
statistic WG > 0 as

qG = min
t≤WG

1 + #{G′ : WG′ ≤ −t}
#{G′ : WG′ ≥ t}

,

where
1+#{G′ :WG′≤−t}

#{G′ :WG′≥t} is an estimate of the proportion of false discoveries

if we were to select all genes with feature statistic > t (with t > 0). For genes
with feature statistic WG ≤ 0, we set qG = 1.

Multiple Knockoffs. To improve the power and stability of the knockoff
procedure, we implemented a multiple-knockoff procedure (8, 69), where
the inference is based on generating multiple, independent knockoff
datasets. Gimenez and Zou (69) proposed an extension of the sequential
model for knockoff generation to multiple knockoffs and showed the
validity of the multiple-knockoff-generation procedure in controlling the
FDR. We implemented this procedure here to generate multiple indepen-
dent knockoff datasets. Briefly, we sequentially sample for each variant j:
G̃1

j , . . . , G̃M
j from L(Gj| G−j , G̃1

1...j−1, . . . , G̃M
1...j−1), where M is the number

of knockoffs. With multiple knockoffs, the feature statistic for a gene G is
defined as

WG = (TG − medianTm
G̃ )ITG≥max1≤m≤M Tm

G̃
,

where Tm
G̃ is the gene-importance score for gene G in the m-th knockoff

replicate, and I is an indicator function. We define
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τ = min

{
t > 0 :

1
M + 1

M #{G : κG ≥ 1, τG ≥ t}
#{G : κG = 0, τG ≥ t}

≤ q

}
,

where κG = argmax0≤m≤MTm
G̃

(note that T0
G̃
= TG) and τG = TG −

medianTm
G̃ . We selected genes with WG ≥ τ , i.e., those genes that have

importance scores greater than any of those corresponding to the
M knockoffs (κG = 0) and for which the difference from the median
importance score is above some threshold (τG ≥ τ ). A q value for a gene G
can be computed for the multiple-knockoff scenario, similar to the single-
knockoff case.

The multiple-knockoff procedure helps improve power because at a
target FDR of q, the single-knockoff approach needs to make a minimum
of 1/q discoveries, while a multiple-knockoff approach with M knockoffs
decreases this detection threshold to 1/Mq. Therefore, in situations where
the signal is sparse and the target FDR level q is low, a single-knockoff
procedure will have very low power. In such cases, the multiple-knockoff
procedure will tend to improve power. Furthermore, the multiple-knockoff
procedure also helps with improving the stability of the selected genes,

given that each knockoff generation is random, and, therefore, the results
from a single knockoff can be unstable.

Data Availability. We used data from existing studies from COPDGene
(TopMED; Database of Genotypes and Phenotypes [dbGaP] accession no.
phs000951.v4.p4) and the ADSP (dbGaP accession no. phs000572.v8.p4) and
summary-level GWAS results on neuropsychiatric and neurodegenerative
traits are available from refs. 36 and 49–56. Details of web-based re-
sources are in SI Appendix. All study data are included in the article and/or
supporting information. We have implemented GeneScan3DKnock in a
computationally efficient R package, available on GitHub (https://github.
com/Iuliana-Ionita-Laza/GeneScan3DKnock), that can be applied generally
to the analysis of other whole-genome sequencing or GWAS studies. Details
of software implementation are in SI Appendix.
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