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Delayed pubertal onset has many etiologies, but on average two-thirds of patients

presenting with late puberty have self-limited (or constitutional) delayed puberty.

Self-limited delayed puberty often has a strong familial basis. Segregation analyses

from previous studies show complex models of inheritance, most commonly autosomal

dominant, but also including autosomal recessive, bilineal, and X-linked. Sporadic

cases are also observed. Despite this, the neuroendocrine mechanisms and genetic

regulation remain unclear in the majority of patients with self-limited delayed

puberty. Only rarely have mutations in genes known to cause aberrations of the

hypothalamic-pituitary-gonadal axis been identified in cases of delayed puberty, and

the majority of these are in relatives of patients with congenital hypogonadotropic

hypogonadism (CHH), for example in the FGFR1 and GNRHR genes. Using next

generation sequencing in a large family with isolated self-limited delayed puberty, a

pathogenic mutation in the CHH gene HS6ST1 was found as the likely cause for

this phenotype. Additionally, a study comparing the frequency of mutations in genes

that cause GnRH deficiency between probands with CHH and probands with isolated

self-limited delayed puberty identified that a significantly higher proportion of mutations

with a greater degree of oligogenicity were seen in the CHH group. Mutations in the gene

IGSF10 have been implicated in the pathogenesis of familial late puberty in a large Finnish

cohort. IGSF10 disruption represents a fetal origin of delayed puberty, with dysregulation

of GnRH neuronal migration during embryonic development presenting for the first time

in adolescence as late puberty. Some patients with self-limited delayed puberty have

distinct constitutional features of growth and puberty. Deleterious variants in FTO have

been found in families with delayed puberty with extremely low BMI and maturational

delay in growth in early childhood. Recent exciting evidence highlights the importance of

epigenetic up-regulation of GnRH transcription by a network of miRNAs and transcription

factors, including EAP1, during puberty. Whilst a fascinating heterogeneity of genetic

defects have been shown to result in delayed and disordered puberty, and many are

yet to be discovered, genetic testing may become a realistic diagnostic tool for the

differentiation of conditions of delayed puberty.

Keywords: puberty, constitutional delay of growth and puberty (CDGP), endocrine genetics, self-limited delayed

puberty, EAP1, IGSF10, HS6ST1, FTO

INTRODUCTION

The timing of puberty in humans and other mammals is strongly influenced by genetic regulation.
Studies using epidemiological and intra-familial tools give an estimate of 50–80% of the variation in
timing of pubertal onset being under genetic control (1, 2). Another illustration of this is the high
correlation of the timing of sexual maturation observed between twins (3). Although the precise
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age of onset of puberty varies within and between different
populations, it is a highly heritable phenotypic feature (4).
Despite this strong genetic component, there is much that we still
do not understand about the physiological control of the timing
of onset of, or progression through, puberty (5).

The clinical phenotype of delayed puberty can be a feature
of several different conditions (6). However, the most common
presentation is with isolated and self-limited delayed puberty
(also known as constitutional delay of growth and puberty, or
CDGP). Self-limited delayed puberty has been shown in several
observational studies to be the commonest cause of delayed
puberty in males and females (7). More than 80% of boys and
around one-third of girls presenting with late pubertal onset
have this disorder of pubertal timing. The term “self-limited” has
been coined as in these patients puberty will have commenced
by the age of 18 years. Notably, constitutional features involving
short stature or slow growth in early childhood are not seen
in all patients with “simple” delayed puberty. In a patient
presenting with delayed puberty in adolescence there are three
main differential diagnoses: (1) central hypogonadism which is
functional or temporary, where inhibition of the hypothalamic-
pituitary-gonadal (HPG) axis is secondary to chronic disease
(in one-fifth of those with late pubertal onset), under-nutrition,
excessive exercise, or psychological distress; (2) permanent
(central) hypogonadotropic hypogonadism, either congenital
hypogonadotropic hypogonadism (CHH) or acquired, with
classically low or normal LH and FSH levels (seen in 9% of males
and up to one-fifth% of females); and (3) primary hypogonadism,
with elevated gonadotropin levels secondary to gonadal failure,
low sex steroid concentrations, and failure of negative feedback
(in ∼7% of males and one-quarter of females with late pubertal
onset) (8).

Self-limited delayed puberty represents a timing of puberty
onset at the extreme end of normal. Thus, those patients with
this condition have a lack of testicular enlargement in males or
breast development in females at an age that is 2 to 2.5 standard
deviations (SD) later than the population mean (Figure 1) (6).
Moreover, children with slow or stuttering progression through
puberty, as diagnosed through the use of puberty normograms,
can also fall within this diagnostic category (9) (Figure 1).
Delay of pubertal development has now been recognized to
be associated with several long-term sequelae and is no longer
seen as a benign developmental variant (10). These adverse
consequences include a higher risk for early natural menopause
and poor overall health (11) and negatively affected psychosocial
well-being and peer relationships (12). There is some evidence
that delayed puberty is associated with lower bone density (13).
Adult height can be affected by late pubertal timing but on
average it is only slightly below the genetic target (12).

Between half and two-thirds of those patients with self-
limited delayed puberty have a family history of late puberty
(14). Observational studies have demonstrated that self-limited
delayed puberty is inherited with several different inheritance
patterns including autosomal dominant or recessive, bilineal
(both parents affected by delayed puberty), and X-linked.
Sporadic cases are also observed (Figure 2). However, the
majority of families display an autosomal dominant pattern

of inheritance (with or without complete penetrance) (14–16).
Whilst previously considered to be more common in males,
evidence suggests that self-limited delayed puberty is not sex-
specific, as within families there are near equal ratios of males and
females affected with the trait (16). Indeed, in a cohort review by
Winter et al., there were a higher number of female than male
relatives affected with delayed puberty (47 females vs. 34 males)
(17). The higher number of males that present to a medical team
may well be a consequence of referral bias.

The etiology is unknown in the majority of patients with
delayed puberty (18, 19). Identification of causal genetic defects
in familial delayed puberty is complex for a numbers of reasons.
Firstly, delayed puberty is not a rare condition, occurring (by
statistical definition) in ∼2% of the population. Secondly, whilst
some pedigrees display clear Mendelian inheritance patterns it is
likely that patients may have a di- or oligogenic (where variants
in more two genes contribute to the phenotype) genetic basis
for their phenotype in many cases. Thirdly, as noted above, self-
limited delayed puberty represents a timing of puberty onset at
the extreme end of a near-normally distributed trait in the general
population, so there may be a low level of causal variants for this
condition seen in population databases. Therefore, we cannot,
as is often applied for rare diseases, filter out all non-novel
variants from our sequencing datasets when searching for causal
variants. Instead, we need to compare the prevalence of all rare
and predicted damaging variants in a certain gene between cases
and controls, in order to identify those genes that are enriched
for deleterious variants in patients compared to the general
population (20). Finally, the impact of environmental factors
such as nutrition and endocrine disruptors superimposed on
genetic regulation can “muddy the waters” for those attempting
to isolate definitive genetic causes of delayed puberty.

OVERLAP WITH COMMON GENETIC
VARIANTS OF PUBERTAL TIMING

Leptin and Its Pathways
The noted secular trend toward an earlier age of pubertal onset
in the developed world has been a subject of study for some
time. The importance of energy balance and over- or under-
nutrition is clear; a minimum level of energy availability is needed
for puberty to ensue, but in contrast higher BMI is associated
with earlier puberty (21). This latter statement has been seen
especially in females (22, 23), but the underlying patho-biology
is still not entirely clear. Leptin, a key metabolic hormone and
modulator of BMI in humans, is produced from white adipose
tissue (Figure 3). It is a major signal of energy sufficiency and
mediates, at least in part, the influence of fat mass on pubertal
timing. Leptin is a permissive signal for puberty and is necessary
for normal reproduction. In females, serum leptin concentrations
rise at the onset of puberty (26). Both humans and mice which
lack leptin (Lep ob/ob) or its receptor (LepR db/db) show failure
to complete puberty and are infertile (27). However, leptin is
not the key coordinator in the up-regulation of GnRH signaling
pathways at pubertal onset. Leptin alone does not stimulate
pubertal onset and, whilst in females leptin concentrations rise
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FIGURE 1 | Schematic showing the normal distribution of timing of pubertal onset in the general population, with definitions of precocious and delayed being < or >

2 standard deviations from the mean age, respectively. Top right panel shows an example of a male puberty normogram demonstrating arrested puberty at G3.

G–genital stage (Tanner); B–breast stage (Tanner); GWAS–genome wide association studies; SD–standard deviation.

during puberty, levels are lower in males and decrease during
puberty (28). GnRH neurons do not express LepR therefore
leptin cannot act directly to regulate GnRH neurons. Instead
its acts indirectly via leptin-sensitive afferents which project to
GnRH neurons (29). These afferents are likely to include LEPR-
expressing GABA neurons from the arcuate nucleus, nitric oxide
(which is required for its action) pathways, mTOR signaling, as
well as kisspeptin/neuropeptide Y neurons (30, 31).

Genome-Wide Association Studies
A key strategy in the attempt to uncover the key genetic
regulators of pubertal timing in the general population has been
genome-wide association studies (GWAS) of age at menarche
and voice-breaking in healthy women and men, respectively. The
first locus to be identified as associated with pubertal timing
was the single nucleotide polymorphism (SNP) rs314276 in
the gene LIN28B (32). The major allele of this SNP correlates
with earlier breast development and menarche in girls (32).
LIN28B is a human ortholog of a Caenorhabditis elegans
gene important for developmental timing. The lin-28 family
regulates, and is regulated by, the let-7 family of microRNAs
(miRNAs). However, no human mutations in LIN28B have
been identified, neither with delayed (33) nor with early
puberty (34).

Since this initial discovery several increasingly large meta-
analyses have been carried out on GWAS of timing of puberty.
Whilst the first of these identified 42 (30 new, 2 previously
confirmed and 10 possible) loci for age at menarche (35),

an analysis of 182,416 European women encompassing 57
studies (36) identified 106 genomic loci. These meta-analyses are
ongoing, but the largest to date which comprises 1000 Genomes
Project-imputed genotype data in ∼370,000 women has isolated
389 independent signals (P < 5× 10−8) for age at menarche (37).
The effect size of each of these alleles on the timing of menarche
is between 1 week and 5 months. In total the loci identified
in this study can explain ∼7.4% of the variation in the timing
of menarche in the general population, which corresponds to
∼25% of the estimated heritability. Together this data suggests
that individually many of these genetic variants have a low
impact in the general population (37). Hence these huge studies
suggest that there is a large degree of heterogeneity in the genetic
determinants of normal pubertal timing. A large number of these
signals show a significant association with Tanner staging in
men and women, implying that the data is applicable to both
genders. Additionally, many of these signals have been shown to
have concordant effects on the age at voice breaking. However,
in women the signals identified have stronger effects on early
than on late age of menarche, but in contrast have larger effect
estimates for relatively late than relatively early voice breaking in
males (37).

Multiple signals in or near genes regulating the HPG axis
function have been found by these studies including LEPR-
LEPROT, GNRH1, and TACR3, mutations in which have been
shown to be causal in CHH (38, 39). Loci in or near several
further genes related to development of the pituitary and
its function were also seen, including POU1F1, TENM2, and
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FIGURE 2 | Example pedigrees demonstrating the typical autosomal dominance inheritance pattern seen in self-limited delayed puberty (pedigrees 2 and 4), including

bilineal inheritance (shown in pedigree 1), and incomplete penetrance (pedigree 3). Black circles/squares–delayed puberty; clear circles/squares–normal timing of

puberty; gray circles/squares–timing of puberty not known.

LGR4, the last of which acts as an enhancer for the pituitary
development factor SOX2.

Energy Metabolism Genes Found by GWAS
In addition to leptin signaling, several other genes implicated
in body mass index including FTO, SEC16B, TMEM18, and
NEGR1 have been implicated by GWAS as having a role
in the timing of puberty. FTO had already been identified
via GWAS of susceptibility to obesity, and it remains the
original and most impactful locus with respect to effect
on BMI and risk of obesity (40). Subsequently, using next
generation sequencing techniques rare heterozygous variants in
FTO have been identified in pedigrees with self-limited delayed
puberty associated with extreme low BMI and maturational
delay in growth in early childhood (41). In a parallel murine
experiment, mice that were heterozygous for FTO gene
knockout were shown to have significantly delayed timing of
puberty (41).

A further gene, IRX3, identified at the same GWAS locus as
FTO, was later found also to be of importance in influencing

BMI (42); however the evidence from animal models on the
effect of FTO on food intake regulation remains robust (43),
although its actions may be complex (44). FTO-knockout mice
(45) and in vitro studies have demonstrated that essential amino
acids act to modulate the expression of FTO and that FTO
acts downstream to influence mTORC1 signaling (46). mTOR
acts as a coupler of energy balance and the activity of the
reproductive axis by regulation of the hypothalamic expression
of the kisspeptin gene (47). Blockade of mTOR in a rodent model
led to delayed vaginal opening with blunting of the positive
effects of leptin on puberty onset in food-restricted females (48).
However, it is still unknown if the effect of FTO on pubertal
timing is facilitated via effects on BMI, via mTOR signaling, or
by both.

Other Energy Metabolism Genes
Neuropeptide Y (NPY) is another protein implicated in
the regulation of food intake and satiety, as well as the
hypothalamic-pituitary axis. NPY increases the response of
pituitary gonadotrope cells to GnRH (49), both by stimulating
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FIGURE 3 | Genetic regulators in the trans-synaptic and glial control of GnRH neurons at the onset of puberty, original idea from Ojeda et al. (24) and adapted from

Howard (25) under the CC-BY license. + represents an activating signal, – represents a repressing signal. Red circles highlight genes, mutations in which have been

shown to affect pubertal timing. WAT–white adipose tissue; glu–glutamate; gluR–glutamate receptor; KNDY–see text.

GnRH binding to pituitary GnRH receptors and by its action
upstream at the median eminence to potentiate GnRH secretion
from GnRH axon terminals (50). Studies with primate models
imply that NPY may contribute to the brake that restrains
the onset of puberty between infancy and mid-childhood
(51). The link between energy homeostasis and reproductive

development may also be mediated by ghrelin and other gut-

derived peptides (52–54). α-MSH signaling via MC3/4 receptors,
acting to increase Kiss1 expression and mediate the permissive

effects of leptin on puberty, has also been implicated recently

as an important element in the metabolic control of puberty

(55). Lastly, mice lacking the insulin receptor in astrocytes
have delayed puberty and irregular estrus cycles, with reduced
astrocyte prostaglandin E synthase 2 levels (56). However,
roles for the majority of these genes involved in fat mass
and metabolic regulation have not been demonstrably shown
in human delay of puberty. A small cohort of 31 patients
was analyzed for mutations in the ghrelin receptor, or GHSR,
and 5 patients were found to have point mutations in this
gene (57).

IMPORTANCE OF GnRH
NEUROENDOCRINE NETWORK IN THE
PATHOGENESIS OF DELAYED PUBERTY

Overlap Between GnRH Deficiency and
Delayed Puberty
It is biologically very plausible that the pathophysiology of
delayed puberty and conditions of GnRH and gonadotropin
deficiency share a common genetic basis. Therefore,
investigations have been carried out into the role of genes
known to cause CHH in the phenotype of isolated delayed
puberty. Previous studies in CHH cohorts have found mutations
in HS6ST1, FGFR1, and recently in KLB, not only in small
numbers of patients with CHH but also in their relatives with
delayed puberty (58–60). Last year, a study was completed
that aimed to compare the frequency with which mutations
in genes (n = 24) known to cause GnRH or gonadotropin
deficiency were found in patients with CHH and individuals
with self-limited delayed puberty. This comparison found a
significantly higher proportion of mutations in the CHH group
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(51% of CHH probands vs. 7% of delayed puberty probands, p
= 7.6 × 10−11). Whilst this is perhaps unsurprising, a greater
degree of oligogenicity in these GnRH deficiency genes was
also seen in the CHH group, suggesting a mostly distinct or
as yet undiscovered genetic basis of these two conditions (61).
Mutations in Kallmann Syndrome (KS) genes such as ANOS1
and NSMF, leading to hypogonadotropic hypogonadism with
anosmia, have not been found in individuals with self-limited
pubertal delay.

Studies using next generation sequencing to examine cohorts
of patients with delayed puberty have identified variants in
several CHH genes, particularly GNRHR, TAC3 and its receptor
TACR3, but also in IL17RD and SEMA3A (62). However, these
variants have not been tested in vitro or in vivo for pathogenicity,
or investigated for within pedigree segregation. Many syndromic
conditions have delayed or absent puberty within the phenotypic
spectrum of the condition, see Table 1.

Heparin Sulfate 6O Sulphotransferase 1
Recently, using whole and targeted exome analysis a mutation
in HS6ST1 was found in one extended pedigree from a large
cohort of patients with isolated familial delayed puberty, for the
first time without associated CHH in patient relatives (72). All
of the six family members in three generations that carried the
mutation had a classical self-limited delayed puberty phenotype,
with no individuals displaying CHH. A spontaneous onset
of puberty was seen in the proband at 14.3 years. A mouse
heterozygous knockout model was also examined in parallel. This
work substantiated that loss of one allele of Hs6st1 can provoke
pubertal delay but with normal adult reproductive capacity.
The Hs6st1+/− mice displayed no compromise in their fertility,
GnRH neuron or testes development or spermatogenesis and
were born at normal Mendelian ratios. However, female mice
were seen to have a significant delay in the timing of vaginal
opening, a surrogate for onset of puberty in female rodents.

Notably the Hs6st1+/− mice had no defects of olfactory bulb
morphology and no significant reduction in the total number of
GnRH neurons in the hypothalamus or extending to the median
eminence to explain the pubertal delay. Instead, this might be
mediated by changes in either GnRH neuron activity or other
relevant downstream pathways, implied by the expression of
Hs6st1 mRNA in both the arcuate nucleus and paraventricular
nucleus (73, 74). These results indicate whilst, as above, many
patients with familial self-limited delayed puberty do not carry
mutations in CHH genes, perturbations in a single allele of a
particular subset of genes that modulate the HPG axis may be
enough to result in a phenotype of self-limited pubertal delay. In
contrast, more deleterious alterations in these genes, mutations in
both alleles of a gene or a heterozygous mutation in combination
with mutations in further genes, are needed to produce the more
severe phenotypes of CHH and KS (75).

Immunoglobulin Superfamily Member 10
A further study utilizing whole and targeted exome sequencing
methods in the same large Finnish cohort of individuals
with familial self-limited delayed puberty, identified deleterious
mutations in the IGSF10 gene in six unrelated families (76).

Mutations in this gene affect the migration of GnRH neurons
from the vomeronasal organ in the nose to the forebrain
during embryonic development (Figure 4). The patients with
these mutations presented in adolescence with pubertal delay
without features of constitutional delay in growth. Given that
a functional GnRH neurosecretory network is required for the
onset of puberty, the hypothesis produced from this work is
that disruption of GnRH neuronal migration, as caused by
aberrant IGSF10 signaling, could result in arrival of fewer (or
delayed) GnRH neurons at the hypothalamus. This would then
in turn lead to a functional defect in the GnRH neuroendocrine
network and an increased “threshold” for the onset of puberty,
with a resultant delay. In addition, loss-of-function mutations in
IGSF10 were found in patients with a hypothalamic amenorrhea-
like phenotype, implying a shared genetic basis of functional
central hypogonadism with both CHH (77) and delayed puberty.
However, although deleterious mutations were enriched in CHH
patients, there was lack of complete segregation with trait
in these permanent hypogonadotropic hypogonadism families,
suggesting that haploinsufficiency of IGSF10 is not sufficient
to cause this phenotype. Interesting, mutations in IGSF10 have
very recently also been found in patients with both premature
ovarian insufficiency and disorders of neuronal development,
and in the same report in a further pedigree with a Kallmann-
like phenotype (78). The results of the studies on HS6ST1 and
IGSF10 in delayed puberty point to a mechanism by which
developmental defects in the GnRH system during fetal life can
modulate the timing of pubertal onset in adolescence, seemingly
without other phenotypic features. It remains to be determined
whether these patients have any deficiency of the their long-term
reproductive capacity or sexual lifespan.

Genes Downstream of GnRH
Autosomal recessive CHH is most frequently caused by loss-of-
function mutations within the GnRH receptor, accounting for
16–40% of this patient group. Mutations have been found within
the extracellular, transmembrane, and intracellular domains of
the receptor leading to impaired GnRH action (79). Sequencing
studies that have analyzed the GNRHR gene in cohorts with
self-limited delayed puberty (79), have found just a handful of
deleterious mutations. A homozygous partial loss-of-function
mutation in GNRHR was found in two brothers, one with
self-limited delayed puberty and one with CHH (80), and a
further heterozygous mutation found in one male with self-
limited delayed puberty (81). Far more rarely defects of the
glycoprotein hormones luteinizing hormone (LH) or follicle-
stimulating hormone (FSH) can lead to CHH, in particular via
mutations in the specific β-subunits (82, 83). In women, loss-
of-function mutations of LHβ result in normal or late timing
of menarche (following a normally timed onset of puberty) but
with later infertility resulting from lack of ovulation (84). In
men, similar defects lead to a presentation with absent pubertal
development secondary to Leydig cell hypoplasia resulting in
testosterone deficiency and failure of spermatogenesis. Women
with inactivating FSHβ mutations display pubertal arrest
and primary amenorrhea whilst men have a similar pattern
of spontaneous entry into puberty followed by arrest with

Frontiers in Endocrinology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 423

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Howard The Genetic Basis of Delayed Puberty

TABLE 1 | Genetic syndromes associated with pubertal delay.

Syndrome Phenotype Genetic defect

Prader-Willi (63) Mental retardation, morbid obesity, hypotonia, hypogonadism, growth hormone deficiency,

hypothyroidism

Deletions within the paternally

imprinted 15q 11.2-12 region

Bardet-Biedl (64) Mental retardation, obesity, retinitis pigmentosa, post-axial polydactyly, delayed puberty,

and hypogonadism

BBS 1-11 (multiple loci)

20p12, 16q21, 15q22.3-23,

14q32.1

CHARGE anomaly (65) Coloboma, heart malformations, choanal atresia, growth retardation, genital anomalies and

ear anomalies, hypogonadotropic hypogonadism, olfactory bulb aplasia, or hypoplasia

CHD7

Adrenohypoplasia Congenita (66) Primary adrenal deficiency and hypogonadotropic hypogonadism NR0B1

Septo-optic dysplasia (67) Small, dysplastic pale optic discs, pendular nystagmus, Midline hypothalamic defect with

DI, single or multiple pituitary hormone deficiency, absent septum pellucidum

HESX1

Solitary median maxillary

incisor syndrome (68)

Prominent midpalatal ridge, holoprosencephaly, pituitary defects SHH

Borjeson-Forssman-Lehmann syndrome

(69)

Mental retardation, gynaecomastia, moderate short stature, truncal obesity PHF6

Hartsfield (70) Holoprosencephaly, ectrodactyly/split hand and foot malformations, cleft lip and palate,

hypogonadotropic hypogonadism

FGFR1

Gordon Holmes (71) Cerebellar ataxia, dementia, chorioretinopathy, anterior hypopituitarism RNF216/OTUD4

PNPLA6

FIGURE 4 | Schematic of the mechanism by which IGSF10 mutations lead to delayed puberty. Reduced levels of IGSF10 expression during embryogenesis in the

corridor of nasal mesenchyme from the vomeronasal organ to the olfactory bulbs result in delayed migration of GnRH neurons to the hypothalamus. This leads to a

phenotype of delayed puberty first evident in adolescence, due to abnormalities of the GnRH neuroendocrine network. Adapted from doi: 10.1210/er.2018-00248.

azoospermia (85). Defects in these two genes do not usually
present with a classical picture of self-limited delayed puberty.

Overall, from the evidence we have from current published
work we can conclude that although there are some shared gene
defects, the genetic basis of CHH and delayed puberty is likely to
be due to different, currently unrecognized, genes in many cases
(Table 2) (81).

However, there is a wide spectrum of phenotypes in
patients with central hypogonadism, ranging from complete
hypogonadotropic hypogonadism, with failure of pubertal
development, to partial hypogonadism with an arrest of
pubertal development, and even reversible hypogonadotropic
hypogonadism in some patients post treatment (87–90). It may
be a prudent strategy for clinicians to focus the use of genetic

testing of known CHH genes in delayed puberty patients on
those patients with either extreme delayed puberty, clear familial
inheritance or red flags (such as micropenis, cryptorchidism,
anosmia, cleft lip or palate or renal agenesis) which would point
to a syndromic or CHH phenotype.

TRANSCRIPTIONAL AND EPIGENETIC
CONTROL OF GnRH SIGNALING

The GnRH Pulse Generator
The central control of pubertal onset, after the mid-childhood
period of HPG axis quiescence, is orchestrated by a resurgence
of the GnRH pulse generator, with a reduction in central
inhibition and a sharp upregulation in the activity of this
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TABLE 2 | Non-syndromic genetic defects associated with pubertal delay.

Phenotype Gene

Self-Limited Delayed Puberty,

Hypogonadotropic Hypogonadism

HS6ST1 (72)

TAC3 (62), TACR3 (62), IL17RD (62),

GNRHR (81)

SEMA3A (62)

Self-Limited Delayed Puberty, Hypothalamic

amenorrhea

IGSF10 (76)

Self-Limited Delayed Puberty EAP1 (86)

Constitutional Delay in Growth and Puberty FTO (41)

axis. This activity is permitted by a change in the balance of
GABA-glutamate signaling in the brain (91). Around this time
morphological changes in GnRH neurons have been observed
including increases in dendritic spine density and a simplification
of their dendritic architecture. The intensification of kisspeptin
signaling in the hypothalamus, one of the key hormonal players
in puberty onset, at this time is a consequence of both an
increase of kisspeptin synthesis and a rise in the responsiveness
of GnRH neurons to kisspeptin stimulation. This mechanism
has been well observed in murine models, but also in primates
and is relatively conserved during evolution (92). However, what
is far less well understood are what the triggers are for this
upregulation of kisspeptin biosynthesis in the hypothalamus at
the end of the juvenile period. Thus, whilst there is strong
evidence that the secretion of kisspeptins from KNDy neurons
in the arcuate nucleus is one of the vital stimulatory inputs on
the GnRH pulse generator, it is not likely to be the ultimate
controller of the release of the puberty brake. Rather, kisspeptin
is the conductor of the orchestra of upstream stimulators and
repressors influencing the system at this crucial developmental
stage (51).

Transcriptional Control of the GnRH
Network
It is likely, therefore, that there is no one single gene that is
capable of the hypothalamic control of puberty onset. Instead,
we can imagine a hierarchical network of genes acting together
to lift the brake applied during the dormancy of the HPG axis
in mid-childhood (Figure 3). Data to support this hypothesis
have largely come from a systems biology approach (93) and
animal models (51), with little data from human subjects. It is
clear that transcriptional repression is fundamentally important
to the regulation of gene expression inmammals. Transcriptional
repressors containing zinc finger motifs, which recognize specific
DNA sequences in regulatory regions of the genome, are
particularly appealing candidates to have major roles in this
governing network (94). Potential key regulators include Oct-
2, Ttf-1, Yy1, and Eap1. Oct-2 is a transcriptional regulator of
the POU-domain family of homeobox-containing genes. Oct-2
mRNA is upregulated in the hypothalamus in juvenile rodents;
blockage of Oct-2 synthesis delays age at first ovulation and
hypothalamic lesions which induce precocious puberty (e.g.,
hamartomas) activate Oct-2 expression (95). Ttf-1 is another

homeobox gene that enhances GnRH expression (96). Ttf-1
expression is increased in pubertal rhesus monkeys (97). Yy1 is
a zinc-finger transcription factor with crucial roles in normal
development and malignancy (98). Eap1, or Enhanced at puberty
1, codes for a nuclear transcription factor, characterized by a
dual transcriptional activity: it both trans-activates the GnRH
promoter, which facilitates GnRH secretion, and inhibits the
preproenkephalin promoter, which represses GnRH secretion.
Eap1mRNA levels increase in the hypothalamus of primates and
rodents during puberty, and Eap1 knockdown with siRNA causes
delayed puberty and disrupted estrous cyclicity in a rodent model
(99–103). Therefore, Eap1 transcriptional activity facilitates the
initiation of female puberty, in a manner that is independent
of hypothalamic Kiss1 expression (101). Eap1 gene expression is
itself regulated by both activation by Ttf-1, and repression by Yy1
and a further transcriptional regulator Cux1 (104).

Enhanced at Puberty 1
A very recent discovery is of the first human EAP1 mutations
that appear to be causal for self-limited delayed puberty in two
families (86). The affected individuals from these two families
had classical clinical and biochemical features of self-limited
delayed puberty, with presentation at more than 15.5 years
with delayed onset of Tanner stage 2 and delayed peak height
velocity. Both probands had spontaneous pubertal development
by the age of 18 years without testosterone therapy, thus
excluding CHH. By whole exome sequencing of probands with
familial delayed puberty two highly conserved variants—one
in-frame deletion and one rare missense variant in EAP1—
were identified. Using a luciferase reporter assay, EAP1 mutants
showed a reduced ability to trans-activate the GnRH promoter
compared to wild-type EAP1, due to reduced protein levels
caused by the in-frame deletion and sub-cellular mis-location
caused by the missense mutation. This study also demonstrated
by chromatin immunoprecipitation that EAP1 binding to the
GnRH1 promoter increases in monkey hypothalamus at the
onset of puberty.

Polycomb Complex Genes
Furthermore, evidence from a recent study has emphasized the
importance of the transcriptional control of the Kisspeptin gene
Kiss1. This regulation by the polycomb complex proteins EED
and Cbx7 is thought to be an important transcriptional repressive
mechanism to prevent the premature onset of puberty (105).
In the latter stages of mid-childhood there is an increase in
the methylation of the promoters of these genes, resulting in a
reduction in expression, as well as a decrease in the binding of
EED on the Kiss1 promoter. This inhibition of Kiss1 repression
also correlates with reduced expression of transcription factors
containing certain zinc finger motifs. Moreover, there is also
reorganization of the chromatin status and changes in histone
methylation to accompany the loss of these polycomb complex
proteins from the Kiss1 promoter (106). Studies on both rats
and goats also provide data on changes in histone acetylation
and gene methylation resulting in alterations in gene expression
during puberty (107, 108).
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Epigenetic Mechanisms in the Timing of
Puberty
There are a number of different epigenetic mechanisms that
may have importance for the regulation of the pubertal
timing, including imprinting. Imprinted genes are known
to influence the timing of several key developmental stages
in humans including weaning and adrenarche. In general,
paternally expressed genes promote later childhood maturation
and maternally expressed genes promote a more premature
maturation (109). This holds true for two paternally inherited
genes, MKRN3 and DLK1, which are associated with age at
menarche in girls and voice-breaking in boys from the GWAS
discussed above (37). Variants in both of these genes have
been discovered in patients with familial central precocious
pubertal timing, with paternally-inherited mutations leading to
the expression of the phenotype (110, 111). MKRN3 is thought
to contribute to the puberty brake restraining the HPG axis
via inhibition of GnRH release. This gene encodes Makorin
Ring finger protein 3, a zinc finger protein containing a C3HC4
motif (known as a RING domain) associated with E3 ubiquitin
ligase activity (112, 113). SinceMKRN3 expression in the arcuate
nucleus falls in murine models between birth and weaning, and
in humans serum concentrations decline at puberty onset, it
is thought to have an inhibitory effect on the GnRH network
(114, 115). This supports the hypothesis that the onset of puberty
is a consequence of the removal of gonadotropic axis repression.
However, what is still unclear is where MKRN3 is placed in
this hierarchy of gene regulators controlling kisspeptin levels.
Very new data has demonstrated that knock-out of MKRN3 in
pluripotent stem cells does not affect GNRH1-expression when
these cells are later differentiated into neurons (116). In terms of
delayed puberty, mutations in neither MKRN3 nor DLK1 genes
have been described in human patients with these conditions.

Imprinting and Pubertal Timing
Prader-Willi syndrome (PWS) is frequently caused by disorders
of imprinting and is often associated with either absent or delayed
puberty (117). In most patients with PWS the syndrome is
due to a deletion of a cluster of imprinted genes (including
MKRN3) on the paternally inherited copy of chromosome
15 (paternal deletion), or by inheritance of both copies of
this cluster from the mother (maternal uniparental disomy)
(118). Precocious puberty is relatively uncommon in PWS
(119), but most individuals show some degree of pubertal
failure, with one or a combination of an absent pubertal
growth spurt, hypogonadotropic hypogonadism, cryptorchidism,
underdeveloped genitalia, or primary amenorrhea (120). The
probable explanation for the rarity of precocious puberty in
individuals with PWS, despite the lack of MKRN3 expression,
is the effects of other genes inactivated by the imprinting defect,
in particular MAGEL2 (121, 122). This points to a complex role
for imprinted genes in the pubertal timing, with tissue type and
developmental stage specific gene expression (109, 118).

Non-coding RNAs
Evidence frommurinemodels has demonstrated that non-coding
RNAs can act as epigenetic modulators of the timing of puberty.

Specific microRNAs play a role in the epigenetic up-regulation of
GnRH transcription during what is known in mice as “the critical
period,” or infantile mini-puberty in humans (123). A key pair
of microRNAs (miR-200 and mIR-155) are thought to regulate
Gnrh1 expression, and to control the expression of two important
transcriptional repressors of Gnrh1, Zeb-1, and Cebpb. There
is an associated increase in the transcriptional activation of
GnRH1 with a reduction in Zeb-1 and Cebpb, the latter a
nitric oxide-mediated repressor of Gnrh1 that acts both directly
and through Zeb1. These changes lead to the up-regulation of
Gnrh1 synthesis in GnRH neurons (123). Moreover, miR-7a2 has
been demonstrated to be essential for normal murine pituitary
development and HPG function, with deletion in mice leading to
hypogonadotropic infertility (124).

Endocrine-Disrupting Chemicals
The increase of kisspeptin and GnRH expression in the
hypothalamus at puberty is therefore the result of the actions
of an intricate arrangement of repressing and activating
transcription factors controlling Kiss1 and GnRH1 transcription,
with these being themselves influenced by several epigenetic
mechanisms including DNA methylation, histone modification
and non-coding RNAs (106, 123, 125, 126). Moreover, these
epigenetic mechanisms are possible facilitators of gene-
environment interactions that also have influence on the
hypothalamic regulation of puberty. A number of different
sources of evidence have demonstrated that the brain epigenome
at puberty is affected by environmental disturbances (107).
Endocrine-disrupting chemicals (EDCs), often found in products
commonly used in the developed world, have been considered
as a potential cause for pubertal timing disturbance for many
years, with increasing concern among the lay population (127).
Many and varied substances have been identified as possible
EDCs, such as polybrominated biphenyls, bisphenol A, atrazine
(herbicides), and glyphosate, but also common medicines
including paracetamol and betamethasone (128–131). It has
been observed that adolescents who have been exposed to the
estrogenic insecticide DTT and then adopted internationally
display early or precocious pubertal timing (132).

The most important timing of EDC exposure for impact
on pubertal timing was historically considered to be in late
childhood, but there is now clear data that there may be prenatal
and infantile origin of alterations in the timing of puberty. In
utero exposure in males to EDCs, in particular to phthalates,
can result in under-masculinization of genitalia (133). Moreover,
exposure of pregnant rodents to EDCs has been associated
with epigenetic alterations in testis as well as other systemic
effects. This together suggests that epigenetic changes in the fetal
period are a potential mechanism for the hypothalamic effects of
prenatal exposure to EDCs (131). These effects may manifest in
pregnant rodents, their unborn fetus but also into the next two or
more generations as well (134).

However, it is difficult to definitively demonstrate a
mechanism of action for EDCs through the premature activation
of the hypothalamic GnRH pulse generator. Recently, exposure
of female mice to arsenic in utero was shown to alter the
hypothalamic expression not only of GnRH and LH but also
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FIGURE 5 | Established genetic basis of common genetic variants of pubertal timing from genome wide association studies (GWAS), conditions of GnRH deficiency

(CHH and KS), precocious puberty and delayed puberty and their overlap. Activating and inactivating mutations in KISS1 and KISS1R cause the opposite

phenotypes, precocious puberty and CHH, respectively. Bold circles highlight those genes, mutations in which have been identified in familial delayed puberty.

Adapted from Howard (25) under the CC-BY license.

of their upstream transcriptional regulators, in particular
Oct-2 and Ttf-1 (135). Mice exposed to arsenic demonstrated
precocious puberty with premature vaginal opening, a marker
of the onset of puberty rodents. However, in most datasets
it has been difficult to unpick the most likely differing, and
possibly conflicting, influence of varying doses and combination
of EDCs affecting estrogenic, androgenic or other pathways,
and changes in effects depending on age and length of
exposure (136).

FUTURE DIRECTIONS

Over the last 2 years there have been very exciting developments
in the understanding of the genetic basis of delayed puberty,
particularly with respect to the transcriptional and epigenetic
control of the GnRH “master switch.” We anticipate further
discoveries in the near future that will help to elucidate
these control mechanisms and better understand the genetic
predisposition to familial delayed puberty and to conditions
of functional hypogonadism. It is, of course, hoped that this
knowledge can be rapidly translated into more efficient clinical
diagnosis and management.

CONCLUSION

Puberty represents the remarkable transition from childhood
to adult life with the attainment of reproduction and adult
stature. The onset of puberty is elicited by the re-activation of

the HPG axis, which is first functional in fetal life, through
a rise in the pulsatile release of hypothalamic GnRH. Puberty
can be deemed the consequence of a neurodevelopmental
program, that begins prenatally but has many features in
common with the postnatal development of other neuronal
processes. However, its unique feature is as a functional
system that lies dormant for most of childhood and then
reactivates in the majority of the population within a short
time window. This timing is controlled by genetic factors,
relies upon an intact hormonal axis and influenced by the
environment. It is thus not so surprising that pubertal delay
and even aberrant pubertal development are not infrequent
human pathologies.

The genetic regulators that determine timing of puberty
in the general population, a trait that follows a skewed
near-normal distribution, have relevance to conditions
of delayed and even aberrant pubertal onset (Figure 5).
There is also overlap between those pathways found to be
defective in self-limited delayed, precocious, and absent
puberty conditions, with the phenotype varying dependent
on the impact of the gene defect and mutational burden.
So whilst there are shared pathogenic mechanisms between
these conditions, there is also much heterogeneity in the
genetic changes responsible for delayed puberty. Defects in
GnRH neuronal development and function, transcriptional
regulation of the HPG axis, epigenetic mechanisms including
DNA methylation, histone modification and non-coding
RNAs, and metabolic and energy homeostatic derangements,
can all lead to the final common pathway of delayed
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puberty. Moreover, these genomic regulators can exert
their influence in fetal life, during postnatal development
and in mid-childhood, all having an effect in adolescence on
pubertal timing.

Genetic testing may allow the translation of this
understanding to benefit patient care in the future: as a diagnostic
tool for the investigation of delayed puberty, by informing the
natural history of the condition, possible inheritance in the
individual’s family and optimization of treatment. Rapid and
accurate diagnostic testing in clinic would greatly improve
patient care and most likely represent a significant advantage in
terms of health economics.
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