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ABSTRACT

Promoters and enhancers regulate the initiation of
gene expression and maintenance of expression lev-
els in spatial and temporal manner. Recent findings
stemming from the Cap Analysis of Gene Expres-
sion (CAGE) demonstrate that promoters and en-
hancers, based on their expression profiles after
stimulus, belong to different transcription response
subclasses. One of the most promising biological
features that might explain the difference in tran-
scriptional response between subclasses is the lo-
cal chromatin environment. We introduce a novel
computational framework, PEDAL, for distinguishing
effectively transcriptional profiles of promoters and
enhancers using solely histone modification marks,
chromatin accessibility and binding sites of tran-
scription factors and co-activators. A case study on
data from MCF-7 cell-line reveals that PEDAL can
identify successfully the transcription response sub-
classes of promoters and enhancers from two dif-
ferent stimulations. Moreover, we report subsets of
input markers that discriminate with minimized clas-
sification error MCF-7 promoter and enhancer tran-
scription response subclasses. Our work provides a
general computational approach for identifying effec-
tively cell-specific and stimulation-specific promoter
and enhancer transcriptional profiles, and thus, con-
tributes to improve our understanding of transcrip-
tional activation in human.

INTRODUCTION

Spatiotemporal control of gene expression in eukaryotes is
coordinated by the interplay of DNA regulatory elements
located proximal or distal to the transcription start sites

(TSSs) of their target transcripts (1,2). Promoters and en-
hancers are categories of DNA regulatory elements that
have been subjected to extensive studies in recent years. Pro-
moter regions are overlapping with TSSs and sequence mo-
tifs that they contain (e.g. TATA box, INR element) are
used for anchoring the transcriptional machinery and reg-
ulating the initiation of transcription (3). In contrast, en-
hancers are located few or many thousands base pairs (bp)
upstream or downstream from the TSSs and enhance the
expression of their target transcripts through interactions
with transcription factors (TFs) (or complexes they form)
and/or by facilitating chromatin-remodelling activities (4).

It has been recently shown that RNA polymerase II
(POL2) -mediated transcription occurs in enhancers on a
genome-wide scale, producing a particular class of non-
coding RNAs called eRNAs whose functional roles, if any,
are elusive (5). This directly implies that enhancers in many
cases act as promoters of eRNA transcripts (6). Conse-
quently, promoters and enhancers share biochemical and
transcriptional properties that have been reported in recent
studies (7–9). Thus, considering their increased similarity,
it may be difficult to separate effectively these regulatory
classes, since some promoters have also enhancer activity
(4,9–11).

Recent findings stemming from CAGE profiling (10) of
stimulus-response time courses across multiple cells (12) in-
dicate that transcription of enhancers is the earliest tran-
scriptional event in cells responding to stimulus, followed by
a number of coordinated subsequent transcriptional events
in mRNA promoters (12). Analysis of CAGE expression
profiles from promoters and enhancers suggests that they
can be classified into distinct subgroups based on their
transcriptional profiles (referred to here as transcription re-
sponse subclasses) following stimulus, the most prominent
being: (i) Rapid short; (ii) Rapid late; (iii) Early standard;
(iv) Late standard; (v) Long; and (vi) Late. While this dis-
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tinction holds across all cells studied, the underlying biol-
ogy explaining these subclasses remains unclear.

One of the most promising biological features that might
explain the difference in transcriptional response between
subclasses is the local chromatin environment. A key ques-
tion is whether it is possible to distinguish different pro-
moter and enhancer transcriptional profiles based solely
on local chromatin environment characteristics. Up to now
many existing approaches for promoter and enhancer iden-
tification, experimental or computational, have been devel-
oped and surveyed comprehensively in several review arti-
cles (13–17). However, discriminating effectively promoters
and enhancers of different transcription response subclasses
using information from the local chromatin configuration
and identifying subsets of chromatin markers that minimize
the classification error between those transcription response
subclasses are interesting problems that require further in-
vestigation.

Here, we introduce PEDAL (Promoter-Enhancer Dis-
criminative AnaLysis), a computational framework for
classifying promoters and enhancers into different tran-
scription response subclasses using histone modification
markers, chromatin accessibility and binding sites of tran-
scription factors and co-activators, as input information.
As a case study we apply PEDAL to data from human
MCF-7 breast cancer cells stimulated by histidine rich gly-
coprotein (HRG) that triggers differentiation and epider-
mal growth factor (EGF). PEDAL discriminates effectively
almost all promoter and enhancer transcription response
subclasses. In addition, results obtained by PEDAL surpass
performance of two other state-of-the-art classification al-
gorithms.

To date, our classification algorithm is the first that dis-
tinguishes successfully, the transcription response profiles
of promoters and enhancers and identifies subsets of chro-
matin characteristics for categorizing these regions with
minimized classification error.

MATERIALS AND METHODS

Available data sets

The primary data for training derive from Arner et al. 2015
(12). In that study, promoters and enhancers were identified
using CAGE experiments from a large number of primary
cells and tissues. Then, using a rule-based analysis based on
hierarchical clustering of individual time courses, promot-
ers and enhancers were categorized into different transcrip-
tion response subclasses based on their CAGE expression
profiles. Here, we focus on promoters and enhancers from
human MCF-7 cell-line response to HRG and EGF. More
details about the promoter and enhancer identification pro-
cess (sample collection, library preparation, quality con-
trol, differential expression of promoters and enhancers) as
well as the categorization procedure into different expres-
sion profiles can be found in (12). All promoters and en-
hancers are classified into the following major transcrip-
tion response subclasses: (i) Rapid short; (ii) Rapid late; (iii)
Early standard; (iv) Late standard; (v) Long; and (vi) Late.
Figure 1 panel C shows a stylistic representation (i.e. shape
approximation) of each of the major transcription response
patterns (i.e. response subclasses) identified in (12).

Figure 1. Schematic diagram of PEDAL. (A) The first panel shows the
data integration and the combination of different replicates for all markers.
(B) The second panel shows the preparation of promoter and enhancer
regions we use for finding overlaps with input BAM reads. (C) The third
panel shows the feature vector generation process and the labeling based
on different CAGE expression profiles from (12). (D) The last panel shows
an example of discriminating response subclasses using KNN.

From the complete list of MCF-7 promoters and en-
hancers, we exclude samples that belong simultaneously
to two or more subclasses (i.e. we removed multi-labeled
cases). The reason is that we formulate the discrimination
problem into a multi-class classification problem (should
not be confused with the multi-label classification problem),
which makes it easier to identify similarities or differences
in the chromatin environment, if any, between the consid-
ered transcription response subclasses. For the rest of the
analysis we do not consider the ‘Unclassified subclass’ con-
taining samples that do not obey the general rules for iden-
tifying promoter and enhancer subclasses proposed in (12).
Supplementary Figures S1 and S2 present the actual num-
bers of promoters and enhancers per response subclass for
both HRG and EGF stimulations.

Promoter and enhancer samples are represented using
numerical values that derived from six input markers. We
use the following ENCODE (18) data sets in the BAM for-
mat: (i) histone modification H3K4me3 that marks active or
poised promoters; (ii) histone modification H3K27ac that
marks active or poised enhancers; (iii) Co-activator P300
that is a known enhancer marker; (iv) CTCF which is a
marker for insulators; (v) POL2 which transcribes both pro-
moters and enhancers; and (vi) DNase-seq (DHS) data that
identify DNA accessible regions. For each marker we re-
trieved data from two replicates from MCF-7 cells that are
pooled together and averaged. All genomic coordinates cor-
respond to the assembly build hg19. The complete list of
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online sources for the data sets included in this study can be
found in Supplementary Table S1.

Feature vectors that describe sample instances are gener-
ated as follows: For every promoter and enhancer sample in
the data set we identify its ‘centre’. For promoters, the centre
is defined as the ‘representative position’, which is the loca-
tion of the majority of the CAGE signals. For enhancers,
the centre corresponds to the middle point of the sequence.
Based on that centre, to approximate better promoter and
enhancer regions and capture their properties, we generate
broader intervals. For enhancers we choose regions 200-bp
upstream and 200-bp downstream from the centre since en-
hancers present symmetrical bidirectional properties. For
promoters we choose non-symmetrical regions 300-bp up-
stream and 100-bp downstream from the centre. Then, us-
ing BedTools (19) (intersect command) we map the input
data sets to these intervals and we compute the number of
reads in the BAM files that overlap promoter and enhancer
regions. In this way we quantify the intensity of input signals
with respect to promoter and enhancer centres. The values
of each feature are normalized by the total number of reads
in the data set. The final constructed feature vector includes
features corresponding to six different markers and one fea-
ture that present the label (integer from 1 to 6).

PEDAL implementation

In PEDAL we reformulate the problem of assigning
transcription response subclasses to promoters and en-
hancers into a multi-class classification task. The underly-
ing computational technique used is the K-nearest neigh-
bors (KNN). KNN is a simple non-linear classifier that
runs fast and with optimized K and number of features
achieves close to optimal classification performance (20).
We decided to use KNN after experimentation and com-
parison analysis with other classification algorithms (see be-
low the “Comparing PEDAL with other classification al-
gorithms” section). PEDAL framework is implemented in
Matlab R2014b using built-in functions for KNN (knnclas-
sify function) and the number of neighbors K is tuned us-
ing validation sets completely independent from training
and testing sets. The schematic overview of PEDAL is pre-
sented in Figure 1. Figure 2 is a graphical representation of
the data preparation and learning processes. In our analy-
sis we follow the ‘one versus all’ paradigm and we generate
binary classification problems that correspond to different
transcription response subclasses. To discriminate promot-
ers of one subclass from all other promoters and similarly
enhancers of one subclass versus all other enhancers, we
generate six binary classification tasks. In every binary clas-
sification task we consider two sets, one that contains the
subclass of interest and the “negatives set” that contains all
other samples except for the subclass of interest. The posi-
tive set for training derives from the subclass of interest and
has N data instances (i.e. samples). The negatives for this
case contain Q data instances that represent all other sam-
ples but not the ones from the subclass of interest. In case N
<< Q, we select N randomly from the Q negatives to gener-
ate the negative set for training (i.e. to be of equal size to the
positive). Because we run the training process 1000 times we
generate 1000 negative sets of size N that we select randomly

Figure 2. Flowchart of PEDAL’s learning process. The same process was
repeated for all transcription response subclasses and all combinations of
features.

with replacement. Exception is the late transcribed promot-
ers response to HRG where N > Q. In this case we generate
positive and negative training sets based on all the available
samples and the splitting process into training-validation-
testing is the same as before. For assessing the classification
performance for every individual run we further split the
positive and negative sets randomly into training, validation
and testing sets. We use 50% of the total size of positive and
negative samples for training, 20% for validation and 30%
for testing. The validation set is used for tuning the classi-
fication model parameters and the testing set for assessing
the performance in a completely un-biased way. We finally
report the average classification performance of 1000 runs.
For assessing classification performance we consider the fol-
lowing performance metrics:

i) G M = √
Sensi tivi ty ∗ Speci f ici ty, where

Sensi tivi ty = T P
T P+F N and Speci f ici ty = TN

TN+F P

ii) PPV = T P
T P+F P

iii) Accurancy = T P+TN
T P+F P+F N+TN

iv) F1score = 2∗T P
2∗T P+F P+F N

v) MCC = T P∗TN−F P∗F N√
(T P+F P)∗(T P+F N)∗(TN+F P)∗(TN+F N)

where GM stands for Geometric mean of Sensitivity and
Specificity, PPV stands for Positive Predicted Value, MCC
stands for Mathews Correlation Coefficient and TP denotes
True Positives, FP denotes False Positives, FN denotes False
Negatives and TN denotes True Negatives.

Identifying optimized subsets of input markers

We apply feature selection (FS), to improve the recogni-
tion performance of discriminating promoter and enhancer
transcription response subclasses and to identify stimula-
tion specific sets of input markers (per subclass) that max-
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imize classification performance by minimizing classifica-
tion error.

Determination of the relative importance of combina-
tions of input markers using computational techniques is
an indirect way to associate important patterns in the in-
put data. Notably, in binary classification tasks, identifying
combinations of input variables that minimize classification
error imposes that the feature values of these markers for the
class of interest (positive) are different from the correspond-
ing values of the other (negative) classes. In our study, this
information can be further utilized to generated hypotheses
about mechanistic properties and the spatial distribution of
chromatin markers of different transcription response sub-
classes.

The FS problem in different bioinformatics areas is well
studied (21,22) and has several applications that span from
identification of robust set of chromatin markers for reg-
ulatory elements (23,24), characterization of antimicrobial
peptide families and subfamilies (25), to the prediction of
cancer biomarkers (26). Up to now, several approaches for
FS have been proposed based on statistical analysis (27) or
search algorithms combined with global optimization tech-
niques (28).

In PEDAL, since the size of feature vector is relatively
small we apply a brute force (BF) search algorithm for se-
lecting combinations of input markers that maximize clas-
sification performance (or equivalently minimize classifica-
tion error) based on MCC. In other words, we estimate the
performance for every single combination derived from six
features resulting in total to 63 combinations. For the rest of
the analysis, the term ‘optimized’ refers to the combination
of features that maximizes classification performance based
on MCC.

To achieve more robust results and to provide a more
comprehensive view of the classification performance, we
repeat the learning process 1000 times and we compute the
average classification performance on the test sets for ev-
ery combination of features. This process results in training,
validating and testing more than 1.5 million individual clas-
sification models (63 combinations of features tested 1000
times for 2 stimulations each, for 6 promoter subclasses
and for 6 enhancer subclasses). PEDAL source codes and
materials are publicly available at https://cloud.kaust.edu.
sa/Pages/PEDAL.aspx under an Educational Community
Open Source Licence.

RESULTS AND DISCUSSION

Insights on the chromatin environment of MCF-7 transcrip-
tion response subclasses

To provide insights about similarities or differences of the
considered chromatin profiles, we compare first the dis-
tributions of the feature values of different input mark-
ers for all promoter and enhancer transcription response
subclasses (Supplementary Figure S3). To quantify differ-
ences in the distributions we perform Wilcoxon rank test
under the null-hypothesis that the median of feature val-
ues of one input marker for promoters and enhancers of
the same subclass does not change. In Table 1 we present
the P-values after applying Benjamini–Hochberg correc-
tion for multiplicity testing. Considering a level of signif-

icance of false discovery rate (FDR) < 0.05, we observe
that rapid short transcribed enhancers have different chro-
matin profiles from rapid short transcribed promoters, ex-
cept for the DHS marker. In the rapid short and late stan-
dard transcribed subclasses only H3K27ac and P300 follow
different distributions. Long transcribed promoters and en-
hancers have different distributions of all input markers ex-
cept for DHS whereas late transcribed promoters and en-
hancers have different distributions of all input markers.
For visualization purposes, the upper panel of Supplemen-
tary Figure S4 (part A for promoters and B for enhancers)
shows average profiles of six input markers aligned at the
centres of HRG promoters and enhancers regardless of sub-
class. The lower panel of Supplementary Figure S4 shows
the number of input reads that overlap the enhancers and
promoter regions from ENCODE data sets replicate 1, visu-
alized as heatmaps. As expected, promoters and enhancers
are enriched for POL2 binding, open chromatin (DHS) and
H3K4me3 signals, while H3K27ac and P300 enrichment are
substantially more prominent in enhancers.

Together, all the above findings support the notion that
different chromatin characteristics in MCF-7 may be uti-
lized to discriminate different transcription response sub-
classes of promoters and enhancers. The above issues we
will be explored in detail in the next subsections using data
from two different MCF-7 stimulations. First, we focus on
the stimulation-specific case and we apply PEDAL to dis-
tinguish transcription response subclasses of promoters and
enhancers stimulated by HRG and EGF. Next, looking the
problem in a non-stimulation specific manner, we develop
recognition systems for predicting MCF-7 transcription re-
sponse subclasses using data for training, validation and
testing from all the available MCF-7 stimulations.

Applying PEDAL to promoters in MCF-7 stimulated by EGF
and HRG

In this section, we explore whether the local chromatin en-
vironment of MCF-7 cells, can be used to predict, in a
stimulation-specific manner, different promoter transcrip-
tion response subclasses. To do so, we measure the classifi-
cation performance of every single promoter subclass ver-
sus all other promoter subclasses for both EGF and HRG
stimulations.

To get a comprehensive view of the recognition perfor-
mance, in Supplementary Figure S5 we present the average
MCC of 1000 runs for every single combination of input
markers for MCF-7 promoters stimulated by EGF. Simi-
larly, in Supplementary Figure S6 we present the average
MCC of 1000 runs for all MCF-7 promoters stimulated
by HRG. Different combinations of input marker achieve
performance that varies in both stimulations and across
all transcription response subclasses. Table 2 presents the
stimulation-specific optimized combinations of features for
both EGF-stimulated and HRG-stimulated MCF-7 cells.

An overview of the average classification performance per
transcription response subclass for both stimulations us-
ing additional performance metrics (GM, PPV, Accuracy
and F1-score) is presented in Figure 3A and C. Supple-
mentary Table S4 shows the standard deviation of 1000
runs. In most of the tested subclasses the recognition per-

https://cloud.kaust.edu.sa/Pages/PEDAL.aspx
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Figure 3. PEDAL’s classification performance for distinguishing promoter and enhancer subclasses using optimized combinations of input markers. All
left panels correspond to promoters and all right panels correspond to enhancers: (A and B) correspond to PEDAL models specific to EGF stimulation;
(C and D) correspond to PEDAL models specific to HRG stimulation; (E and (F) correspond to the non-stimulation specific PEDAL models trained,
validated and tested on all the available EGF and HRG data.
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Table 1. FDR scores obtained by Wilcoxon rank test with Benjamini–Hochberg correction for six input markers that belong to promoters and enhancers
of the same transcription response subclass

Response subclass

Enh H3K4me3
versus Prom
H3K4me3

Enh H3K27ac
versus Prom
H3K27ac

Enh P300 versus
Prom P300

Enh CTCF versus
Prom CTCF

Enh POL2 versus
Prom POL2

Enh DHS versus Enh
DHS

Rapid Short 0.0042 2.79E-06 2.05E-11 0.0003 0.0006 0.9526
Rapid Long 0.5771 0.0014 0.0379 0.0892 0.1814 0.9526
Early Standard 0.0746 0.0016 0.0021 0.7975 0.0746 0.9526
Late Standard 0.8406 0.0001 0.0379 0.7975 0.8621 0.9526
Long 0.0216 2.64E-07 8.64E-06 0.0090 4.83E-07 0.9526
Late 3.42E-14 1.89E-07 3.43E-08 2.07E-10 2.10E-14 0.0004

Table 2. Optimized subsets of input markers for all promoter subclasses as derived from the EGF and HRG stimulations-specific PEDAL models

Rapid short Rapid long Early standard Late standard Long Late

EGF H3K4me3 H3K27ac H3K4me3 H3K27ac CTCF H3K4me3
H3K27ac P300 H3K27ac P300 POL2 H3K27ac
P300 POL2 CTCF POL2
CTCF DHS

HRG P300 H3K27ac P300 H3K4me3 H3K4me3 H3K4me3
CTCF POL2 H3K27ac CTCF POL2
POL2 DHS P300 POL2 DHS

POL2 DHS
DHS

formance is higher than 70% (by any of the four perfor-
mance indicators we used). This confirms our hypothesis,
that local chromatin environment characteristics can be uti-
lized to discriminate effectively transcription response sub-
classes. Exceptions are long and late subclasses for EGF
stimulation and rapid short and long subclasses for HRG
that achieve the lowest performance. This may indicate that,
within the computational framework we applied and the
considered input data sets, the data samples from these sub-
classes appear not well separable. The highest performance
is achieved for rapid long transcribed promoters for both
stimulations. Here, we also wish to highlight that our pro-
posed method is the only one dealing with this particu-
lar discrimination problem, and hence, any level of perfor-
mance achieved provides a first baseline for future studies.

Studying the optimized combinations of input markers
presented in Table 2 more closely, we observe that differ-
ent promoter subclasses are classified optimally using differ-
ent sets of input markers. Consequently, within our exper-
imentation, promoters of different transcription response
subclasses present stimulation-specific chromatin environ-
ment fingerprints. Regarding the contribution of individual
input markers, it appears that H3K4me3, the typical pro-
moter marker, is part of optimized combinations of input
markers for rapid short, early standard, late transcription
response subclasses for EGF stimulation and late standard
and late for HRG stimulation. In cases such as rapid short
transcribed promoters, the P300 marker is selected together
with CTCF, and the POL2 marker is selected together with
CTCF in long transcribed promoters from both stimula-
tions. This may indicate some stimulation-specific mecha-
nisms of function in MCF-7 cells stimulated by EGF and
HRG facilitated by CTCF-mediated DNA looping (29).
Notably, H3K27ac, the typical enhancer marker, is selected
in seven out of 12 cases in both stimulations (30,31).

Applying PEDAL to enhancers in MCF-7 stimulated by EGF
and HRG

Next, we explore whether the local chromatin environment
of MCF-7 cells can be utilized to predict, in a stimulation-
specific manner, different transcription response subclasses
of enhancers. Similar to the case of promoters, we measure
the classification performance of discriminating every single
enhancer subclass versus all other enhancer subclasses for
both EGF and HRG stimulations.

Supplementary Figure S7 presents the average MCC of
1000 runs for every single combination of input markers for
MCF-7 enhancers stimulated by EGF. Supplementary Fig-
ure S8 presents the average MCC of 1000 runs for all MCF-
7 enhancers stimulated by HRG. Table 3 summarizes the
stimulation-specific optimized combinations of features for
both stimulations. The average classification performance
per enhancer transcription response subclass for both stim-
ulations is presented in Figure 3B and D, whereas Sup-
plementary Table S5 shows the standard deviation of 1000
runs.

Considering a performance threshold of 70% (by any of
the four performance indicators we used), we observe that
most of the transcription response subclasses from both
stimulations can be classified with higher recognition per-
formance. Consequently, within our experimentation, we
confirm the hypothesis that different MCF-7 enhancer tran-
scription response subclasses can be distinguished effec-
tively using information from their local chromatin environ-
ment. Exceptions are long and late transcription response
subclasses from both MCF-7 stimulations, where the per-
formance is lower. Taking all previous results into consid-
eration, we conclude that the utilized input variables for
particular subclasses such as late and long transcribed en-
hancers and promoters in the considered MCF-7 stimula-
tions are not sufficient and additional input information
(i.e. different chromatin environment features) is required
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Table 3. Optimized subsets of input markers for all enhancer subclasses as derived from the EGF and HRG stimulations-specific PEDAL models

Rapid short Rapid long Early standard Late standard Long Late

EGF P300 H3K4me3 H3K4me3 H3K4me3 CTCF H3K4me3
CTCF H3K27ac P300 H3K27ac P300
POL2 CTCF DHS CTCF CTCF

DHS POL2
HRG H3K27ac H3K4me3 P300 H3K27ac CTCF H3K4me3

P300 P300 DHS CTCF H3K27ac
CTCF POL2 CTCF
POL2 DHS DHS
DHS

for the effective prediction of their transcription response
subclasses. The highest recognition performance is achieved
for the rapid long transcribed subclass for both stimula-
tions.

Regarding the contribution of individual input markers,
it appears that long transcribed enhancers from both HRG
and EGF stimulations are classified optimally using CTCF.
Although the performance in long transcribed enhancers is
lower compared to other subclasses, we observe that CTCF
is also selected in several other MCF-7 subclasses such
as rapid short, rapid long, late standard transcribed en-
hancers stimulated by EGF or rapid long and late standard
transcribed enhancers stimulated by HRG (32). There are
also cases where we can discern ‘clear’ enhancer patterns
acting as fingerprints for specific MCF-7 subclasses such
as H3K27ac-P300 for rapid short transcribed enhancers
in HRG stimulation or P300-DHS in early standard tran-
scribed enhancers from the same stimulation. We also ob-
serve that H3K4me3 contributes (together with some other
markers such as CTCF or P300) to the performance max-
imization of rapid long, early standard, late standard and
late transcribed enhancers from EGF stimulation and rapid
long and late transcribed enhancers from HRG stimulation.
This may potentially describe specific transcription activa-
tion mechanisms for rapid long and late transcribed en-
hancers in different MCF-7 stimulations via spatial config-
uration of H3K4me3 (33).

Comparing PEDAL with other classification algorithms

We compare PEDAL’s recognition capabilities using KNN
with two state-of-the-art classification algorithms, namely
Bagged Decision Trees (BDT) and Logistic Regression
(LR). For a fair comparison, we follow exactly the same
protocols summarized in Figures 1 and 2 and we estimate
the classification performance using every single combina-
tion of input markers (i.e. in total 63 combinations). We re-
peat the learning process 1000 times and we select, for ev-
ery response subclass and algorithm, the combination that
achieves the maximum MCC. For all algorithms included in
the comparison analysis, we use exactly the same training,
validation and testing sets as used for PEDAL with KNN.
All implementations held in Matlab R2014b using build-in
functions for BDT (TreeBagger function) and LR (glmfit
function).

Results obtained by BDT and LR are summarized in
Supplementary Figure S9 for all enhancer and promoter
transcription response subclasses for both HRG and EGF
stimulations. PEDAL with KNN achieves much higher ac-

curacy in all of the tested cases. In most of these cases,
the other methods do not achieve performance higher than
70%. This clearly indicates that the PEDAL framework
combined with KNN algorithm is the correct choice. No-
tably, LR, one of the simplest and fastest classification al-
gorithm, achieves comparable and in some cases superior
performance to BDT.

A closer look on MCF-7 rapid long transcribed promoters and
enhancers stimulated by EGF and HRG

In this subsection, we provide more insights about the
optimized combinations of input markers for all MCF-7
promoters and enhancers stimulated by EGF and HRG.
As an additional validation process, we focus on the sub-
class of rapid long transcribed enhancers and promoters
since it achieves the highest MCC. The corresponding sets
of input markers that maximize MCC for all rapid long
subclasses are the following: H3K4me3-H3K27ac-CTCF
for EGF-stimulated enhancers, H3K4me3-P300-CTCF-
POL2-DHS for HRG-stimulated enhancers; H3K27ac-
P300 for EGF-stimulated promoters; and H3K27ac-POL2-
DHS for HRG-stimulated promoters.

Figure 4 presents the corresponding chromatin profiles
from input data sets replicate 1. All subplots in Figure
4 are based on the actual raw data sets used to generate
PEDAL’s feature vector (34). The right panels of Figure 4
show the corresponding profiles of all other data samples
that do not belong to the rapid long transcribed subclass
(i.e. ‘negative’ sets). There are three main observations: (i)
the data profiles of the selected input variables distinguish
visually the subclasses of interest from all other subclasses
(i.e. negative sets) for both stimulations. In a simple way
this can explain the maximized classification performance
we achieve; (ii) the selected profiles of EGF-stimulated and
HRG-stimulated rapid long transcribed promoters are dif-
ferent (number of markers and their spatial distributions)
and similarly the profiles of EGF-stimulated and HRG-
stimulated rapid long transcribed enhancers are different
(number of markers and their spatial distributions); (iii) fre-
quently the profiles of the same markers of the same re-
sponse subclass of different stimulations follow different
spatial distributions. An example is the spatial distribution
of H3K4me3 for EGF and HRG rapid long transcribed en-
hancers or the spatial distribution of H3K27ac for EGF and
HRG rapid long transcribed promoters. Based on a limited
number of cases examined, our data suggests that the chro-
matin configuration involved in the studied cases seems to
be different, as shown by the set of optimized features and
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Figure 4. Optimized input profiles aligned at the ‘center’ for all rapid long transcribed promoters and enhancers for EGF and HRG stimulations. We also
show the corresponding profiles for all other promoters and enhancers that do not belong to the considered subclass of interest.
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their distributions that generate the best classification re-
sults based on MCC. This supports the notion that the local
chromatin environment of particular transcription response
subclasses follows stimulation-specific spatial organization.

Developing non-stimulation specific models for MCF-7 pro-
moters and enhancers

Finally, we investigate further whether it is possible to
develop non-stimulation specific recognition systems for
MCF-7 transcription response subclasses for promoters
and enhancers. We combine data from HRG and EGF stim-
ulations and we repeat the training, validation and testing
processes for every single promoter and enhancer transcrip-
tion response subclass. Following exactly the same proto-
cols as before, we measure the average classification perfor-
mance of 1000 executions for every single combination of
features and we discover the combinations that maximize
MCC. Figure 3E and F summarize the results. In addition,
Supplementary Figure S10 compares the overall recog-
nition performance of stimulation-specific models versus
non-stimulation specific models. The non-stimulation spe-
cific models achieve comparable performance to the ‘best’
stimulation-specific models and always improve the per-
formance of the ‘weaker’ stimulation-specific model. Con-
sequently, they are useful for identifying transcription re-
sponse subclasses in cells from unknown stimulations, or
when the stimulation is known but the existing stimulation-
specific models have ‘weak’ recognition capabilities.

CONCLUSION

A novel computational framework for identifying the tran-
scriptional response subclasses of promoters and enhancers
using as input, information from their local chromatin envi-
ronment, is introduced. Our work implicitly links the tran-
scription response subclasses of promoters and enhancers
with specific chromatin environment characteristics involv-
ing histone modification markers, chromatin accessibility
and binding sites of transcription factors and co-activators.

A case study using data from MCF-7 cell-line, reports
stimulation specific (HRG-specific and EGF-specific) com-
binations of input markers that discriminate with maxi-
mized MCC, MCF-7 promoters and enhancers of different
transcription response subclasses. Looking at the problem
in a non-stimulation specific manner, we are further able
to develop recognition systems for predicting MCF-7 tran-
scription response subclasses using data from all the avail-
able stimulations.

Within the examined cases and based on the data sets
used, some markers follow stimulation-specific spatial dis-
tributions as shown by the feature values that generate the
optimized classification results. All these findings suggest
potential mechanisms of function at the chromatin level as-
sociated with transcription response subclasses in MCF-7
cells. However, we note that the results obtained from com-
putational methods, although supported by statistical evi-
dence, require further validation steps and targeted wet-lab
experiments.

Nonetheless, within the present computational frame-
work, many improvements are possible such as: (i) consid-
ering more features that describe the shape of ChIP-seq or

DNase-seq signals such as kurtosis, or bimodality or com-
bination of chromatin features with more complex sequence
characteristics (e.g. discriminative de novo sequence motifs)
may increase the classification performance; (ii) integrat-
ing more ChIP-seq data sets form histone marks may shed
light to MCF-7 local chromatin configuration rules affect-
ing promoter and enhancer transcription profiles; (iii) per-
forming the same analyses for promoters and enhancers
from different cell-lines and tissues may help generalizing
findings and inferring more generic chromatin patterns re-
lated to promoter and enhancer transcription profiles; (iv)
tackling the multi-label classification problem is an indepen-
dent study that might reveal new insights.

We believe that the results of this analysis will help in
better understanding the transcription regulation of mam-
malian promoters and enhancers. Thus, we anticipate that
as more data become available, PEDAL will be readily in-
corporated into large-scale analyses aiming at identifying
more general rules, if any, that can link local chromatin envi-
ronment characteristics with different expression programs
in mammalian cells.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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