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Abstract

Pseudomonas syringae is a genetically diverse bacterial species complex responsible

for numerous agronomically important crop diseases. Individual P. syringae isolates are

assigned pathovar designations based on their host of isolation and the associated disease

symptoms, and these pathovar designations are often assumed to reflect host specificity

although this assumption has rarely been rigorously tested. Here we developed a rapid

seed infection assay to measure the virulence of 121 diverse P. syringae isolates on com-

mon bean (Phaseolus vulgaris). This collection includes P. syringae phylogroup 2 (PG2)

bean isolates (pathovar syringae) that cause bacterial spot disease and P. syringae phy-

logroup 3 (PG3) bean isolates (pathovar phaseolicola) that cause the more serious halo

blight disease. We found that bean isolates in general were significantly more virulent on

bean than non-bean isolates and observed no significant virulence difference between the

PG2 and PG3 bean isolates. However, when we compared virulence within PGs we found

that PG3 bean isolates were significantly more virulent than PG3 non-bean isolates, while

there was no significant difference in virulence between PG2 bean and non-bean isolates.

These results indicate that PG3 strains have a higher level of host specificity than PG2

strains. We then used gradient boosting machine learning to predict each strain’s virulence

on bean based on whole genome k-mers, type III secreted effector k-mers, and the

presence/absence of type III effectors and phytotoxins. Our model performed best using

whole genome data and was able to predict virulence with high accuracy (mean absolute

error = 0.05). Finally, we functionally validated the model by predicting virulence for 16

strains and found that 15 (94%) had virulence levels within the bounds of estimated predic-

tions. This study strengthens the hypothesis that P. syringae PG2 strains have evolved a dif-

ferent lifestyle than other P. syringae strains as reflected in their lower level of host

specificity. It also acts as a proof-of-principle to demonstrate the power of machine learning

for predicting host specific adaptation.
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Author summary

Pseudomonas syringae is a genetically diverse Gammaproteobacterial species complex

responsible for numerous agronomically important crop diseases. Strains in the P. syrin-
gae species complex are frequently categorized into pathovars depending on pathogenic

characteristics such as host of isolation and disease symptoms. Common bean pathogens

from P. syringae are known to cause two major diseases: (1) pathovar phaseolicola strains

from phylogroup 3 cause halo blight disease, characterized by large necrotic lesions sur-

rounded by a chlorotic zone or halo of yellow tissue; and (2) pathovar syringae strains

from phylogroup 2 causes bacterial spot disease, characterized by brown leaf spots. While

halo blight can cause serious crop losses, bacterial spot disease is generally of minor agro-

nomic concern. Recently, statistical genetic and machine learning approaches have been

applied to genomic data to identify genes underlying traits of interest or predict the out-

come of host-microbe interactions. Here, we apply machine learning to P. syringae geno-

mic data to predict virulence on bean. We first characterized the virulence of P. syringae
isolates on common bean using a seed infection assay and then applied machine learning

to the genomic data from the same strains to generate a predictive model for virulence on

bean. We found that machine learning models built with k-mers from either full genome

data or virulence factors could predict bean virulence with high accuracy. We also con-

firmed prior work showing that phylogroup 3 halo blight pathogens display a stronger

degree of phylogenetic clustering and host specificity compared to phylogroup 2 brown

spot pathogens. This works serves as a proof-of-principle for the power of machine

learning for predicting host specificity and may find utility in agricultural diagnostic

microbiology.

Introduction

Pseudomonas syringae is a genetically diverse Gammaproteobacterial species complex respon-

sible for numerous agronomically important crop diseases [1–4]. Strains in the P. syringae
species complex are frequently categorized into pathovars depending on pathogenic character-

istics such as host of isolation and disease symptoms [5,6]. The species complex is also subdi-

vided into phylogenetic groups (i.e., phylogroups, PGs) based on multilocus sequence typing

or genomic analysis [1,7–10]. Currently, there are 13 recognized PGs [7], of which seven have

been termed primary PGs based on their higher degree of genetic relatedness and the near uni-

versal presence of the canonical P. syringae type III secretion system (discussed below) [1,9].

In contrast, secondary PGs are genetically more diverse, include a larger fraction of environ-

mental isolates, and are more likely to carry alternative type III secretion systems.

Strains in P. syringae complex have historically been considered to have high levels of host

specificity [6,11,12]. This conclusion came from observed similarity of strains isolated off com-

mon hosts based on phenotypic or molecular typing and is the basis for the pathovar taxo-

nomic system. The inherent assumption underlying this conclusion is that strains of the

same pathovar should have higher fitness on one host than other hosts. The problem with this

assumption is that it has rarely been rigorously and systematically tested. In fact, in the few

cases where this has been tested, strains were found to show much more complex patterns of

host specificity, with some having narrow ranges, while other are much more generalists

[13,14]. In particular, PG2 strains seem to show the lowest degree of host specificity and be

better adapted to the epiphytic environment than other P. syringae strains [1,3,11,13–16].
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A particularly interesting host specificity pattern is when two or more evolutionarily dis-

tinct clades within the P. syringae complex have adapted to the same host. Phylogenetic analy-

ses of P. syringae isolates suggest that this convergent host adaptation has occurred multiple

times in the evolutionary history of the species complex. For example, cherry and plum patho-

gens are found in clades distributed in PG1, PG2, and PG3 [17,18], hazelnut pathogens are dis-

tributed among two distinct clades in PG1 and PG2 [19].

This study focuses on one of the most interesting examples of convergent host adaptation–

P. syringae pathogens of common bean (including snap, green, kidney, and French bean). All

P. syringae primary phylogroup bean isolates are found in either PG2 or PG3 [8,9]. The only

other bean isolates reported in the P. syringae complex are a small number of Pseudomonas
viridiflava strains in the much more divergent secondary phylogroups [20]. Common bean

pathogens from P. syringae PG3 are generally classified as pathovar phaseolicola and are

responsible for halo blight disease, which is characterized by large necrotic lesions surrounded

by a chlorotic zone or halo of yellow tissue [21–23]. Bean pathogens of PG2 are generally clas-

sified as pathovar syringae and are responsible for bacterial spot disease, which is characterized

by brown leaf spots [24,25]. While halo blight can cause serious crop losses, bacterial spot dis-

ease is generally of minor agronomic concern. The PG3 phaseolicola bean isolates show a high

degree of phylogenetic clustering, with most strains sharing a relatively recent common ances-

tor that is closely related to a compact sister clade of soybean pathogens [9]. In contrast, PG2

syringae bean isolates show very little phylogenetic clustering and are frequently more closely

related to non-bean isolates than other bean isolates [9].

Assuming that host specificity is a heritable trait, the exploitation of a common host by

divergent lineages of strains can be explained by several different mechanisms, including: 1)

evolution via shared, vertically transmitted host specificity factors; 2) convergent evolution via

unrelated genetic mechanisms; or 3) convergent evolution via the horizontal acquisition of

host specificity factors from divergent lineages. Another layer of complexity is that host speci-

ficity could come about either through the gain of genetic factors that promotes growth on a

new host, or alternatively, by the loss of a factor that otherwise limits growth (e.g., by inducing

a host immune response). In fact, the most thorough study of host convergence in P. syringae
suggests that isolates can make use of multiple mechanisms simultaneously [17,18]. For exam-

ple, diverse lineages of cherry pathogens have exchanged and lost key genes and used multiple

mechanisms to successfully infect this host [17,18].

One of the most important and dynamic classes of P. syringae virulence and host specificity

factors are type III secreted effectors (T3SEs). T3SEs are proteins translocated through the type

III secretion system directly into the eukaryotic host cell where they interfere with host immu-

nity or disrupt cellular homeostasis to promote the disease process. There are at least 70 dis-

tinct families of P. syringae T3SEs, and most strains carry a suite of T3SEs consisting of 12 to

50 T3SEs, with an average of ~30 [26]. Plants have responded to T3SEs by evolving immune

receptors and complexes that trigger an effector-triggered immune (ETI) response when they

detect the presence or activity of a T3SE [27,28]. Consequently, the outcome of any particular

host-microbe interaction depends to a large degree on the specific T3SE profile of the patho-

gen and the complement of immune receptors carried by the host. The strong selective pres-

sures imposed by the host-microbe arms race results in dynamic evolution of T3SEs in

general, with frequent horizontal transmission, acquisition, and loss [9,26,29].

The suites of T3SEs carried by PG2 and PG3 strains vary in size, with PG2 strains carrying

an average of ~19 T3SEs vs. ~27 for PG3 strains [26]. PG2 strains are also known to carry

more phytotoxins, which contribute to virulence and niche competition via a variety of mecha-

nisms such as membrane disruption and hormone mimicry [3,9,30]. These differences may
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help explain why PG2 strains show lower levels of host specificity and are better ability to sur-

vive on leaf surfaces (i.e., epiphytic growth) [1,3,11,13–16].

The application of statistical genetic and machine learning approaches to genomic data has

greatly increased our power to identify genes underlying traits of interest, such as host specific-

ity [31]. Statistical genetic approaches like genome-wide association studies (GWAS) are well

developed for studying human traits and have more recently gained traction in the study of

bacterial traits as statistical and phylogenetic methods have been developed to handle the

shared evolutionary history of segregating genetic variants (i.e., population structure) [32–37].

While GWAS approaches have great power for finding genotype-phenotype associations, they

generally measure associations on a locus-by-locus basis, and therefore can miss more complex

interactions among loci that impact traits. An alternative approach for predicting genotype-

phenotype associations is to use machine learning, which generally describes a large range of

statistical approaches that create models derived from a dataset consisting of features (e.g.,

genetic variants) linked to a trait or outcome (e.g., host specificity). These models can be used

to predict outcomes from new samples or to identify the feature(s) that carry the most impor-

tance in the model. Although machine learning approaches may be better suited for identify-

ing interactions among genetic variants than GWAS, they are more limited in their ability to

deal with complex evolutionary relationships among these variants [38,39].

Here, we implemented a rapid method for assessing P. syringae virulence on common

bean. We used this screen to measure the virulence of 121 strains from nine phylogroups on

bean, and then further expanded the dataset by imputing the virulence for an additional set of

isolates based on their core genome relationship to the screened strains. We found that PG3

pathogens display a stronger degree of host specificity compared to PG2 pathogens. We then

developed a gradient boosting regression model using k-mers derived from the whole genome

sequence or virulence factors as features to predict the virulence of P. syringae isolates on bean.

The model showed good performance and was able to predict the virulence of a set of test

strains with high accuracy. This study acts as a proof-of-principle for the utility of machine

learning to the prediction of plant-microbe interactions.

Results

Genome analysis

We characterized the genomic diversity of the 333 P. syringae isolates, including 46 newly

sequenced bean isolates (18 PG2 pv. syringae and 28 PG3 pv. phaseolicola) collected from bean

fields approximately 80 km east of Lethbridge, Alberta, Canada in 2012 via phylogenetic analy-

sis (S1 Table). Core genome diversity was measured by synonymous substitution rates (Ks),

while accessory genome diversity was measured by pairwise Jaccard distances. The collection

includes 36 bean halo blight pathogens of pathovar phaseolicola, which all cluster in one closely

related clade in PG3, with a core genome Ks of 0.0039 and an accessory genome Jaccard dis-

tance of 0.35 compared to the entirety of 142 PG3 strains, which had a core genome Ks of

0.047 and an accessory genome Jaccard distance of 0.64. While the 28 newly sequenced Cana-

dian bean isolates from PG3 (pv. phaseolicola) all cluster, they are interspersed with other pha-
seolicola strain, indicating that they do not result in a biased assessment of PG3 bean isolate

similarity. In contrast the 21 bean spot disease pathogens of pathovar syringae are broadly dis-

tributed throughout PG2 and had a core genome Ks of 0.1218 and an accessory genome Jac-

card distance of 0.45 compared to the entirety of 66 PG2 strains, which had a core genome Ks

of 0.1223 and an accessory genome Jaccard distance of 0.67 (Fig 1). Like what was found with

the new PG3 Canadian bean isolates, the 18 newly analyzed PG2 (pv. syringae) isolates from

Canada are interspersed with other PG2 bean isolates. Due to their clonal nature, PG3 bean
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isolates were found to have a considerably higher number of gene families in the hard core

(present in 100% of the isolates) and soft core (present in >95% of the isolates) genomes, as

well as a lower number of singleton families (present in a single isolate) in comparison to PG2

bean isolates, despite the larger number of PG3 samples analyzed (Fig 2).

Virulence screen development

We developed a high-throughput seed infection assay to measure the virulence of P. syringae
isolates on common bean. Given that contaminated seeds are a common inoculation source

for bean infection, this assay provides a means to quantify host-pathogen interactions that

closely reflects the ‘natural’ interaction [21,40–42]. For the screen, we soaked bean seeds (P.

vulgaris var. Canadian Red) in a P. syringae suspension (~5x105 cells / ml) for 24 hours prior

to planting, and measured plant fresh weight after 14 days. Bacterial virulence resulted in dis-

ease symptoms (S1 Fig) and reductions of overall plant health, which is reflected in lower plant

fresh weight. We confirmed that virulence was type III dependent using a hrcC mutant of the

bean pathogen P. syringae pv. phaseolicola 1448A (Pph1448A) (S2 Fig), and then assessed if

plant weight was correlated with in planta bacterial load by comparing our seed infection assay

to the traditional syringe infiltration virulence assay using 24 P. syringae isolates from 9 out of

the 13 PGs (Fig 3). Well-established bean pathogens such as PG3 strain Pph1448A [21,23] and

the PG2 strains P. syringae pv. syringae B728a (PsyB728a) [24,43] showed the highest levels of

bacterial growth and lowest plant weights, while the other isolates from PGs 1–7, 11, and 13

Fig 1. Core and accessory genome diversity. Comparison of (A) core genome synonymous substitution rate (Ks) and

(B) accessory genome Jaccard distance for 21 PG2 bean isolates, 36 PG3 bean isolates, and all 66 isolates from PG2 and

142 isolates from PG3.

https://doi.org/10.1371/journal.ppat.1010716.g001

PLOS PATHOGENS Predicting P. syringae virulence on bean using a machine learning approach

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010716 July 25, 2022 5 / 24

https://doi.org/10.1371/journal.ppat.1010716.g001
https://doi.org/10.1371/journal.ppat.1010716


showed a range of values. Overall, there was a significant negative association between bacte-

rial growth and plant weight (R2 = 0.63, P = 5.0e-6), supporting the use of seed infection and

plant fresh weight to assess bacterial virulence. While the statistical relationship between bacte-

rial growth and plant weight is strong, the moderate correlation emphasises that the former

Fig 2. Rarefaction curves for the core and accessory genomes. Families present in 95% (soft core genome) of P.

syringae isolates exponentially decay as each new genome is added to the analysis. The total number of gene families

identified continues to increase indefinitely with the addition of new genomes when singletons (families only present

in one isolate) are included.

https://doi.org/10.1371/journal.ppat.1010716.g002
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measures bacterial fitness, while the latter measures host fitness. These two measures are cer-

tainly correlated during host-pathogen interactions, but there are many instances where the

relationship breaks down, such as when the microbe is commensal or beneficial.

To determine the power of this assay, we performed initial seed infection trials with six P.

syringae isolates and 50 or more replicate plants. We used a rarefaction analysis of normalized

plant weights to determine the number of replicate plants required to distinguish pathogens

from non-pathogens with>95% confidence (Tukey-HSD test) and found that the test power

plateaued at ~20 replicates per treatment (S3 Fig). Therefore, we performed future seed infec-

tion assays using 30 replicate plants per treatment.

Virulence screen

We screened 121 non-clonal representative P. syringae isolates from nine PGs to assess the vir-

ulence potential as measured by reduced plant fresh weight in 14-day old bean plants after

Fig 3. Correlation between bacterial load following pressure infiltration of mature bean leaves and plant weight

following seed infection. (A) Bacterial density of 23 P. syringae isolates from 10 phylogroups in 14-day old, infected

bean leaves (pressure infiltration 3 days post infection). (B) Normalized weight of 14-day old, infected bean plants

(seed infected 14 days post infection) of 23 P. syringae isolates from 10 phylogroups. (C) Bacterial density in 14-day

old, infected bean leaves (pressure infiltration 3 days post infection) as a function of normalized median weight of

seed infected plants at 14 days old. There is a strong negative correlation between bacterial density and plant weight

across 24 P. syringae isolates (linear regression; F = 36.95, df = 21, p = 4.95e-06, R2 = 0.62). (D) Characteristic plant

phenotypes of 14-day old plants following seedling infection. The photos at the top are for plants infected with MgSO4,

while the at the bottom show plants infected with the bean pathogen PsyAB2012-008_22.

https://doi.org/10.1371/journal.ppat.1010716.g003
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seed infection (Fig 4). This screened set was subset of the non-clonal set selected to maximize

coverage of the species complex while focusing on a manageable number for screening. The

screened strains resulted in a highly skewed distribution of normalized fresh weights (i.e., viru-

lence), with a mean of 0.78, median of 0.94, and standard deviation of 0.30. An examination

of the 30 strains in the first quartile revealed normalized fresh weights between 0.00 and 0.61,

with 56.7% (17 strains) being bean isolates. These 17 strains represent 58.6% of all 29 bean iso-

lates screened.

Significant differences in virulence, as measured by normalized fresh weight, were

observed when comparing the strain collection stratified by host of isolation and PG

(Table 1). The 29 bean isolates had an average virulence (normalized fresh weight) of 0.59

compared to 0.85 for the 92 non-bean isolates (p = 4.2e-5, 2-tailed, heteroscedastic t-test,

same for tests discussed below). As all the bean isolates are found in PG2 and PG3, we com-

pared the virulence of bean isolates to non-bean isolates within these two PGs individually

and found no significant difference for PG2 (p = 0.128) but a strong difference for PG3

(p = 8.9e-4). Additionally, there were no significant differences between PG2 and PG3 bean

isolates (p = 0.460). We then looked for differences in virulence between strains from differ-

ent PGs irrespective of their host of isolation (only comparing PGs with at least six tested

strains, using 2-tailed, heteroscedastic t-tests, Bonferroni corrected for seven total tests), and

found that strains in PG2 were significantly more virulent on bean than strains from PG1,

PG3, and PG4 (p = 1.33e-07, 0.012, and 0.029 respectively), but not relative to PG6. In con-

trast, strains from PG3 were only significantly more virulent on bean than strains from PG1

(p = 0.006). No other significant pairwise PG comparisons were observed. Interestingly, we

noticed that PG2 non-bean isolates showed higher virulence on bean than non-bean isolates

Fig 4. Virulence stratified by host and phylogroup. (A) Boxplots showing the distribution of virulence (i.e., normalized plant weight 14 days after seed

infection) ordered by the median virulence. Colors correspond to phylogroups as shown along the top. Bean isolates are indicated with asterisks above

their respective boxplots. (B) Frequency plot of virulence for the 121 screened P. syringae strains. Distribution of virulence values for (C) bean verses

non-bean isolates, (D) bean and non-bean isolates stratified by phylogroup, and (E) virulence values stratified by phylogroup (PG) for the set of 121

screened strains.

https://doi.org/10.1371/journal.ppat.1010716.g004
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from other PGs (p = 2.87e-4). This indicates that PG2 isolates show greater virulence on

bean irrespective of host of isolation, although the degree of virulence is relatively low. This

pattern was reversed in PG3 where non-bean isolates had significantly lower virulence than

non-bean isolates from all other PGs (p = 4.52e-3).

Germination screen

We then assessed whether the virulence of a strain also influenced the germination frequency

of bean seeds. Pathogenic microbes are known to interfere with the seed germination both

through the direct action of phytotoxins and the indirect action of immune activation

[30,40,41,44,45]. In fact, seedling growth inhibition is a well-established assay for immune

activation in Arabidopsis thaliana [45]. In general, the frequency distribution for bean

germination inhibition was less skewed than the frequency distribution for virulence, with

mean = 60.1%, median = 63.3%, and standard deviation = 24.3% (Fig 5 and Table 1). The aver-

age germination frequency for all bean isolates was 45.9% compared to 64.6% for non-bean

isolates (p = 4.92e-4). When stratifying the bean isolates by PG, we found no significant differ-

ence in germination frequency between PG2 bean and non-bean isolates (p = 0.076), while the

comparison was significant for PG3 (p = 0.002). However, in contrast to the virulence assays

we observed a slightly significant difference between germination frequency for PG2 bean iso-

lates and PG3 bean isolates (p = 0.014). Other inter-phylogroup comparisons were similar to

what was found for the virulence assays, PG2 strains were significantly different from strains

from PG1, PG3, and PG4 (p = 0.010, 6.23e-5, 8.53e-11 respectively 2-tailed, heteroscedastic t-

test, Bonferroni corrected for seven tests), while PG3 strain were also significantly different

from PG4 (p = 2.23e-4). Also similar to the virulence results, non-bean PG2 isolates resulted in

a lower germination frequency than all other non-bean isolates (p = 9.60e-5), while non-bean

PG3 strains had a higher germination frequency than non-bean isolates from all other PGs

Table 1. Virulence and Germination Assay Summary.

N Virulence 2 Germination Frequency (%)

Group 1 Strains Mean Median Stdv Mean Median Stdv

All Strains 121 0.789 0.913 0.271 60.10 63.33 24.31

PG1 8 0.972 0.995 0.043 72.99 79.17 15.71

PG2 50 0.658 0.748 0.320 46.74 53.33 26.41

PG3 42 0.841 0.964 0.218 68.15 67.50 16.53

PG4 6 0.924 1.000 0.147 83.61 82.50 4.52

PG5 3 0.966 1.000 0.059 73.33 78.33 10.14

PG6 3 1.000 1.000 0.000 80.56 81.67 3.47

PG7 2 0.956 0.956 0.062 85.00 85.00 7.07

PG11 6 0.851 0.867 0.151 43.89 50.00 20.75

PG13 1 1.000 1.000 NA 91.67 91.67 NA

All Bean Isolates 29 0.594 0.516 0.271 45.89 53.33 23.52

All Non-Bean 92 0.850 0.960 0.244 64.58 68.33 23.05

PG2 Bean 16 0.560 0.478 0.293 36.84 32.22 26.42

PG2 Non-Bean 34 0.704 0.841 0.327 51.41 56.67 25.47

PG3 Bean 13 0.635 0.606 0.246 57.02 58.89 13.21

PG3 Non-Bean 29 0.933 1.000 0.122 73.14 73.33 15.56

1 PG = phylogroup
2 Normalized fresh weight 2 weeks after seed infection

https://doi.org/10.1371/journal.ppat.1010716.t001
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(p = 0.004), although this pattern is absent when non-bean PG2 strains were removed from

the analysis.

Finally, we measured the association between virulence (i.e., normalized fresh weight) and

germination frequency and found a strong association between the two metrics for the full

dataset (R2 = 0.46, p = 2.2e-16). Stratifying by PG and bean isolates showed a strong associa-

tion for PG2 bean isolates (linear regression; F = 28.91, df = 13, p = 0.0001, R2 = 0.68), but no

significant association for PG3 bean isolates (R2 = 0.62, p = 0.06) (Fig 6).

Predictive modelling of P. syringae virulence on bean

We used two machine learning methods and three different genetic feature classes to predict

P. syringae virulence on beans. The machine learning methods were gradient boosted decision

tree regression models and random forest regression models. Here we only report the details

of the gradient boosted models since they outperformed the random forest models (S4 Fig).

The three genetic feature classes that were used in modeling were: 1) genomic k-mers; 2) T3SE

k-mers; or 3) presence / absence of T3SEs and phytotoxins. T3SEs and phytotoxins are well-

known virulence factors, with the former often strongly associated with host specificity. Plant

weight 14 days after seed infection was used as the continuous outcome variable in our model.

We could have also used seed germination frequency in this assay but felt that plant fresh

weight more accurately reflected the virulence concerns of bean producers. The goal of analy-

sis was to assess the power of machine learning to predict disease outcomes based on genome

sequences and to predict the host specificity of new isolates based on their genome sequence.

We used two nested collections of strains to generate the model. The first collection was

comprised of the 121 of the isolates directly screened for virulence, which was made of 29 bean

isolates and 92 non-bean isolates, including 50 PG2 isolates (16 bean, 34 non-bean), and 42

Fig 5. Germination frequencies by host and phylogroup. (A) Boxplots showing the germination frequencies frequency for 121 screened P. syringae
strains with strains presented in the same manner and order as in Fig 6. (B) Frequency plot of germination for the 121 screened strains. Distribution of

germination frequencies for (C) bean verses non-bean isolates, (D) bean and non-bean isolates stratified by phylogroup, and (E) virulence values

stratified by phylogroup (PG) for the set of 121 screened strains.

https://doi.org/10.1371/journal.ppat.1010716.g005
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PG3 isolates (13 bean, 29 non-bean). This collection is slightly smaller than the full screened

set since it does not include the additional PG3 bean isolates added to balance the experimental

design (q.v., materials and methods). The second collection was an expanded strain set in

which we imputed virulence values based on genomic similarity (S5 Fig). Imputation is the

inference of the state of unknown or untested variant genetic loci based on their linkage to

known variants. Imputation is very commonly used in many genetic applications (e.g., GWAS,

epidemiology) to increase genetic marker density, and therefore, statistical power [46]. In this

case we used what might be considered phylogenetic linkage, or simply, recent common ances-

try. The imputation process involved identifying strains in our collection belonging to the

same clonal lineage as those assayed in our virulence screen (i.e., having a core genome evolu-

tionary distance of less than 0.001 and a T3SE Jaccard similarity of greater than 0.8 to a

screened strain). Any strains meeting these criteria were assigned the same virulence as the

corresponding screen strain. This imputation process almost tripled the size of our sample set,

resulting in an expanded collection of 320 strains (Fig 7), which was made of 59 bean isolates

and 261 non-bean isolates, including 66 PG2 isolates (19 bean, 47 non-bean), and 142 PG3 iso-

lates (39 bean, 104 non-bean). We also trained a model on PG2 and PG3 strains separately

since bean isolates from these PGs interact with their host very differently.

Our gradient boosted decision tree model showed a mean absolute error (MAE, absolute

value of the difference between observed and expected values) between approximately 0.05

and 0.20 and root mean squared error (RMSE, standard deviation of the prediction error)

Fig 6. Correlation between germination frequency and virulence of seed infected bean plants. (A) Germination

frequency vs virulence (i.e., normalized fresh weight) stratified by PG2 and PG3 bean isolates. A strong correlation is

found between germination frequency and virulence of bean strains from PG2 (linear regression; F = 28.91, df = 13,

p = 0.00012, r2 = 0.66). (B) Germination frequency vs. virulence stratified by PG irrespective of host.

https://doi.org/10.1371/journal.ppat.1010716.g006
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between approximately 0.10 and 0.26 (Fig 8 and Table 2). We assessed overall model perfor-

mance via permutation tests, which were done by building 100 gradient boosted models using

full genome k-mers on the extended strain collection in which the host of isolation were ran-

domly assigned (i.e., permuting strain labels). The lowest RMSE out of the 100 permutated

models was 0.266±.0021 (sd) compared to the observed RMSE value 0.140 for the same data

structure (S6 Fig and Table 2). The fact that the observed RMSE is 64 standard deviations

below the mean of the permutated models indicates that the model performs vastly better than

random.

Overall, the model performed best on the PG3 strains, which is not surprising given their

strongly phylogenetic clustering. The strong clonal separation of bean vs. non-bean pathogens

Fig 7. Core genome phylogeny of 320 P. syringae isolates. Leaf colors represent PG affiliation as shown in the legend.

(A) Bean isolates in gray and non-bean isolates in black. (B) Normalized median bean weight after seed infection by

the respective isolates. Green indicates a high weight, while yellow indicates a low weight as show in the legend. (C)

Normalized median bean weight for the expanded strain collection based on phylogenetic imputation. (D) Normalized

median germination frequency after seed infection by the respective isolates. Green indicates a high frequency, while

yellow indicates a low frequency as show in the legend. (E) Normalized median germination frequency for the

expanded strain collection based on phylogenetic imputation.

https://doi.org/10.1371/journal.ppat.1010716.g007
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Fig 8. Performance of supervised machine learning models on virulence predictions with genome data. Shapes

represent models trained with the screened collection (triangles), imputed expanded collection (circle), imputed

expanded PG2 set (square), and imputed expanded PG3 set (rhombus). Colors represent models trained with a

phytotoxin and T3SE binary matrix (green), T3SE k-mers (yellow), and whole genome k-mers (blue). (A) Mean

Absolute Error (MAE) as a function of number of samples across 50 cross-validation splits. (B) Root Mean Square

Error (RMSE) as a function of number of samples across 50 cross-validation splits.

https://doi.org/10.1371/journal.ppat.1010716.g008
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within this PG resulted in the statistical reinforcement of features with improved predictive

power during model training. The models performed almost as well with the full expanded

dataset (i.e., including screened & imputed strains) but surprisingly, there was no significant

linear relationship between sample size and the overall performance of the models indicating

that sample size what not the primary predictor of model performance (Fig 8, MAE linear

regression F = 1.04, df = 2, p = 0.41, R2 = 0.3). Perhaps not surprisingly, models built using the

greatest number of genetic feature (i.e., whole genome k-mers) frequently showed the highest

predictive power, with the best model (PG3 strains using whole genome k-mers) having a

MAE of 0.05 (Table 2). An interesting finding was that within the PG2 dataset, the model built

with T3SE k-mers outperformed whole genome k-mers, or the profile of toxins and T3SEs,

which performed worst. This was unexpected given the small number of T3SEs carried by

these strains relative to other strains in the P. syringae complex. These results support the gen-

eral consensus that T3SEs play important roles in promoting or restricting host range (despite

their relatively small numbers in this PG), while toxins have a more general, non-host specific

role in host-microbe interactions.

Model functional validation

Finally, we evaluated the power of our gradient boosted decision tree regression model to pre-

dict the virulence of 16 strains that were not previously studied and that are not clonally related

to any screened strain (i.e., have core genome evolutionary distance >0.001 and T3SE Jaccard

similarity of a <0.8 compared to the screened strains), meaning that these validation strains

can be viewed as completely naïve strain collection. We used whole genome k-mers to make

virulence predictions and evaluated these against actual virulence measures obtained through

the seed infection virulence assay. When comparing observed virulence to predicted virulence

of the 16 strains in the functional validation set, we found a RMSE of 0.164, which compares

favorably with the RMSE of 0.140 obtained for the whole genome k-mer model of the extended

strain collection (Fig 9 and Table 3). Interestingly, the one strain that performed the most

poorly was the PG2 strain PttDSM50252, which had an MAE of 0.437 while the other 15

strains had an average MAE of 0.112. If PttDSM50252 is removed from the calculation, the

Table 2. Machine Learning Model Performance Sorted by Decreasing MAE.

Group 1 Samples Dataset MAE 2 RMSE 3

PG3 142 Whole genome k-mers 0.049 0.107

PG3 142 Toxin and T3SE binary matrix 0.054 0.101

Expanded 320 Whole genome k-mers 0.067 0.140

PG3 142 T3SE k-mers 0.085 0.126

Expanded 320 Toxin and T3SE binary matrix 0.092 0.153

Expanded 320 T3SE k-mers 0.096 0.177

PG2 66 T3SE k-mers 0.154 0.233

Screened 121 Whole genome k-mers 0.155 0.204

Screened 121 T3SE k-mers 0.159 0.213

Screened 121 Toxin and T3SE binary matrix 0.163 0.201

PG2 66 Whole genome k-mers 0.169 0.242

PG2 66 Toxin and T3SE binary matrix 0.202 0.262

1 Group indicates PG strains (screened + imputed virulence used) for ML training. “Expanded” includes PG2 + PG3 strains.
2 MAE, mean absolute error = mean of the absolute values of the observed value minus the expected value.
3 RMSE, root-mean-square error = standard deviation of the regression residual (prediction error).

https://doi.org/10.1371/journal.ppat.1010716.t002
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Fig 9. Correlation between predicted and observed weights of plants infected with isolates previously unseen by

the model. (A) Normalized weight distribution of 16 isolates previously unseen by the model (not clonally related to

any screened strain, i.e., having a core genome evolutionary distance>0.001 and a T3SE Jaccard similarity of<0.8

compared to the screened strains). (B) Predicted virulence as a function of observed virulence on seed infected bean

plants. Color coding indicates PGs. Dashed line indicates 1:1 relationship. (C) Virulence for each isolate tested ordered

by predicted virulence and colored by PG. The solid line represents virulence predictions for each isolate. The grey

box represents the error margins for the predictions based on the MAE and RMSE values for the model.

https://doi.org/10.1371/journal.ppat.1010716.g009
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RMSE value drops to 0.126. This finding further supports the hypothesis that PG2 show low

degrees of host specificity.

Discussion

In this work we addressed whether host of isolation is a reliable predictor of host specific viru-

lence and whether whole genome sequences can be used to predict the host specific virulence

potential of individual strains. While host of isolation is a widely used surrogate for host speci-

ficity, this assumption has rarely been empirically tested [13,14], and the strength of this

assumption is critical when viewed from the context of the virulence potential of emerging

pathogens. Are strains isolated from one host only virulent on that host, or do they have the

potential to move to other species? Are strains isolated from environmental sources, such as

streams or soil, limited to those environments or can they ‘jump’ to a new host and potentially

cause a significant outbreak?

Our first aim was to determine if infection of bean seeds by P. syringae recapitulated viru-

lence responses seen in standard syringe inoculation virulence assays. We found a negative

association between our virulence measure of normalized plant fresh weight after seed infec-

tion and in planta bacterial growth after syringe infiltration into leaf tissue, showing that the

seed infection protocol effectively recapitulates standard methods. This finding is consistent

with published and anecdotal reports that infected seed stocks are a significance source of

bean disease [16,40,41,47]. In general, we found that bean isolates reduced mean plant fresh

weight by 30.2% and median weight by 46.2% compared to non-bean isolates. While the PG2

bean isolates (leaf spot disease caused by pathovar syringae) had a normalized mean fresh

weight of 0.56±0.293 (SD) compared to 0.64±0.246 for the PG3 bean isolates (halo blight dis-

ease caused by pathovar phaseolicola), this difference was not significantly different. A similar

pattern was found when we examined seed germination frequencies, where bean isolates

reduced the average germination frequency by 28.9% and median frequency by 22.0% com-

pared to non-bean isolates, while the 38.8% mean germination frequency of PG2 bean

Table 3. Model Functional Validation.

Treatment PG Host Observed Weight1 Predicted Weight1 MAE

PttDSM50252 2 Wheat 0.682 0.244 0.437

PvrICMP3272 3 Kiwifruit 1.000 0.807 0.193

PpeICMP3706 3 Myrobalan Plum 1.000 0.808 0.192

PtaUFLA129 3 Coffee 0.942 0.754 0.188

PbrICMP13684 3 Paper Mulberry 0.786 0.604 0.182

PtoDC3000 1 Tomato 0.821 0.988 0.166

PheICMP3263 6 Sunflower 0.864 0.988 0.125

PsfICMP4418 4 Oat 0.864 0.973 0.110

PerICMP8636 3 Loquat 0.893 0.993 0.100

Pae0893_23 3 Horse Chestnut 0.893 0.986 0.093

PchUFLA136 11 Coffee 0.804 0.720 0.084

Pla3988 1 Cucumber 0.909 0.990 0.081

PcaICMP7496 6 Pawpaw 0.909 0.975 0.066

PmaICMP11281 1 Broccoli Raab 0.929 0.988 0.060

PgcNCPPB2708 4 Coffee 1.000 0.969 0.031

PmaES4326 5 Radish 1.000 0.991 0.009

1 Z-score normalized fresh weight

https://doi.org/10.1371/journal.ppat.1010716.t003
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pathogens was significantly lower than the 57.0% mean germination frequency of the PG3

bean pathogens (p = 0.014).

We find a striking difference when comparing bean to non-bean isolates found in the same

phylogroup. As anticipated, bean seed infection with PG3 bean isolates resulted in significantly

higher virulence and lower germination frequency than PG3 non-bean isolates, while in con-

trast, PG2 bean isolates did not differ significantly from PG2 non-bean isolates. PG2 strains

generally (irrespective of host of isolation) show greater virulence on bean, indicating that

strains from this phylogroup have lower host specificity, i.e., are host generalists. This is

strongly supported when comparing non-bean isolates from PG2 to non-bean PG3 isolates

(normalized fresh weight of 0.704 and 0.933, respectively; p = 4.67E-04). These findings are

consistent with other studies that have found lower levels of host specificity among PG2 strains

[13,14] and lends support to the hypothesis that PG2 strains may rely as much or more on tox-

ins than T3SEs when compared to other P. syringae strains.

We expected that PG3 bean isolates would have higher virulence than PG2 bean isolates

since halo blight caused by PG3 pathovar phaseolicola is a much more severe disease than spot

disease caused by PG2 pathovar syringae, but this was not the case. There are several explana-

tions for these data. First, is a simple experimental bias explanation driven by the fact that

nearly all the PG3 bean isolates fall into one clonal group as defined by our clonality criteria of

a core genome distance of<0.001 average substitutions per site and T3SE profile Jaccard simi-

larity value >0.8. We attempted to address this issue by oversampling from the phaseolicola
clonal group. But to ensure that we did not create another bias by adding too many very closely

related strains, we only added seven additional strains to the original group of six PG3 bean

isolates. Unfortunately, this still resulted in a small set that could easily be skewed by a few out-

lying measurements. Second, some of the PG3 strains likely elicit effector-triggered immunity

in the cultivar of bean assayed, which would result in healthy plants. Given the small set of

PG3 bean isolates, even a few ETI-eliciting strains will result in a large average decrease in viru-

lence. And third, it is possible that the most severe symptoms of halo blight are only seen after

leaf-to-leaf transmission caused by water splash rather than seed transmission [21,48].

While many genome-wide association studies have successfully identified strong genotype-

to-phenotype linkages, we were unable to identify any loci significantly associated with bean

isolation. Consequently, we shifted our focus to machine learning approaches as they can not

only unravel genomic signatures associated with continuous phenotypes, but also predict the

virulence potential of previously unseen isolates given their genome sequences. Regardless of

PG affiliation, our model was able to predict the virulence of individual P. syringae isolates

within reasonable error margins based solely on whole genome data. The fact that models

trained on virulence factors alone could predict virulence with considerable accuracy supports

the notion that T3SEs and phytotoxins play crucial roles in host adaptation processes. None-

theless, the higher predictive power of models trained with whole genome k-mers suggests that

factors other than canonically virulence-associated genes also play important roles on disease

development and adaptation to beans.

While sample size is usually an important contributor to accurate model generation in

machine learning, we only found an association between sample size and predictive power

when we did not stratify by data types (i.e., whole genome k-mers, T3SE k-mers, and toxins

and effector presence/absence). In this case, the screened strain collection providing a MAE of

0.153 while the larger imputed strain collection increased model performance to a MAE of

0.065. No association between sample size and predictive power was found when data types

were not stratified, which may indicate that factors such as the phylogenetic structure of the

sample outweigh the size of the sample. We also find poorer model performance for PG2

strains than PG3 strains. While this may partly reflect the differences in sample size between
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these two groups, it also likely reflects the underlying biology. The majority of bean isolates in

PG3 are phylogenetically clustered, while there is little clustering of bean isolates in PG2. Con-

sequently, the model may perform better on PG3 since it is essentially predicting phylogenetic

structure. Another contributing factor is likely the finding discussed above, namely, that host

specificity appears to be weaker in PG2. If PG2 strains are more generalists than specialists,

then the host specificity signal would be weaker and any model trying to find this signal would

perform more poorly.

In conclusion, we believe that this work demonstrates the potential utility of machine learn-

ing for predicting host-specific virulence. Future models would benefit from increased sample

sizes, improved phenotyping capacity and accuracy, reliable metadata, and improved methods

for controlling for population structure (i.e., non-independent evolutionary history). Given

the relative ease of generating genomic data, it is likely that these models will play an increas-

ingly important role in diagnostic microbiology, and hopefully provide a new and valuable

tool for protecting crops from emerging pathogens in the future.

Materials and methods

Strain collection

Three hundred and thirty-three Pseudomonas syringae strains were used in this study (S1

Table). Forty-six P. syringae isolates were collected from bean fields approximately 80 km east

of Lethbridge, Alberta, Canada, during the summer of 2012. Bean leaves with symptoms of

bacterial diseases were collected from new growth during the vegetative growth stage. The

remaining 288 isolates were previously published [9] and include 49 P. syringae type and

pathotype strains [1,49]. A type strain is the isolate to which the scientific name of that organ-

ism is formally attached under the rules of prokaryote nomenclature, while a pathotype strain

is similar but with the additional requirement that it has the pathogenic characteristics of its

pathovar (i.e., a pathogen of a particular host) [5]. Out of the 333, 317 strains were used for

comparative analyses and model training, while 16 were used for model functional validation.

A subset of 267 non-clonal representative strains (discussed below) were selected for the pre-

dictive modeling to avoid clonal bias. A further subset of 121 isolates, including the type and

pathotype strains, were selected for virulence assays.

Sequencing and quality control

DNA was extracted using the Gentra Puregene Yeast and Bacteria kit (Qiagen, Hilden, Ger-

many). Illumina libraries with 300–400 bp inserts were generated using the Illumina Nextera

XT kit according to the manufacturer’s protocol (Illumina, CA, USA). Samples were multi-

plexed with the Illumina Nextera XT Index kit containing 96 indices. Samples were sequenced

on the Illumina NextSeq 500 Mid Output v2 (300 cycle) kit with 150 base PE reads. All

sequencing was performed at the University of Toronto’s Centre for the Analysis of Genome

Evolution and Function (CAGEF). Raw read quality was assessed with FastQC. Trimmomatic

was used to remove adapters and trim raw sequencing reads based on a sliding window

approach (window size = 4, required quality = 5).

De novo assembly

Paired-end reads were de novo assembled using the CLC Genomics Assembly Tool (CLC

Genomics Workbench). Contigs shorter than 1kb were removed from the assemblies.

Low coverage contigs with matches to non-Pseudomonas genera and no matches to the
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Pseudomonas genus that had a depth of coverage less than one standard deviation from the

average assembly coverage were deemed contaminants and, therefore, removed from the final

draft.

Pangenome analysis, gene prediction, annotation, and orthologous

clustering

Gene prediction and annotation for all assemblies were performed with Prokka [50]. Prokka

annotates inferred coding sequences by searching for sequence similarity in the UniProtKB

[51] database and HMM libraries [52]. Additionally, all predicted genes were aligned against a

custom T3SE database for the identification of potential T3Ses [26]. Pangenome analysis was

performed via PIRATE [53], which iteratively clusters genes into orthologous groups by per-

forming all-vs-all comparisons followed by MCL clustering given a certain percent identify

threshold. Genes present in at least 95% of the genomes were classified as core. Core protein

families were individually aligned with MUSCLE [54] and later concatenated into a single pro-

tein alignment. We used the FastTree2 approximate maximum-likelihood approach [55] to

infer the phylogenetic relationships of all 320 isolates. Core genome synonymous substitution

rates were estimated with MEGA7 [56] using the Nei-Gojobori method and Jukes-Cantor

model. Jaccard distances were computed with R version 4.0.5 (42) using a binary matrix of

presence and absence of accessory genes. Rarefaction curves were generated using a custom

Python script.

Identification of non-clonal representative strains

We reduced the impact of phylogenetic bias in our predictive modeling by selecting only one

representative strain from each clonal group (i.e., very closely related strains recently derived

from a common ancestor) identified from the P. syringae core-genome phylogeny. We identi-

fied clonal groups by calculating the pairwise core genome evolutionary distance and the Jac-

card similarity for T3SE profiles. We found the minimum pairwise core-genome evolutionary

distance for isolates with identical T3SE profiles to be 0.001 average substitutions per site. We

therefore pooled the 318 isolates if they had a core genome evolutionary distance of less than

0.001, resulting in 209 clusters. We further supplemented these clusters by adding back any

strain that had a T3SE profile Jaccard similarity value less than 0.8, resulting in 267 non-clonal

clusters. A single representative was selected out of each of these non-clonal clusters for down-

stream analyses. One exception was made to the strain selection process to balance our experi-

mental design, which was skewed due to the fact that the vast majority of PG3 bean isolates

(i.e., pathovar phaseolicola) fall into one clonal group. Initially, our selection criteria resulted

in only six PG3 bean isolates compared to 16 PG2 bean isolates (i.e., pathovar syringae). We

therefore added an additional seven phaseolicola strains to the screened set to better balance

the number of bean isolates in PG2 and PG3. Evolutionary distances and Jaccard similarity

scores were inferred with MEGA7 [56] and R version 4.0.5 [57].

Seed infection virulence assay

P. syringae strains were grown overnight at 30˚C in King’s B media, re-suspended in 10 mM

MgSO4 and diluted to an OD600 of 0.001. P. vulgaris var. Canadian Red seeds were soaked for

24 hours in the bacterial suspension, planted in Sunshine Mix 1 soil with regular watering and

grown for 14 days. Plant fresh weight and germination frequencies were measured and nor-

malized to a control plant treated with 10 mM MgSO4 sown on each flat. Trials were repeated

three times.

PLOS PATHOGENS Predicting P. syringae virulence on bean using a machine learning approach

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010716 July 25, 2022 19 / 24

https://doi.org/10.1371/journal.ppat.1010716


Syringe infiltration virulence assays

P. syringae strains were grown overnight on appropriate antibiotics, re-suspended in 10 mM

MgSO4 and diluted to OD600 of 0.001. Two- to three-week-old Phaseolus vulgaris var. Cana-

dian Red plants were syringe infiltrated and bacterial growth assays were carried out by har-

vesting eight leaf disks (1 cm2) from each plant (two per each primary leaf) three days after

infiltration. Disks were homogenized using a bead-beater in 200 μl sterile 10 mM MgSO4, seri-

ally diluted in 96-well plates, and 5 μl from each dilution was spot plated on KB supplemented

with rifampicin for positive and negative control strains. Plates were incubated for at least 24

hours at 30˚C and the resulting colony counts were used to calculate the number of CFUs per

cm2 in the leaf apoplast.

Predictive modeling of P. syringae virulence on bean

We used an implementation of gradient boosted decision trees to model the effect of P. syrin-
gae isolates on plant weights as a proxy for strain virulence using: 1) whole genome k-mers, 2)

T3SE k-mers, and 3) a presence / absence matrix of T3Ses and phytotoxins. We split sequences

into 31-mers with fsm-lite and generated a binary matrix for k-mers with identical distribution

patterns using custom python scripts. Next, we used the Scikit-learn and the XGBoost python

libraries [58] to generate a regression model for the prediction of normalized plant weights

using all three datasets as input features. Given the relatively small size of our dataset, we used

a cross-validation (CV) procedure to assess the performance of our model on 50 independent

splits (S7 Fig). For each time, we randomly split the data into training (80%) and testing (20%)

sets while maintaining the same plant weight distributions on both sets. Hyper parameters

were fine-tuned using Scikit-learn’s RandomizedSearchCV module and regression models

were generated with XGBoost’s XGBRFRegressor module.

Supporting information

S1 Fig. Characteristic plant phenotypes of 14-day old plants following seedling infection.

Halo blight leaf symptoms on a plant infected with Phh1448A on the left, compared to healthy

plants treated with MgSO4 on the right.

(TIF)

S2 Fig. Normalized weights and bacterial densities for Pph1448A::HrcC. The mutant

Pph1448A::HrcC is unable to deliver T3SEs into the host cell. Plants treated with this mutant

therefore exhibit higher normalized fresh weights and lower bacterial densities in comparison

to a wild-type treatment.

(TIF)

S3 Fig. Sample size selection via a simulated experimental setup. Bean plants were seed

infected with 6 P. syringae isolates with a high number of replicates (>50). Plant weights were

randomly selected according to various replicate sizes (8–32). Our ability to distinguish patho-

gens from non-pathogens using Tukey-HSD tests plateaus at 20 replicates per treatment.

(TIF)

S4 Fig. Performance statistics for random forest and gradient boosting machines. (A)

Mean Absolute Error (MAE) as a function of number of samples across 50 cross-validation

splits. (B) Root Mean Square Error (RMSE) as a function of number of samples across 50

cross-validation splits.

(TIF)
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S5 Fig. Distribution of virulence values stratified by host and phylogroup. Boxplots show-

ing the distribution of virulence (i.e., normalized plant weight 14 days after seed infection) val-

ues for (A) bean verses non-bean isolates for the set of 121 screened strains, and (B) for the 320

strains in the expanded dataset that includes both screened and imputed strains. (C) Distribu-

tion of virulence values for bean and non-bean isolates stratified by phylogroup for the

screened strains and (D) for the expanded dataset. (E) Distribution of virulence values strati-

fied by phylogroup (PG) for the screened strains, and the (F) expanded strain set.

(TIF)

S6 Fig. Distribution of RMSE statistics from gradient boosting models generated from 100

permutated dataset. Models were trained with whole-genome k-mers on the expanded strain

collection by randomly swapping host of isolation labels. The average of the permuted distri-

bution is 0.271±0.002 (sd). The observed RMSE using the equivalent model design was 0.140.

(TIF)

S7 Fig. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) across 50 cross-

validation splits. Model performance in terms of (A) MAE and (B) RMSE. Plant weight distri-

butions were kept the same across splits.

(TIF)

S1 Table. List of P. syringae isolates used in this study.

(XLSX)
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