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Meta-regression can be used to examine the association between effect size

estimates and the characteristics of the studies included in a meta-analysis

using regression-type methods. By searching for those characteristics

(i.e., moderators) that are related to the effect sizes, we seek to identify a model

that represents the best approximation to the underlying data generating

mechanism. Model selection via testing, either through a series of univariate

models or a model including all moderators, is the most commonly used

approach for this purpose. Here, we describe alternative model selection

methods based on information criteria, multimodel inference, and relative var-

iable importance. We demonstrate their application using an illustrative exam-

ple and present results from a simulation study to compare the performance of

the various model selection methods for identifying the true model across a

wide variety of conditions. Whether information-theoretic approaches can also

be used not only in combination with maximum likelihood (ML) but also

restricted maximum likelihood (REML) estimation was also examined. The

results indicate that the conventional methods for model selection may be out-

performed by information-theoretic approaches. The latter are more often

among the set of best methods across all of the conditions simulated and can

have higher probabilities for identifying the true model under particular sce-

narios. Moreover, their performance based on REML estimation was either

very similar to that from ML estimation or at times even better depending on

how exactly the REML likelihood was computed. These results suggest that

alternative model selection methods should be more widely applied in meta-

regression.
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1 | INTRODUCTION

Empirical research often involves taking measurements
to assess the magnitude of a treatment effect, the size of a
group difference, or the direction and strength of the rela-
tionship between two variables (i.e., an “effect size”).
When multiple estimates of a phenomenon of interest
are available from a collection of studies, meta-analytic
methods can be used to synthesize the estimates into an
overall value that typically will be more precise than the
individual estimates.1 In addition, since the aggregated
value is usually a reflection of estimates obtained under
varying conditions and circumstances, it carries with it a
sense of greater generalizability.

At the same time, those varying conditions and cir-
cumstances can also lead to variability in the underlying
true effects, a phenomenon typically referred to as “het-
erogeneity.”2 In this case, the observed estimates will
tend to be more variable than would be expected if the
true effects were identical across studies (i.e., under
homogeneity). When such heterogeneity is detected,
attempts are often made to find its potential sources. For
this, one can examine whether the effect size estimates
are systematically related to the conditions and circum-
stances under which they were obtained. Such moderator
analyses are commonly conducted by means of an
approach called meta-regression.3-7 Here, one first codes
the various (study-level) characteristics of interest into a
set of predictor variables or “moderators.” Next,
regression-type models are used to examine the relation-
ship between moderators and the estimates.

In practice, meta-analytic datasets tend to be highly
multi-factorial in nature, containing a large number of
study characteristics that are potentially relevant and plausi-
ble predictors of the observed effects.7 Moreover, such ana-
lyses are inherently observational in nature because the
values of the explanatory variables have not been indepen-
dently/systematically manipulated.7 As a result, the various
study characteristics will often be correlated with each
other, complicating the determination of the unique contri-
bution of individual moderators to the heterogeneity.

Nevertheless, it is still common practice to examine
one moderator variable at a time by means of a series of
univariate or “single-factor” meta-regression models.8

However, unless steps are taken to control the family-
wise Type I error rate (which is not common practice in
this context), doing so leads to a high chance of false pos-
itive findings. Moreover, due to their correlation, modera-
tor variables found to be relevant predictors are likely to
account for shared variability in the effect sizes. Fitting
meta-regression models containing multiple predictors of
interest may circumvent the latter issue, but it is unclear
how moderators should be selected for inclusion in such

multi-factor models. For example, stepwise procedures
have repeatedly been argued to be of limited value.9,10

Also, parameter estimates and the statistical significance
of particular moderators may vary substantially among
models, depending on which other moderators are
included.

Although typically not framed in this manner, fitting
meta-regression models is in essence a form of model
selection. Accordingly, one could also consider to make
use of methods for model selection and multimodel infer-
ence based on information-theoretic approaches.9,11,12

However, it is far from straightforward to apply informa-
tion criteria in model selection in this context. To start, it
is not clear which estimation procedure to use for model
fitting (e.g., ML, REML), nor which information criterion
to choose (e.g., AIC, BIC, AICc). On the one hand, it has
been argued that information criteria under REML
(restricted maximum likelihood) estimation should not
be used to compare models differing in their fixed
effects13,14 because the contrasts used to derive the
restricted likelihood (which is then used in the calcula-
tion of the information criteria) depend on the model
matrix of the fixed effects. However, simulation results
from Gurka15 suggest that this problem may not be sub-
stantial for some types of models and datasets. Moreover,
we might prefer to use REML over ML (maximum likeli-
hood) estimation, since the latter may produce biased
parameter estimates (especially for variance components
in the model), which in turn affect the calculation of the
information criteria.16 We are aware of two simulation
studies exploring these issues,15,17 but results from those
studies are inconclusive and only narrowly related to the
models and data structures used in meta-analyses.

The purpose of this paper is therefore to examine
methods for model selection when faced with multi-
factorial data in the meta-analytic context. We are specifi-
cally interested in how well methods based on informa-
tion criteria and multimodel inference compare against
simpler methods such as univariate testing of individual
moderator variables or fitting a single model including all
potential moderator variables of interest. To examine
these issues, we conducted a simulation study comparing
the various approaches using data reflective of a wide
variety of circumstances one may encounter in practice.

The outline of the paper is as follows. In Section 2, we
describe the meta-analytic random- and mixed-effects
meta-regression models, ML and REML estimation
thereof, and standard methods for testing coefficients in
the context of these models. In Section 3, model selection
via testing, information criteria, multimodel inference,
and relative variable importance are described. In Sec-
tion 4, we then provide an example illustrating the vari-
ous approaches based on a dataset containing the results
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from studies examining the effects of inoculation with
root-symbiotic mycorrhizal fungi on plant biomass. The
methods and results for the simulation study comparing
the various approaches are described in Section 5. We
then conclude the paper with a discussion of the findings
in Section 6, where we address some additional issues
and concerns.

2 | META-ANALYSIS MODELS

We assume that k independent studies have been selected for
inclusion in a meta-analysis and that each study provides a
single effect size estimate or observed outcome. For example,
for a set of studies examining the effectiveness of a particular
experimental treatment, the outcome measure may be the
raw or standardized mean difference or log response ratio.18

When examining the relationship between two variables, the
outcome measure may be the raw or Fisher's r-to-z
transformed correlation coefficient.18 In the health/medical
sciences, dependent variables are often measured dichoto-
mously, leading to (log-transformed) odds/risk ratios and
risk differences as effect sizemeasures of choice.19

Regardless of the outcome measure used, let yi denote
the observed value in the ith study and θi the
corresponding true parameter. For brevity, we will refer
to yi as the effect size estimate and θi as the true effect
size. We assume that

yi ¼ θiþ εi, ð1Þ

where εi�N(0, vi) denotes the sampling error and vi the
sampling variance of the ith estimate. For all of the effect
size measures commonly used in meta-analysis (and all
of the measures noted above), we can derive an estimate
of vi for each study.18,19 The sampling variances are typi-
cally treated as known constants in the analyses
(although technically some uncertainty is still attached to
them, especially in small samples).

2.1 | Random- and mixed-effects models

According to the random-effects model,5 the true effect
sizes are heterogeneous and are given by

θi ¼ μþui, ð2Þ

where ui�N(0, τ2). Therefore, τ2 denotes the amount of
heterogeneity in the true effects and E[θi] = μ the average
true effect. A special case of the random-effects model
arises when τ2 = 0, in which case the true effects are
homogeneous.

Heterogeneity in the true effects is often not purely
random, as assumed by the random-effects model, but a
result of systematic differences between the studies
(e.g., in terms of how an experimental treatment was
implemented). Assume that information about p poten-
tial moderator variables has been extracted from the stud-
ies along with the effect size estimates. We can then set
up a mixed-effects meta-regression model of the form

θi ¼ β0þβ1xi1þ…þβpxipþui, ð3Þ

where xij denotes the observed value of the jth moderator
variable in the ith study, βj (j = 1, …, p) denotes how E
[θi] changes for a one-unit increase in xij, and ui�N
(0, τ2) as before, but τ2 now denotes residual heterogene-
ity, that is, variability in the true effects not accounted for
by the moderators included in the model.3-7

The meta-regression model above can accommodate
(a mixture of) quantitative and qualitative moderator vari-
ables (the latter through appropriate dummy coding of the
various levels of the factor) and xijmay also reflect an interac-
tion term between two or more moderator variables or poly-
nomial/spline functions of individual moderators (to model
the non-linear influence of a quantitative moderator variable
on the effect sizes). However, we will only consider main
effects throughout this paper, as models involving higher-
order terms are not frequently used in practice.

2.2 | Model fitting and inference

Let X denote the (k� (p+ 1)) model matrix containing
the values of the p moderator variables with a vector of
ones in the first column, corresponding to the model
intercept. In fact, the random-effects model is just a spe-
cial case of the mixed-effects model, where X simply con-
sists of a column of ones. Next, let y denote the (k� 1)
vector with the observed effect size estimates and V a (k
� k) diagonal matrix with the sampling variances
(i.e., the vi values) along the diagonal. The random/
mixed-effects model can then be written as

y�N Xβ,Mð Þ, ð4Þ

where M = V+ τ2I and I denotes a (k� k) identity
matrix. Letting W = M�1, the log likelihood function is
therefore given by

llML β,τ2
� �¼�k

2
ln 2πð Þ�1

2
ln jM j

�1
2
y�Xβð Þ0W y�Xβð Þ,

ð5Þ
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which depends on β and τ2. For a given value of τ2, the
maximum likelihood estimate of β is given by

b¼ X 0WXð Þ�1X 0Wy: ð6Þ

Hence, finding the maximum likelihood estimates of β
and τ2 is considerably simplified by maximizing the pro-
filed log likelihood

llML τ2
� �¼�k

2
ln 2πð Þ�1

2
ln jM j �1

2
y�Xbð Þ0W y�Xbð Þ

ð7Þ

over τ2 and then obtaining the maximum likelihood esti-
mates of the elements in β with (6).

Maximum likelihood estimates of τ2 are known to be
negatively biased in small samples (i.e., when k is
small).20 On the other hand, restricted maximum likeli-
hood (REML) estimation yields (approximately) unbiased
estimates and is therefore to be preferred when unbiased-
ness is deemed important. The restricted log likelihood
function is given by

llREML τ2
� � ¼�k�p�1

2
ln 2πð Þþ1

2
ln jX 0X j �1

2
ln jM j

�1
2
ln jX 0WX j �1

2
y�Xbð Þ0W y�Xbð Þ:

ð8Þ

Since the REML likelihood only depends on τ2, maximi-
zation of llREML(τ

2) is again a one-dimensional optimiza-
tion problem. Once the REML estimate of τ2 has been
obtained, we can again estimate the elements in β
with (6).

Maximization of (7) and (8) can be easily accom-
plished either by an exhaustive search or by means of an
optimization algorithm, such as gradient ascent or some
Newton-type algorithm.21 Below, we will denote the max-
imized values of (7) and (8) as llML and llREML, respec-
tively, and the estimate of τ2 that is obtained with either
method by τ̂2.

Once τ2 has been estimated with either ML or REML
estimation, the estimated model coefficients (i.e., b0, b1,
…, bp) are then given by (6), with τ̂2 substituted for τ2 in
M and hence W. The variance–covariance matrix of the
model coefficients can then be estimated with

Var b½ � ¼ X 0WXð Þ�1
: ð9Þ

The diagonal elements of Var [b] are the estimated sam-
pling variances of the model coefficients (i.e., Var [b0],

Var [b1], …, Var [bp]). Taking the square-root thereof pro-
vides the estimated standard errors (i.e., SE [b0], SE [b1],
…, SE [bp]). A Wald-type test of an individual moderator
variable can then be conducted by comparing

zj ¼ bj
SE bj

� � ð10Þ

against the critical bounds of a standard normal distribu-
tion (e.g., ±1.96 for α = .05, two-sided).5 Values of zj equal
to or larger than the critical values lead to the rejection
of H0 : βj = 0. Analogously, approximate 95% confidence
intervals for the coefficients can be constructed with

bj�1:96SE bj
� �

: ð11Þ

Some alternative methods for making inferences about
the coefficients in meta-regression models have been
developed,22 but we will not consider these methods
further here.

3 | MODEL SELECTION

In practice, one often faces the problem that a large num-
ber of moderator variables have been measured, but it is
unclear which of these moderators are actually related to
the effect sizes. The problem of model selection in meta-
regression can therefore be stated as follows. Let p denote
the total number of moderators of interest and that could
be included in the model. Now suppose m of these mod-
erators (with 0≤m≤ p) actually exert an influence on the
effect sizes, while the remaining p�m moderators do
not. Let T⊆ {1,…, p} denote the set with the m indices of
the true moderators. Then the true model is given by

yi ¼ β0þ
X
j∈T

βjxijþuiþ εi ð12Þ

while the full model, containing “true” and “false” mod-
erators, is given by

yi ¼ β0þ
X
j∈T

βjxijþ
X
j=2T

βjxijþuiþ εi, ð13Þ

where, in truth, βj = 0 for j =2T. The goal is then to iden-
tify model (12) as the true model via some kind of model
selection method.

We should clarify that model (12) is assumed to be
the true model only in the sense that it reflects the best
approximation to a presumably much more complicated
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reality given the available data. The actual data generat-
ing mechanism is likely to include moderators that have
not actually been measured and/or coded and may not
even be a linear model of the type described above. In
addition, the moderators that have been coded are often
just proxies or surrogates for the actual variables involved
in the data generating mechanism. Therefore, whenever
we refer to the true model and the true moderators, we
do not mean to imply that the model or moderators
reflect the true data generating mechanism, but that they
are the best available approximation thereof given the
moderators extracted from the studies and the hypothe-
sized shape of their association with the observed effects.

Also, the particular application of meta-regression we
are focused on here considers the p moderator variables
as more or less equally relevant potential predictors of
the effect sizes and the goal is to distinguish the true
moderators of the effect sizes from the false ones. In
other cases, one might be interested in testing a priori
formulated hypotheses about specific moderators with a
given meta-analytic dataset and/or one is interested in
the relationship between a focal moderator (or a small
number of them) and the effect sizes, while accounting
for a set of other study characteristics that might con-
found the interpretation of the relationship between the
effect sizes and the focal moderator(s). In such applica-
tions, model selection is not a primary concern and the
methods to be described below are much less relevant.

3.1 | Model selection methods

We will consider four general approaches for identifying the
set of true moderators and hence model (12) as the true
model. The first approach includes simple methods that are
commonly used in practice, namely univariate testing of the
p moderator variables or testing of the p moderators in the
context of the full model. The second approach examines the
complete set of 2pmodels that can be fitted given the pmod-
erator variables and then uses various information criteria
for model selection.9,11 Next, we consider methods based on
model averaging and multimodel inference over the set of 2p

models to identify the true moderators.9,11 Finally, based on
the information criteria, one can compute a “relative variable
importance” for each of the moderators of interest, which
can then be used for model selection. The various methods
are described inmore detail below.

3.2 | Selection via testing

In practice, relatively simple methods are commonly used
for model selection in the meta-regression context. We

will consider two such approaches based on Wald-type
tests of the model coefficients. In the first approach, one
simply fits p univariate meta-regression models
(i.e., including one moderator variable at a time) and
obtains the corresponding Wald-type tests of the coeffi-
cients. Based on the significance of these p tests, modera-
tors are classified as either true or false. In the second
approach, the full model including all p moderators is
fitted. Again, Wald-type tests (now in the context of the
full model) are used to categorize the moderator variables
as being related to the effect sizes or not. With either test-
ing approach, we can consider the true model as identi-
fied if we reject H0 : βj = 0 for all j∈T and fail to
reject H0 : βj = 0 for all j =2T.

We do not consider the possibility of applying correc-
tions for multiple testing (e.g., the Bonferroni correction),
as this is not common practice in the meta-analytic con-
text.8 Moreover, while one could also select moderators
based on the magnitude of their relationship with the
effect size estimates (as reflected by the respective model
coefficients) instead of their statistical significance, this is
also not common practice and we will not consider this
approach in the remainder of this article (it would also
be difficult to formally define how exactly moderators
should then be selected if one had to make decisions
about their status as true or false moderators).

Finally, a general issue that one will often encounter
in practice when conducting meta-regression analyses is
missing information about certain moderator variables of
interest for at least some of the studies. Missing informa-
tion can lead to severe reductions in the “usable” data for
fitting models with multiple moderator variables and/or
lead to models that are based on different subsets of the
dataset, which complicates the comparison of results
across models. In the remainder of this manuscript, we
will assume that the data are complete or at least that the
studies with incomplete information have been removed
before applying the methods discussed. We will come
back to this issue in the discussion section.

3.3 | Selection via information criteria

Based on the p moderator variables, a total of R = 2p

models can be fitted to the given data. While the true
model should, on average, provide the best fit, we cannot
use the log likelihoods directly for model selection, as the
likelihood always increases as more moderators are
added to the model. On the other hand, information
criteria, which penalize the maximized likelihoods for
model complexity, can be used for this purpose. The “best
fitting” model (in the sense of making a trade-off between
model fit and model complexity) is the one that
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minimizes a particular information criterion. From an
information-theoretic perspective, model selection based
on information criteria can also be described as a way for
minimizing the loss of information (in a Kullback–
Leibler sense) when approximating full reality by a fitted
model.9,11

The most commonly known criterion for this purpose
is the Akaike Information Criterion,23 which is given by

AIC¼�2llþ2 sþ2ð Þ, ð14Þ

where ll is either llML or llREML, depending on the estima-
tion method used, and s (0≤ s≤ p) denotes the number of
moderators included in the model (hence, the model con-
tains s+ 2 parameters, counting the model intercept
and τ2).

Another commonly used criterion is the Bayesian
Information Criterion,24 which is given by

BIC¼�2llþ sþ2ð Þln k*
� �

, ð15Þ

where k* = k for ML estimation and k* = k� s� 1 for
REML estimation. When k*≥ 8, the BIC penalizes the
model fit more heavily than the AIC and therefore should
tend to select models with fewer fixed effects.

Finally, we will consider a third criterion, a finite
sample size (second-order bias) corrected version of the
AIC,25,26 given by

AICc¼�2llþ2 sþ2ð Þ k*

k*� sþ2ð Þ�1

� �
, ð16Þ

where k* = max(k, s+ 4) for ML estimation and
k* = max(k� s� 1, s+ 4) for REML estimation (these
definitions of k* ensure that the additional multiplicative
factor in the AICc is always ≥1). As k/(s+ 2) increases
(i.e., the ratio of sample size to the number of parame-
ters), AICc converges to the AIC from above. However,
in situations where k is small relative to the number of
parameters, AICc will again tend to favor models with
fewer fixed effects when compared to the AIC.

Regardless of the criterion, we then simply consider
the true model as identified if it corresponds to the best
model, that is, the model with the smallest value for the
chosen information criterion. However, several issues are
of note here when using REML estimation for model
selection. First, the restricted log likelihood function (8)
is obtained by taking linear combinations (contrasts) of
the elements in y, such that the transformed data are free
of the fixed effects in β.27,28 Since the appropriate trans-
formation depends on X, models with different fixed

effects will require different transformations, leading to
restricted likelihoods that are technically not directly
comparable. Consequently, likelihood ratio tests based
on (8) are not appropriate for comparing models with dif-
ferent fixed effects.13,14 However, some recent simula-
tions suggest that model selection based on information
criteria computed with (8) may still be a valid strategy.15

Second, while the restricted log likelihood function
technically only contains one unknown parameter
(i.e., τ2), we do count the regression coefficients for the
moderators as additional parameters when computing
the information criteria under REML estimation, as oth-
erwise we would always select the full model (including
all p moderators) as the optimal one.

Finally, note that the second term (i.e., 1
2 ln jX 0X j) in

the restricted log likelihood function (8) does not depend
on τ2 (or β) and hence is irrelevant for maximizing the
restricted log likelihood. Consequently, this term is often
omitted by software when computing and reporting
llREML. However, when using REML estimation for
model comparisons involving different sets of modera-
tors, the relevance of including this term in the computa-
tion of llREML is unclear.15 Therefore, we define the
maximized log likelihood with and without the second
term in (8) as llREMLf and llREMLr, respectively, and can
compute the information criteria with respect to both
values. In total then, selection via information criteria
can be conducted in nine different ways, by computing
one of the three different information criteria (i.e., AIC,
BIC, AICc) based on one of the three different likelihood
functions (i.e., llML, llREMLf, llREMLr).

3.4 | Selection via multimodel inference

Approaches that simply test coefficients (either univariately
or in the context of the full model) do not take model uncer-
tainty into consideration. As an alternative, we can base our
inferences on all available models, using model averaging to
obtain parameter estimates (and corresponding standard
errors) that properly reflect this uncertainty. Thismultimodel
inference approachworks as follows.

First, based on a particular information criterion
(e.g., AIC with ML estimation), we estimate the probabil-
ity that each of the R = 2p models in the candidate set is
the best model (in a Kullback–Leibler sense) with

wr ¼
exp �1

2Δr
� �

PR
r¼1exp � 1

2Δr
� � , ð17Þ

where Δr = ICr� ICmin, ICr denotes the information
criterion for the rth model, and ICmin the value of
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the information criterion for the model with the
smallest value (hence Δr = 0 for the model selected
as the best model according to the model selection
strategies described in the previous section). These
model probabilities are also commonly referred to as
Akaike weights and, given particular priors, reflect
posterior model probabilities in a Bayesian frame-
work.9,11 Note that these “Akaike weights” can be
computed with any one of the information criteria
discussed earlier (and based on the three different
likelihood functions) and hence the name does not
exclusively refer to the use of the AIC for their
computation.

Instead of simply stopping here (and declaring mod-
erators as true versus false depending on whether they
are part of the model with Δr = 0), we now proceed to
the second step in multimodel inference. Here, model
averaged parameter estimates for each coefficient are
obtained with

�bj ¼
XR
r¼1

wrbrj, ð18Þ

where brj denotes the estimated value of βj in the rth
model. Therefore, the estimated model coefficient for the
jth moderator variable is then based on the entire collec-
tion of R models, with weights assigned in accordance to
the estimated probabilities that each model is in fact the
best model.

When computing �bj, a decision needs to be made how
to handle models that actually do not contain the jth
moderator as one of the predictor variables (when consid-
ering all 2p models, only half of the models will actually
contain the jth moderator). Two strategies are commonly
used to handle this9,29: When computing �bj , we can
only consider the subset of models that actually estimated
βj (doing so requires renormalizing the model weights, so
that they sum to 1 for a given subset) or alternatively we
can set the coefficient equal to zero for models that do
not actually estimate βj. The latter approach can be moti-
vated on two grounds. First, the omission of a particular
predictor from a model is in essence equivalent to assig-
ning a value of zero to the corresponding coefficient. Sec-
ond, setting the coefficient to zero in models that omit
the jth moderator variable results in shrinkage of the
model averaged parameter estimate that may counteract
model selection bias.11 We therefore only consider the
second approach, but return to this issue in the discus-
sion section.

An estimate of the variance of the model averaged
parameter estimate accounting for both sampling error
and model uncertainty can then be obtained with

Var �bj
� �¼XR

r¼1

wr Var brj
� �þ brj��bj

� �2� 	
, ð19Þ

where Var [brj] denotes the estimated sampling variance
of the jth model coefficient from the rth model.11 When
the rth model does not actually contain the jth model
coefficient, then Var [brj] = 0 (and brj = 0). The square-
root of (19) provides an estimate of the standard error of
the model averaged parameter estimate (i.e., SE �bj

� �
).

Finally, we can draw inferences about the relevance
of each model coefficient, using (18) and (19) to construct
the test statistic

�zj ¼
�bj

SE �bj
� � , ð20Þ

which we compare against the critical bounds of a stan-
dard normal distribution (e.g., ±1.96 for α = .05, two-
sided). Values of �zj equal to or larger than the critical
values are again taken as evidence that the jth moderator
variable is related to the effect sizes and is therefore clas-
sified as a true moderator. As with selection via informa-
tion criteria, the multimodel inference approach can be
conducted in nine different ways, depending on the infor-
mation criterion and likelihood function used.

3.5 | Selection via relative variable
importance

Instead of testing, we can also use the Akaike weight of
each model to calculate the relative importance of each
moderator, that is, the relative variable importance (RVI)
across the candidate set of models, which for a particular
moderator is the sum of the Akaike weights of all models
in which that moderator occurs. Formally, letting Irj = 1
if the jth moderator is included in the rth model and
0 otherwise,

RVIj ¼
XR
r¼1

wrIrj ð21Þ

is the sum of the Akaike weights for the jth moderator
for all models in which the moderator appears. In prac-
tice, a sufficiently high RVI (often 0.5 or 0.8) is taken as
evidence that a particular moderator is valuable for infer-
ence, although we are not aware of strong theoretical
support for using any particular RVI criterion. Here, we
explore both 0.5 and 0.8 as criteria, in each case taking
an RVI greater than or equal to those values as evidence
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that a moderator is related to the effect sizes. As in test-
ing, if RVIj≥ 0.5 (or 0.8) for all j∈T and RVIj<0.5
(or 0.8) for all j =2T, we consider the true model as identi-
fied. The two RVI criteria can be crossed with the nine
different combinations of information criteria and likeli-
hood functions, leading to 18 different approaches that
can be used for selecting moderators based on their RVI
values.

3.6 | Model coefficient estimation

The goal of the methods described above is to distinguish
the true from the false moderators, that is, we would like
to identify model (12) as the true model. Even if these
methods correctly select the true moderators (and none
of the false ones), these procedures do not automatically
provide estimates of the model coefficients in this model.
For example, after univariate testing of each moderator,
suppose that some are found to be significant (and hence
selected as true moderators) and others are not. What is
then an appropriate estimate of the strength and direc-
tion of the relationship between a selected moderator and
the effect sizes? One possibility is to use the model coeffi-
cient from the univariate model including this moderator
as the estimate. Alternatively, one could consider fitting
an additional model that includes all of the selected mod-
erators and using the coefficients from this model as the
estimates of the respective relationships. Similarly, when
using full model testing, should we report the results
from the full model (including both the supposedly true
and false moderators) or should we refit the model only
including the true ones?

Similar issues arise when selecting moderators based
on multimodel inference or their relative variable impor-
tance. The latter approach does not involve the size of
the model coefficients at all, while the former makes use
of coefficients that are weighted averages across all 2p

models. Should one report these averages as the best esti-
mates of the relationships or should one refit a model
that includes only the selected moderators? The only
approach that inherently avoids these questions is selec-
tion via the information criteria, as it selects the true
moderators based on their appearance in the “best”
model (i.e., the one with the lowest value of the chosen
information criterion) and it then seems quite natural to
also report the coefficients from this model as the esti-
mates of the relationship between the moderators and
effect sizes. However, our goal in the present paper is not
to provide answers to the questions raised above, but to
evaluate the ability of the various model selection
methods for distinguishing the true from the false moder-
ators. Once we have examined the performance of the

methods for this purpose, we can return to the question
of how to estimate the relationship between the true
moderators and the effect sizes in the discussion section.

4 | EXAMPLE

As an illustration, we applied the various approaches
described above to a dataset of 80 effect size estimates
obtained from studies examining the influence on plant
biomass of inoculation with mycorrhizal fungi, which are
soil-inhabiting root symbionts of plants that have the
potential to improve plant growth. The dataset and R
code to reproduce the following analyses are available at
the Open Science Framework (https://osf.io/3d8u5/).
Note that the dataset is used for illustration purposes
only and is actually part of a much larger database,30

including over 4000 estimates. Here, we focus on a subset
of the data containing only estimates for corn, that is, the
plant Zea mays, inoculated with one of two different gen-
era of arbuscular mycorrhizal (AM) fungi, either
Funneliformis or Rhizophagus. The subset was selected to
avoid some of the additional complexities in the actual
data structure (e.g., many plant species and fungi, phylo-
genetic relatedness, nesting and non-independence due
to multiple estimates obtained from the same study
and/or a shared control condition). The outcome mea-
sure used for the meta-analysis is the log response ratio,31

with positive values reflecting an increase in mean bio-
mass in plants receiving the mycorrhizal inoculation
compared to non-inoculated plants.

A random-effects model fitted to the data using
REML estimation yields an aggregated effect size esti-
mate of μ̂¼ 0:59 (with 95% CI: 0.37–0.80). After exponen-
tiation, we therefore estimate that mycorrhizal
inoculation increases plant biomass on average by a fac-
tor of 1.80 (i.e., 80%; 95% CI: 1.45–2.23). However, there
appears to be considerable heterogeneity in the effect
sizes, with τ2 being estimated at 0.523 in this model.

A large number of variables may systematically influ-
ence plant response to inoculation, but we focus here on
four potential moderators. Besides the mycorrhizal fun-
gus (FUN) used (k for Funneliformis: 29; k for
Rhizophagus: 51), the dataset includes information about
whether phosphorus fertilizer was added (FP; k for no:
54; k for yes: 26), whether nitrogen fertilizer was added
(FN; k for no: 22; k for yes: 58), and whether or not the
background soil was sterilized prior to mycorrhizal inoc-
ulation (STER; k for no: 16; k for yes: 64). Due to the
observational nature of these data, the four factors were
only partially crossed, with some combinations being
much more prevalent than others (and some not repre-
sented at all). Computing correlations (phi coefficients)
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after dummy-coding each factor yielded values in the
range of �0.14 to 0.53. See Table 1 for the full correlation
matrix.

Table 2 shows the values of the AICc and model prob-
abilities (i.e., wr) for the 24 = 16 possible models (consid-
ering only main effects and no interactions) when using
REML estimation for the model fitting and computing
the maximized restricted log-likelihood with llREMLr. The
model with the lowest AICc includes moderators FN and
FP, with an associated model probability of 0.47. There-
fore, based on model selection via information criteria,
we would consider moderators FN and FP as relevant.

Table 3 shows the results when testing each modera-
tor in a series of univariate models, when testing each
moderator in the context of the full model (i.e., with all
four predictors included simultaneously), and when test-
ing each moderator using multimodel inference using
model averaged parameter estimates and corresponding
standard errors along with their relative variance impor-
tance values based on all 16 models. From Table 2, we
can see how the coefficient and standard error of the FP
moderator is obtained for each of these approaches (see
model 8 for the univariate model approach, model 6 when
testing moderators in the context of the full model, and
the value in the last row for the multimodel inference
approach). Univariate testing leads to the conclusion that
all four moderators are related to the effect sizes. When
testing the moderators in the context of the full model
and when using the multimodel inference approach, we
come to a very different conclusion, only finding support
for the relevance of FP as a potential moderator.

Clearly, there is substantial support for the impor-
tance of FP, with the predictor appearing in the top eight
models as ranked by the AICc (the model probabilities
for these eight models add up to 0.99, which is therefore
also the relative variable importance for this moderator).
Similarly, all testing methods identify this variable as a
relevant predictor. Support for the relevance of the other
moderators is weaker, although FN is part of the top
three models as ranked by the AICc, with a relative vari-
able importance of 0.85. Also, univariate testing (just
barely) finds this moderator to be significant. The
remaining moderators, FUN and STER, are not found to

be significant by full model testing or multimodel infer-
ence. Furthermore, their relative variance importance are
0.31 and 0.32, respectively, both of which suggest that
these moderators are unrelated to the effect sizes.

The example illustrates that conclusions regarding
the relevance of particular moderators can depend on the
method used for model selection. To determine whether
a particular approach is preferable (in terms of being
more likely to select the true model), we conducted a
simulation study.

5 | SIMULATION STUDY

Given the choice among the different approaches (and
the resulting potential for conflicting conclusions), we
conducted a Monte Carlo simulation study to compare
the accuracy of the various methods for identifying the
true model under ML and REML estimation. We also
examined the relevance of using llREMLf versus llREMLr for
computing the restricted log likelihood when using the
various information criteria for model selection. In
the present section, we describe the methods used for the
simulation study and the results obtained.

5.1 | Methods

Assume that each study included in the meta-analysis
compared two experimental groups with respect to a
quantitative dependent variable. We will use the mean
difference as the effect size measure for the meta-
analysis, which is given by yi ¼ �xi1��xi2, where �xi1 and �xi2
denote the observed means of the dependent variable
in the first (e.g., treated) and second (e.g., non-treated)
group. Then yi �N θi,σ2i 1=ni1þ1=ni2ð Þ� �

, where θi = μi1�
μi2 is the true effect in the ith study, μi1 and μi2 denote
the true means of the two experimental groups, ni1 and
ni2 the group sizes, and σ2i the true variance of the
dependent variable in an individual study. Without loss
of generality, we set μi2 = 0, σ2i ¼ 1 , and assume
ni1 = ni2≡ni.

We purposefully chose to use an effect size measure
for the simulation study that fulfills all of the assump-
tions of the random- and mixed-effects models (2) and (3)
instead of simulating other measures commonly used in
meta-analyses, such as standardized mean differences,
log response ratios, risk differences, log risk/odds ratios,
and raw or r-to-z transformed correlation coefficients.
Although these measures will have normal sampling dis-
tributions with known sampling variances asymptoti-
cally, these assumptions can break down in smaller
samples and/or under particular circumstances (e.g., for

TABLE 1 Correlation matrix (phi coefficients) of the four

dichotomous moderator variables

FUN FP FN STER

FUN 1 �0.14 0.53 0.27

FP �0.14 1 0.31 0.01

FN 0.53 0.31 1 0.53

STER 0.27 0.01 0.53 1
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rare events), at which point specialized methods/models
may need to be applied.32-34 With our chosen measure,
we can study the performance of the various model selec-
tion methods unencumbered by these issues. Moreover, if
conditions are such that the assumptions underlying the
models are at least approximately fulfilled for other mea-
sures, then there is no particular reason to believe that
the results obtained below would not be at least roughly
applicable to these other measures as well.

In each iteration of the simulation, we first simulated
the sample sizes of the individual studies by drawing k
values from χ2df¼4 , a Chi-square distribution with
4 degrees of freedom, and then letting ni ¼
�n χ2df¼4þ6
� �

=20
� �

(rounded to the nearest integer), so
that �n denotes the average (total) sample size of each

study included in the meta-analysis. The sample size dis-
tributions generated in this manner have a minimum of
�n 3=10ð Þ , a mean of �n=2 , and are right-skewed as often
encountered in practice.35,36

Next, we simulated the values of the moderator vari-
ables by drawing k sets of p values from a multivariate
standard normal distribution, where all p variables
(i.e., the true and false moderators) were correlated with
each other with correlation equal to ρ. When ρ = 0, the
simulated moderator variables were uncorrelated, while
values of ρ≠ 0 correspond to the more commonly
encountered situation where moderator variables are cor-
related with each other.

Finally, given the sample sizes and the moderator
values, we then simulated the k observed effect sizes from

TABLE 2 Value of the AICc (based

on llREMLr) for the 16 models fitted to

the data examining the influence of

mycorrhizal inoculation on plant

biomass

Model Moderator(s) AICc wr bFP SE [bFP]

1 FN + FP 203.210 0.47 �1.00 0.207

2 STER + FN + FP 205.161 0.18 �0.97 0.209

3 FUN + FN + FP 205.507 0.15 �0.92 0.224

4 FUN + STER + FP 207.540 0.05 �0.71 0.206

5 FUN + FP 207.566 0.05 �0.66 0.208

6 FUN + STER + FN + FP 207.611 0.05 �0.90a 0.226

7 STER + FP 208.534 0.03 �0.75 0.209

8 FP 212.524 0.00 �0.71b 0.220

9 FUN 213.047 0.00 0.00 0.000

10 FUN + STER 214.157 0.00 0.00 0.000

11 FUN + FN 215.739 0.00 0.00 0.000

12 STER 216.281 0.00 0.00 0.000

13 FUN + STER + FN 216.765 0.00 0.00 0.000

14 FN 217.803 0.00 0.00 0.000

15 STER + FN 218.329 0.00 0.00 0.000

16 – 218.485 0.00 0.00 0.000

Avg �0.93c 0.248

aEstimated model coefficient for moderator FP from the model including all moderators simultaneously.
bEstimated coefficient for moderator FP from the univariate model.
cModel-averaged parameter estimate (and corresponding standard error) for moderator FP.

TABLE 3 Results for testing each moderator in a series of univariate models, in the full model, when using multimodel inference, and

their relative variance importance (RVI) values based on all 16 models

Univariate testing Full model testing Multimodel inference

b SE z b SE z b SE z RVI

FUN 0.68 0.222 3.07 0.23 0.270 0.84 0.11 0.236 0.47 0.31

FP �0.71 0.220 �3.21 �0.90 0.226 �3.96 �0.93 0.248 �3.73 0.99

FN 0.49 0.248 1.99 0.57 0.342 1.66 0.68 0.388 1.76 0.85

STER 0.64 0.277 2.30 0.28 0.298 0.93 0.12 0.248 0.47 0.32

Note: Test statistics that exceed ±1.96 and RVI values that exceed 0.5 are shown in bold.
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yi �N
Pm

j¼1βjxij,τ
2þ2=ni

� 	
for a given value of τ2, so that

moderators j = {1,…,m} are the true and j = {m+ 1,…, p}
are the false moderators. We set βj = β for j = 1 to m.
Therefore, each of the m true moderators exerted the
same amount of influence on the effect sizes. On
the other hand, the remaining p�m false moderators did
not influence the effect sizes.

Within each iteration, we therefore obtained k values
of yi, the corresponding sampling variances vi = 2/ni, and
the values of the p moderator variables corresponding to
each of the k studies. The various model selection
approaches described earlier were then used in an
attempt to identify the true model. Therefore, we fitted
each of the 2p possible models to the data using ML and
REML estimation and recorded the corresponding AIC,
BIC, and AICc values. For REML estimation, both llREMLf

and llREMLr were used for computing the restricted log
likelihood and the resulting information criteria. We then
recorded whether the true model was correctly selected
according to the minimum AIC, BIC, and AICc criteria.

For the testing approaches, we recorded whether the
set of significant and non-significant moderators cor-
responded to the set of true and false moderators in the
true model, respectively. If all of the true moderators and
none of the false moderators were significant, then this
was considered a correct identification of the true model.
The same approach was used when using the RVI of the
variables as the selection method (using either 0.5 or 0.8
as the cutoff for considering a variable as important).

The following factors were examined in the simula-
tion study: k (20, 30, 40, 60, 80), �n (15, 30, 60, 120), ρ
(0, 0.3, 0.6), β (0, 0.1, 0.2, 0.3, 0.4), τ2 (0, 0.12, 0.22, 0.32,
0.42), p (4, 6, 8, 10) and m (either m was set equal to p/2
or held constant at m = 2). All factors were fully crossed,
so that a total of 5� 4� 3� 5� 5� 4� 2 = 12,000 condi-
tions were examined (note that when β = 0, then the true
model is actually the “empty model” that does not
include any moderators, regardless of the value of m).
For each condition, we simulated 1000 meta-analyses
and then estimated the probability of identifying the true
model by computing the proportion of iterations in which
the true model was correctly identified by each of the
methods described above.

We fully acknowledge that in real data, moderators
are going to exhibit different degrees of correlation
among each other (instead of assuming a constant value
of ρ for each pair), will be a mixture of different variable
types (e.g., integer, [semi-]continuous, categorical with
two or more levels) with various types of distributions
(instead of following a multivariate normal distribution),
and the magnitude of the relationship between the mod-
erators and the effect sizes will vary across moderators
(instead of being constant for all true moderators). The

simplifications above were made to keep the number of
conditions manageable, which are already quite large.
Moreover, while we could introduce variability into the
value of ρ for pairs of moderators, simulate moderators
from different distributions, and allow βj to differ across
true moderators, we would not expect this to have a sub-
stantial impact on the relative performance of the various
methods.

For the design of the simulation study above, it can
be shown that the total amount of heterogeneity in the
true effects is equal to Var [θi] = m(1+ (m� 1)ρ)β2+ τ2.
Furthermore, note that, on average, ni ¼ �n=2, so that, on
average, �v¼ 4=�n. Based on these values, we can compute
I2 ¼Var θi½ �= Var θi½ �þ�vð Þ , that is, how much of the total
amount of variability in the effect size estimates can, on
average, be attributed to heterogeneity in the true effects.
Therefore, when β = 0, the values of I2 corresponding to
the �n and τ2 values chosen for the simulation study range
from 0 to 0.38 (with a median of 0.13) for �n¼ 15 and from
0 to 0.83 (with a median of 0.55) for �n¼ 120. When β>0,
the resulting I2 values increase in accordance with β, m,
ρ, and τ2. Values of I2 around 0.25, 0.50, and 0.75 are typi-
cally considered to reflect low, moderate, and high
amounts of heterogeneity,37 but when multiple strong
moderators are exerting an influence on the effect sizes,
values above 0.90 are not uncommon. Therefore, the
values of the factors above were chosen in accordance
with these considerations.

Furthermore, the simulation design implies that the
amount of heterogeneity that can be accounted for by
any individual true moderator is equal to R2 = β2/(m
(1+ (m� 1)ρ)β2+ τ2). Therefore, as m, ρ, and τ2 increase,
the explanatory power of each individual moderator
decreases. However, the total amount of heterogeneity
that can be accounted for by all true moderators increases
with m and ρ and is simply equal to 1 when τ2 = 0.

The simulation study was programmed in R.38 Due to
the large number of conditions and the highly intensive
nature of the computations (especially when fitting all 2p

models), the simulation study was programmed to make
use of multicore processing using parallelization. The
simulation was run on a cluster computer using 126 cores
simultaneously for the computations. Even making use
of such computing power, completion time for the entire
set of conditions was a bit over 5 days (roughly 16,000
core hours in total).

5.2 | Results

Given the large number of conditions and selection
methods examined in the simulation, summarizing the
findings is challenging. To obtain a broad overview, we
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FIGURE 1 Kernel density plots of the probabilities of identifying the true model across all 12,000 conditions for each of the methods.

Gray lines represent conditions where the true model was the empty model (i.e., β = 0), whereas black lines represent conditions where

there was a non-zero association between the moderators and the effect sizes (i.e., β>0). The triangles (gray triangle and black triangle)

indicate the corresponding median probabilities
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start by presenting kernel density plots of the probabili-
ties of identifying the true model across all conditions for
each of the methods in Figure 1 (40 different methods in
total). The two lines in each plot distinguish the 2,400
conditions where the true model was the empty model
(gray lines) from the 9,600 conditions where there was a
non-zero association between the moderators and the
effect sizes (black lines). The gray and black triangles in
the plots correspond to the respective median probabili-
ties. To make comparisons between these two classes of
conditions and across methods easier, the densities were
rescaled to have a maximum of 1.

Selection via univariate or full model testing showed
adequate performance when the true model was the
empty model (no plots are shown for llREMLr because
these methods are not affected by the way the REML
likelihood is computed). In many such conditions, these
methods correctly identified the empty model in at least
50% of the cases and typically even with higher probabili-
ties (the median probabilities were close to 75%). On the
other hand, when there was an association between
the moderators and the effect sizes, univariate testing
had very low chances of identifying the true model in
most conditions. Full model testing showed more promis-
ing performance. Here, the density was bimodal and
appears to be composed of two “sub-densities,” the first
peaking just above 0%, which corresponds to conditions
where identification of the true model is particularly dif-
ficult (i.e., various combinations of low k, low �n, high ρ,
low β, high τ2, and high p). The other part of the density
peaks around 80%, but is quite left-skewed.

Several general conclusion can be reached about the
methods based on information criteria. First, their perfor-
mance was quite similar when computed based on llML

or llREMLf. Second, using the BIC was better at correctly
identifying the empty model compared to the AIC, with
the AICc typically falling in-between these two criteria at
least in terms of the median performance. Moreover, all
multimodel inference methods and all methods based on
llREMLr performed exceptionally well in identifying the
true model when none of the moderators were related to
the effect sizes. Third, when the true model was not the
empty model, performance of the various methods varied
quite a bit, although we also typically see the bimodal
shape in the densities as described above. In fact, for
some methods, the bimodality was even more pro-
nounced. In other words, depending on the condition,
there was then either a very low or a very high probabil-
ity of correctly identifying the set of moderators that were
truly related to the effect sizes.

To more directly compare the model selection
methods against each other, we determined the method
that obtained the highest probability of identifying the

true model for each condition. However, a particular
method may turn out to be the best for a particular condi-
tion simply due to simulation error. Moreover, the best
method may outperform other methods just by a small
margin, which could be considered practically irrelevant.
Therefore, for each condition, we determined the set of
methods that were no more than five percentage points
worse than the best method (e.g., if the best method had
a 0.38 probability of identifying the true model in a par-
ticular condition, then all methods that had at least a
0.33 probability were among the set of best methods for
this condition).1 We then computed the proportion of
conditions in which each method was among the best
method (again separately for conditions where β = 0 and
where β>0). The results are shown in Figure 2.

When the true model was the empty model, univari-
ate and full model testing were never among the best
methods in any of the conditions. On the other hand,
some of the information criteria methods were quite
often among the best methods, especially when com-
puted based on the llREMLr function. In that case, using
multimodel inference and the RVI with a cutoff value of
0.8 was always or almost always among the best per-
forming methods for identifying the empty model,
regardless of whether the AIC, BIC, or AICc was used.
On the other hand, when selecting based on the mini-
mum of the information criteria or an RVI with a cutoff
value of 0.5, we again see that the BIC performed best,
followed by the AICc and the AIC.

When the true model was not the empty model, uni-
variate and full model testing were among the best
methods for up to 20% of the conditions. However, the
information-theoretic approaches always outperformed
selection via univariate or full model testing, falling
among the best methods for 26% to up to 49% of the con-
ditions. While the specific information criterion and like-
lihood function played a relatively minor role in these
results, selection via minimum information criteria or an
RVI with a cutoff value of 0.5 tended to be among the
best methods more often than selection via multimodel
inference or when using an RVI with a cutoff value
of 0.8.

To determine the factors that are most relevant for
accounting for the differences between the various selec-
tion methods, we structured the results from the simula-
tion study as a dataset with 12,000 (for conditions) � 40
(for methods) = 480,000 rows and then conducted a two-
way analysis of variance (ANOVA) with the (arcsine
square-root transformed) probabilities of identifying the
true model as the outcome variable (this data set is also
available at OSF, https://osf.io/3d8u5/). The selection
method factor, all design factors of the simulation, and
their interactions with the selection method factor were
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included as predictors in the model. Table 4 presents the
η2 values of the main effects (along the diagonal) and the
two-way interactions (the off-diagonal elements).
The most influential factor was the size of the coefficient
of the moderators (i.e., β), which is also responsible for
distinguishing conditions where the empty model was
the true model from conditions where moderators were
actually present, followed by the number of effect sizes
(k) and the sample size of the primary studies (�n ). Fur-
thermore, the size of the coefficient showed strong

interactions with the selection method, the number of
effect sizes, and the sample size of the primary studies.

In Figure S1, we also provide plots of the probabilities
of identifying the true model as a function of the various
design factors for each of the 40 methods. Increases in k,
�n, and β (for the non-empty model) were associated with
higher probabilities, which is not surprising, since
increases in these factors provide more/stronger evidence
about the existence of relationships (or their absence).
On the other hand, increases in ρ, τ2, and p were

FIGURE 2 Proportion of conditions where each method was among the best methods (i.e., no worse than five percentage points than

the best method). Gray lines represent conditions where the true model was the empty model (i.e., β = 0), whereas black lines represent

conditions where there was a non-zero association between the moderators and the effect sizes (i.e., β>0)

TABLE 4 η2 values derived from

the two-way ANOVA predicting the

probabilities of selecting the true model

based on the model selection method,

all design factors, and their two-way

interactions

Method 0.27

k 0.10 0.47

�n 0.07 0.01 0.42

ρ 0.05 0.00 0.00 0.18

β 0.51 0.23 0.17 0.10 0.85

τ2 0.02 0.00 0.07 0.00 0.06 0.30

p 0.04 0.00 0.00 0.00 0.02 0.00 0.24

m 0.01 0.01 0.00 0.00 0.02 0.00 0.02 0.05

Method k �n ρ β τ2 p m

Note: The diagonal and off-diagonal values display the η2 values of the main effects and two-way
interactions, respectively.
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associated with lower probabilities, which is also
expected, since stronger correlations among the modera-
tors, higher (residual) heterogeneity, and a larger number
of potential moderators makes it more difficult to detect
the true ones. Also, on average, probabilities tended to be
slightly higher when m was fixed at 2 as opposed to con-
ditions where m increased as a function of p/2.

Based on these findings from the ANOVA, we con-
structed Figure 3, which shows the performance of six
representative methods as a function of the coefficient
size (i.e., β) when k is equal to 20, 40, 60, and 80. We
included selection via univariate and full model testing as
reference benchmarks and used the AICc criterion com-
bined with the llREMLr function for each of the
information-theoretic approaches (Figures S2 and S3 pro-
vided as part of the Supporting Information are analo-
gous figures using the AIC and BIC criteria, but show
very similar patterns).

When the true model was the empty model
(i.e., β = 0), we again see the superior performance of the
information criteria methods compared to univariate or
full model testing. While the latter two methods were
able to identify the true model on average in about 70%

of the cases, using multimodel inference and an RVI with
a cutoff of 0.8 yielded essentially 100% correct identifica-
tion rates regardless of k, closely followed by using the
minimum AICc or an RVI with a cutoff of 0.5 for model
selection.

When there is a weak association between the effect
sizes and the moderators (i.e., β = 0.1), all methods
yielded very low probabilities (i.e., ≤0.10), with only little
improvements as k increased. Selection via full model
testing may have a slight advantage over the remaining
methods in this case especially when k is large. On the
other hand, while larger coefficients and values of k led
to increases in the probabilities for all methods (except
for univariate testing, whose performance flattened out at
around 20%), selection via the minimum AICc or an RVI
with a cutoff of 0.5 outperformed full model testing espe-
cially when k and β were large. In fact, while all informa-
tion criteria methods converged to 100% rates with
increases in k and β, this does not appear to be the case
for full model testing, which seems to reach a maximum
identification rate around 80%. Figures S4–S7 provide
analogous figures to Figure 3, but separately for each
value of �n , showing that this maximum is also reached

(C) (D)

(A) (B)

FIGURE 3 Probabilities of identifying the true model of six model selection methods as a function of β and k. The methods shown are

selection via univariate and full model testing and the information-theoretic approaches using the AICc criterion combined with the llREMLr

function. Each line represents the probabilities of a model selection method averaged over the remaining factors. (a) k = 20. (b) k = 40.

(c) k = 60. (d) k = 80 [Colour figure can be viewed at wileyonlinelibrary.com]
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even when the sample size of the primary studies
increases.

6 | DISCUSSION

In this paper, we describe methods for model selection in
meta-regression with particular emphasis on
information-theoretic approaches. In doing so, we hope
to introduce researchers unfamiliar with such methods to
a new set of tools that may be useful in applied research.
However, one should only consider applying novel
methods if evidence suggests that there are tangible bene-
fits to using these approaches over more conventional
methods for model selection, such as testing moderator
variables one at a time in a series of meta-regression
models (i.e., what we denote “univariate testing”) or test-
ing moderator variables in a single meta-regression
model (i.e., “full model testing”). We therefore also con-
ducted a simulation study to examine the performance of
the various model selection methods for identifying the
set of moderators that are actually related to the effect
sizes.

Across a wide variety of conditions, the results show
that the information-theoretic approaches often out-
perform the more conventional methods. This was espe-
cially apparent for conditions where none of the
moderators were truly related to the effect sizes
(i.e., when the “empty model” was the true model), but
could also be seen when there was a relationship between
some of the moderators and the effect sizes. Only when
the relationship was very weak was there a slight advan-
tage to using a full model testing approach, although dif-
ferences between methods were small and all methods
had rather low probabilities of identifying the true model
in such conditions.

Of all methods evaluated, univariate testing per-
formed especially poorly even when the relationship
between moderators and effect sizes was strong and the
number of studies was large. This finding is not surpris-
ing, given that correlated moderator variables were simu-
lated in many conditions. Univariate testing will then
often find that “false” moderators are significant simply
because they happen to be correlated (i.e., confounded)
with the true moderators (a phenomenon also known as
omitted-variable bias). At the same time, when testing a
true moderator without other relevant moderators
included in the model, at least part of the heterogeneity
that could have been accounted for by the other modera-
tors will then be subsumed into the random effects term
used to model residual heterogeneity. This in turn will
decrease the power to detect the true moderator. Hence,
too many false and too few true moderators will be

correctly identified when using univariate testing, leading
to the poor performance of this model selection strategy.
Although concerns about univariate testing of modera-
tors have been raised before,39 these concerns warrant
repetition, given that univariate testing is still the domi-
nant approach in meta-regression analyses.8

Full model testing can circumvent these problems, at
least if we assume that all potentially relevant moderators
are included in the model (or that those omitted are not
correlated with the ones included in the model). In that
case, the correlation among the moderators is correctly
taken into consideration, avoiding omitted-variable bias.
Consequently, this model strategy also fared much better
in the simulation study, but the results also indicate that
the probability of identifying the true model did not con-
verge to 100% even when both the number of studies and
the size of the regression coefficient increased.

There is a simple explanation for this finding. Even
when the power to detect the true moderators is 100% so
that all true moderators will be correctly identified, each
false moderator tested incurs a certain chance of commit-
ting a Type I error. The more such false moderators are
tested, the higher the probability that at least one of them
will turn out to be significant. Given the design of the
simulation study, there were either f = 2, 3, 4, or 5 false
moderators in conditions where the number of true mod-
erators was set to half of the number of moderators tested
or there were either f = 2, 4, 6, or 8 false moderators in
conditions where the number of true moderators was
fixed at 2. The probability that at least one of the false
moderators turns out significant is 1� (1� α)f, which we
can compute for each value of f above (with α = .05).
Averaging the resulting values yields approximately 0.19.
Hence, we should see that the probability of correctly
identifying the true model converges to 1� 0.19 = 0.81,
which is exactly what Figure 3 suggests (see panel (d) for
k = 80 and β = 0.4).

An obvious solution to this problem is to apply a mul-
tiple testing correction for each of the moderators tested
in the context of the full model. Although this will also
reduce power to detect true moderators, 100% power
should be restored with sufficiently large k and β. There
will still be a small probability that at least one false mod-
erator is selected and hence a perfect model identification
probability cannot be achieved, but the discrepancy
should be minor. However, we did not explore this strat-
egy in the simulation study, as the use of multiple testing
corrections in the context of meta-regression analyses is
rare.8

In contrast, all methods based on information criteria
achieved perfect or near perfect model identification
probabilities when k and β increased. This also applies to
the multimodel testing approach, which seems
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counterintuitive given that we did not use a multiple testing
correction in the context of this strategy either. However, this
model selection strategy goes beyond full model testing by
also usingmodel-averaged parameter estimates and standard
errors for doing so. The way the model-averaged parameter
estimates are computed—by assigning zero to the coefficient
for a particularmoderator variable inmodels where themod-
erator does not appear—will automatically lead to a shrink-
age effect when models without a particular moderator
receive large Akaike weights.11 This effect can also be seen in
the illustrative example (cf. Table 3) especially for the coeffi-
cients corresponding to the mycorrhizal fungus (FUN) and
soil sterilization (STER) moderators, given that almost 70%
of the total weight (i.e., (1�RVI)� 100%) is placed on
models in which these moderators do not appear. In this
sense, multimodel testing shares some properties with other
penalization techniques, such as ridge regression and the
lasso,40,41 although these methods have not been extended to
themeta-regression context.

Simply selecting a model based on the minimum of a
particular information criterion or using the RVI values
with a certain cutoff for variable selection works equally
well as the multimodel testing approach when k and β
are large. For all these strategies, an increasingly large
weight will then be placed on the model that corre-
sponds to the true model, leading to perfect model iden-
tification probabilities. In less favorable circumstances,
the best method seems to depend on whether one favors
a method that has better chances of detecting that none
of the moderators are actually related to the effect sizes
(in which case multimodel testing or using the RVIs
with a cutoff of 0.8 appear preferable) or whether one
would like to optimize one's chances that the method
will correctly sort out which moderators are and which
ones are not related to the effect sizes (in which case
selection based on the minimum of an information cri-
terion or using the RVIs with a cutoff of 0.5 would be
the better choice).

Cautiously, we would therefore suggest that if there is
convincing a priori theoretical support for the potential
influence of the moderators considered in the search, the
latter two strategies should be preferred. Among these,
the minimum information criterion approach has the
advantage of being very easy to apply. Moreover, as dis-
cussed in Section 3.6, this approach automatically pro-
vides the estimates of the model coefficients for the
selected moderators without any additional steps. How-
ever, compared to univariate or full model testing, this
approach is computationally much more demanding, as
it requires fitting 2p models. When p = 20, it may take
some hours to do so (unless one takes extra steps to opti-
mize/parallelize the computations). For p = 30, this
approach may become computationally prohibitive.

At the same time, we are fully aware of cautions in
the literature against simply using all possible models as
candidates for the true model instead of conducting an
analysis based on a smaller set of candidate hypotheses
and their corresponding models.9,11 Even though we used
this approach in the simulation study, this should be seen
as an abstraction done for the purposes of simplifying the
simulation study. Also, potential moderators should
always be a priori specified7 (ideally with a hypothesis
why and how they might be related to the effect sizes)
and hence the p moderators examined in the simulation
study could be considered to be a selection based on a
larger number of potential moderators.

A noteworthy finding of the simulation study is that
model selection via information criteria computed based on
the REML function appears to be a valid strategy. In princi-
ple, this finding goes against the common wisdom that
REML functions (and hence information criteria) computed
based onmodels with different fixed effects are not compara-
ble.13,14 The present findings are however in line with those
of Gurka,15 who also presented results to the contrary, but in
a different modeling context. However, when using informa-
tion criteria based on REML estimation, one has to carefully
consider how exactly the restricted likelihood will be com-
puted, that is, whether the 1

2 ln jX 0X j term should be
included in the likelihood function or not. While the
findings from the simulation study are somewhat mixed
and the right approach might depend on the strategy and
information criterion used, the results clearly indicate
that omission of the term is important to obtain high
probabilities of correct model identification when the
empty model is actually the true model.

Regardless of the chosen strategy, a practical issue
that frequently arises in meta-regression analyses is miss-
ing data. In particular, while some moderator variables
are easy to extract (e.g., the publication year of a study)
and will be essentially complete, missing data on other
moderator variables is a common occurrence. A compari-
son of models containing different subsets of moderator
variables will then be hampered by the fact that the
models will be based on different subsets of the data,
which makes their likelihoods and hence the information
criteria incomparable. On the other hand, using only the
set of studies with complete information on all moderator
variables of interest will typically lead to a substantial
reduction in the number of studies included in the analy-
sis. Note that this will also automatically happen when
using full model testing, as “listwise deletion” is the
default behavior in all software for conducting meta-
regression analyses that we are aware of. In fact, we sus-
pect that the prevalence of univariate testing may at least
in part stem from the desire of authors to maximize the
number of studies included in each meta-regression
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model. However, as the current results show, univariate
testing cannot be recommended as a general model selec-
tion strategy. Alternatively, one could consider methods
for imputing missing moderator values,42,43 although
very little work has examined the performance of such
methods in the meta-analytic context so far (but see the
findings from Ellington et al.44). How to combine imputa-
tion methods with model selection strategies including
the ones discussed in the present paper could therefore
be the subject of future research.

In our simulation study, we also did not consider
more complex data structures one may often encountered
in practice. In particular, in many meta-analyses, one can
extract multiple effect size estimates from some or all of
the studies, leading to dependencies in the data, which
can be addressed for example by means of appropriate
multilevel/multivariate models and/or cluster-robust
inference methods.45,46 While there are no fundamental
difficulties in computing information criteria for more
complex models, and hence the various model selection
methods described can and have already been applied in
this context as well,47 we would welcome further
research in this direction.

Furthermore, we should note that the “true model” was
actually included in the set of candidate models in our sim-
ulation study, although this is unlikely to correspond to
reality, which is more complex than any statistical model
we might formulate.9,11 Hence, in practice, the true model
is not going to be part of the candidate set. However, this
scenario is difficult to simulate and would require that we
quantify to what extent each model approximates some true
data generating mechanism. At the same time, by allowing
for (residual) heterogeneity, random- and mixed-effects
models in meta-analysis already include a term that is
meant to capture any influences on the effect sizes that the
model is unable to account for. Conditions where τ2>0 are
therefore scenarios where even the true model from the
candidate set could just be considered to be the best approx-
imation to the actual data generating mechanism, however
complex it may be.

In conclusion, the present article provides some
initial evidence that conventional methods for model
selection, such as univariate and full-model testing,
may be outperformed by information-theoretic
approaches. The latter are more often among the set
of best methods across all of the conditions simu-
lated and can have higher probabilities for identify-
ing the true model under particular scenarios. We
recommend that authors of meta-analyses involving
meta-regression analyses consider the use of these
methods, especially as an alternative to univariate
testing. The methods can be easily implemented in R

using the metafor package48 in combination with the
glmulti49 or MuMIn50 packages. The R code provided
as part of the illustrative example (at https://osf.io/
3d8u5/) can be easily adapted to other applications.
Another fully worked example illustrating the use of
these methods can be found at https://www.metafor-
project.org/doku.php/tips:model_selection_with_glmulti_
and_mumin.
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