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Eight‑year longitudinal study 
of whole blood gene expression 
profiles in individuals undergoing 
long‑term medical follow‑up
Yoshio Sakai1,8*, Alessandro Nasti2,8, Yumie Takeshita3, Miki Okumura3, Shinji Kitajima4, 
Masao Honda1, Takashi Wada4, Seiji Nakamura5, Toshinari Takamura3, Takuro Tamura6, 
Kenichi Matsubara7 & Shuichi Kaneko1,2

Blood circulates throughout the body via the peripheral tissues, contributes to host homeostasis and 
maintains normal physiological functions, in addition to responding to lesions. Previously, we revealed 
that gene expression analysis of peripheral blood cells is a useful approach for assessing diseases 
such as diabetes mellitus and cancer because the altered gene expression profiles of peripheral blood 
cells can reflect the presence and state of diseases. However, no chronological assessment of whole 
gene expression profiles has been conducted. In the present study, we collected whole blood RNA 
from 61 individuals (average age at registration, 50 years) every 4 years for 8 years and analyzed gene 
expression profiles using a complementary DNA microarray to examine whether these profiles were 
stable or changed over time. We found that the genes with very stable expression were related mostly 
to immune system pathways, including antigen cell presentation and interferon-related signaling. 
Genes whose expression was altered over the 8-year study period were principally involved in cellular 
machinery pathways, including development, signal transduction, cell cycle, apoptosis, and survival. 
Thus, this chronological examination study showed that the gene expression profiles of whole blood 
can reveal unmanifested physiological changes.

Abbreviation
cDNA	� Complementary DNA

Blood circulates continuously throughout the body via the peripheral circulatory system. Peripheral blood 
contains a wide variety of cells. In particular, leukocytes consist of phenotypically and functionally miscellane-
ous cells such as granulocytes, which are myeloid-lineage cells, and lymphocytes, which are associated with the 
lymphatic system1. These cells are indispensable for protecting the body from harmful exogenous pathogens as 
well as endogenous emerging diseases such as cancer; thus, they potentially respond to miscellaneous alterations 
of the physiological condition of the body.

Gene expression profiles reflect the specific characteristics of cells as well as the physiological condition of 
the host2,3. In this sense, as the blood circulates throughout the body, gene expression analysis of whole blood 
cells is potentially a novel tool to assess an individual’s biological characteristics as well as the presence of “silent” 
diseases that do not result in detectable clinical signs and symptoms. Previously, we reported that comprehensive 
analysis of the gene expression profiles of peripheral blood cells can help us to understand a patient’s condition, 
including immunological features in diabetes and in various cancers of the digestive system such as hepatocellular 
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carcinoma, colon cancer, and pancreas cancer4–9. These studies strongly suggest that certain changes in gene 
expression reflect alterations in the immune condition of local lesions. However, despite our comprehensive 
investigations of the gene expression profiles of whole blood cells using complementary DNA (cDNA) microarray 
analysis at a specific time point, it is not yet known how the gene expression profiles of whole blood cells change 
over an extended period of time in individuals without a serious disease such as malignancies. It is extremely 
important to determine whether and how the gene expression profiles of peripheral blood are affected, espe-
cially at the early stage of a serious illness. To assess the alterations in gene expression in peripheral blood cells 
associated with disease, we need to characterize the stable gene expression profiles of healthy individuals over 
an extended period of time.

Based on these backgrounds, in the present study, we collected blood samples from 61 individuals who were 
undergoing regular medical health check-ups or medical follow-up examinations over an 8-year period and 
comprehensively analyzed their gene expression profiles using a cDNA microarray. We found that 1509 genes 
were stably expressed over this 8-year period, and nearly all of these genes were involved in immune-related 
pathways. We identified 3251 genes whose expression was changed over the same period and were involved in 
the development, signal transduction, cell cycle, apoptosis, survival, chemotaxis, and immune response pathways. 
These results imply that the physiological and structural homeostatic features of the body change over time, 
whereas the immune system, which involves central immune regulation, antigen-presenting cells, and related 
immune cells, is maintained in a relatively stable state.

Methods
Participants.  The participants were individuals who regularly visited the Public Central Hospital of Matto 
Ishikawa for medical check-ups. Except for some participants who had a pre-existing clinical condition such as 
hypertension, dyslipidemia, or diabetes (Table 1), all of the other participants were considered to be disease-free. 
Every 4 years from 2008 to 2016, all participants, who were fully informed of the nature of the study and pro-
vided written informed consent to participate, were registered. The study protocol was approved by the internal 
review boards of the Public Central Hospital of Matto Ishikawa and Kanazawa University, and the study was 
conducted in accordance with the principles of the Declaration of Helsinki.

Table 1.   Clinical features of the 61 individuals which were examined for expression of whole blood cells in 
2008, 2012 and 2016.

Clinical parameters

Males (n = 34) and Females (n = 27); n = 61

2008 2012 2016

Average  ± SD Average  ± SD Average  ± SD

Age (years) 50.6 10.0 54.6 10.0 58.6 10.1

Height (cm) 164.2 8.2 163.9 8.2 163.7 8.2

Weight (kg) 61.6 9.6 61.2 9.1 61.2 9.3

BMI (kg/m2) 22.8 2.6 22.8 2.5 22.8 2.7

Fat ratio (%) 27.0 6.0 26.7 6.1 26.9 6.1

Fat mass (Kg) n/a n/a 16.2 4.4 16.5 4.4

Fat free ratio (%) n/a n/a 44.6 7.8 45.1 8.2

Muscle ratio (%) n/a n/a 42.2 7.4 42.7 7.8

Bone mass (Kg) n/a n/a 2.4 0.4 2.4 0.4

Systolic blood pressure (mmHg) 123 16 122 14 121 13

Diastolic blood pressure (mmHg) 78 11 75 9 73 11

HbA1c (JDS) (%) 5.1 0.3 5.1 0.3 5.2 0.4

Total cholesterol (mg/dL) 203 35 199 32 201 36

TG (mg/dL) 130 113 111 71 103 64

HDL-cholesterol (mg/dL) 59 15 56 14 58 15

LDL-cholesterol (mg/dL) 118 28 115 26 117 32

AST (GOT) (IU/L) 22 8 25 14 23 8

ALT (GPT) (IU/L) 22 13 24 16 21 12

Gamma GTP (IU/L) 47 54 54 112 33 26

White blood cell count (× 103/ml) 5.6 1.6 5.1 1.5 5.0 1.3

Hemoglobin count (g/dL) 14.2 1.4 14.1 1.2 13.8 1.6

Hematocrit count (%) 42.6 3.4 42.6 3.1 41.7 4.0

Platelet count (× 104/ml) 23.5 5.1 23.2 5.6 23.7 6.1

Hypertension (n patients out of 61) 11/61 n/a 16/61 n/a 19/61 n/a

Dyslipidemia (n patients out of 61) 9/61 n/a 13/61 n/a 13/61 n/a

Diabetes (n patients out of 61) 10/61 n/a 14/61 n/a 19/61 n/a
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Study design and enrollment.  The study was designed to analyze the gene expression features of whole 
blood of the registered individuals over an 8-year period from 2008. The number of registered participants was 
61.

Whole blood RNA isolation and gene expression analysis using cDNA microarray analy-
sis.  Peripheral whole blood was collected periodically from the participants in 2008, 2012, and 2016, placed 
in PAXgene Blood RNA Tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) to stabilize the RNA, and 
stored as per the manufacturer’s protocol. Total RNA was extracted using a PAXgene Blood RNA Kit (PreAna-
lytix), amplified, and labeled with Cy3 by using a Low Input Quick Amp Labeling Kit (Agilent Technologies, 
Santa Clara, CA). cRNA hybridization was performed using an Agilent SurePrint G3 Human Gene Expression 
8 × 60 K v2 Microarray (Design ID:039494) and detected with a G2600D DNA Microarray Scanner (Agilent 
Technologies). The intensity value of each scanned feature was quantified using Agilent Feature Extraction Soft-
ware (version 11.5.1.1, https://​www.​agile​nt.​com/​en/​genom​ics-​softw​are-​downl​oads; Agilent Technologies). To 
confirm the reproducibility and stability of gene expression by the DNA microarray method, the extracted blood 
RNA samples were analyzed twice for the transcribed mRNAs (Supplementary Fig. S1); signal intensity was 
adjusted using the quantile normalization method10. After excluding poorly annotated probes and low-signal 
probes, 10,590 probes were extracted for further statistical analysis.

Data analysis of gene expression.  The 10,590 pre-filtered genes were used to identify differentially and 
non-differentially expressed genes for the years 2008, 2012, and 2016. BRB-ArrayTools v.4.6.1 (http://​linus.​nci.​
nih.​gov/​BRB-​Array​Tools.​html11 was used for Class Comparison analysis; hence, for the identification of differ-
entially/non-differentially expressed genes and for Geneset Class Comparison analysis for the identification of 
the involved cell types, multiple genes were reduced to one per gene symbol by using the maximally expressed 
gene measured by average intensity across arrays. MetaCore software (version 21.2 build 70,500, https://​portal.​
genego.​com/; Clarivate Analytics, Philadelphia, PA) was used, as described previously12, for enrichment analyses 
of the pathway maps of the differentially and non-differentially expressed genes.

In the second analysis, we used the 10,590 pre-filtered genes to perform deconvolution analysis with the 
analytical tool CIBERSORTx (https://​ciber​sortx.​stanf​ord.​edu/)13,14, and obtained an estimation of the abundance 
of cell types by using the 22 pre-defined immune cell types present as a reference. Quantile normalization was 
applied, followed by bulk mode batch correction for the removal of technical differences between the reference 
signature matrix profiles and the investigated set of samples; 100 permutations were performed for significance 
analysis.

Results
Clinical features and overall gene expression profiles of 61 participants over an 8‑year 
period.  The clinical features of the 61 participants are shown for 2008–2016 (Table 1); overall, there were no 
major differences in their clinical features after 8 years except for age. Using the cDNA microarray system, we 
obtained gene expression data for 2008, 2012, and 2016. The number of genes whose expression data passed the 
quality check was 10,590 genes; the gene expression heat-map of these genes implied a stable expression pattern 
(Pattern 0) over the 8-year observation period, whereas some genes demonstrated altered expression patterns. 
Specifically, the expression of a group of genes was downregulated in 2016 compared with 2008 and 2012 (Pat-
tern 1), whereas the expression of a second group of genes was upregulated in 2016 compared with 2008 and 
2012 (Pattern 2; Fig. 1). Among the 10,590 genes, we identified 2010, 1509, and 754 genes whose expression did 
not change significantly over time (F-test parametric p-value > 0.1, 0.2, and 0.5, respectively). For the following 
analyses, we chose the set of 1,509 genes as the most representative non-differentially expressed (stable) genes 
(F-test parametric p-value > 0.2; Figs. 2 and 4a). In contrast, the expression of 3,251 genes was changed over the 
8-year period (F-test parametric p-value < 1.0 × 10–4, false discovery rate < 1.0 × 10–3; Figs. 3a and 4a) with two 
major patterns of change: the first group consisted of 2,005 genes whose expression was significantly downregu-
lated in 2016 compared with 2008 and 2012 (Pattern 1; Figs. 3b and 4a), and the second group consisted of 1093 
genes whose expression was significantly upregulated in 2016 compared with 2008 and 2012 (Pattern 2; Figs. 3c 
and 4a); 153 genes of the 3251 genes were not categorized (Fig. 4a) into either of these two patterns and were 
excluded from the following analyses. Finally, we performed Enrichment Analyses and Geneset Class Compari-
son of the 1509 stably expressed genes, 3251 differentially expressed genes, 2005 downregulated genes, and 1093 
upregulated genes (Fig. 4b).

Biological features of genes whose expression was not altered during the 8‑year study 
period.  We next assessed the features of the 1509 stably expressed genes by analyzing which pathways they 
were involved in by using MetaCore software. Among the top 16 pathways (Table 2, Supplementary Table S1), all 
of the maps indicated immune system-related pathways. The most distinctive pathways were immune response-
related, which were represented by type 1 and type 2 interferon-mediated antigen presentation and T cell regu-
lation (Table 2, Supplementary Table S1). The other immune-related pathways were involved in miscellaneous 
cell roles as well as the immune cell chemotaxis system via SDF-1/CXCR4. Key genes were CD3D, LCK, and 
ZAP70, which are related to signal transduction in T cell activation15,16, and CCL2, which is a chemokine capa-
ble of recruiting monocytes, dendritic cells, and memory T cells17,18. These pathways suggested that the overall 
immune system was rather stable over an 8-year period in middle-aged people, at least in the context of conven-
tional immune system categories.

To identify which immune-mediating cells were related to the 1,509 genes stably expressed in peripheral 
blood, we performed enrichment analysis by cell type (Supplementary Table S2). The identified cell types included 

https://www.agilent.com/en/genomics-software-downloads
http://linus.nci.nih.gov/BRB-ArrayTools.html
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https://portal.genego.com/
https://cibersortx.stanford.edu/
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NK cells, dendritic cells, monocytes, neutrophils, CD8+ T cells, and regulatory T cells, which are compatible 
with the results of the pathway map analysis described above.

Biological features of genes with altered expression in peripheral blood cells.  We also exam-
ined the biological characteristics of genes whose expression was changed over the 8-year study period. Biologi-
cal pathway map analysis of all genes whose expression was altered indicated that they had roles in the develop-
ment, oxidative stress, cell cycle, signal transduction, apoptosis and survival, chemotaxis, and immune response 
pathways (Table 2, Supplementary Table S3), suggesting that cellular homeostatic features were affected. Pathway 
analysis of the 2005 downregulated genes (Pattern 1) showed that they were related to the signal transduction, 
apoptosis and survival, cell cycle, proteolysis, development, DNA damage, and transport pathways (Table 2, Sup-
plementary Table S4). Key genes were AKT2, which is a putative oncogene19, and CREB1, which is involved in 
cell proliferation20. Pathway analysis of the 1093 upregulated genes (Pattern 2) indicated that they were related 
to the cytoskeleton remodeling, development, blood coagulation, signal transduction, neurophysiological pro-
cess, apoptosis and survival, and immune response pathways (Table  2, Supplementary Table  S5). Key genes 
included PIK3CB and NFKB1, which are related to cell growth and apoptosis21,22. Furthermore, the cell types 
involved with the downregulated genes were suggested to be B cells and T helper cells (Supplementary Table S6), 
whereas the upregulated genes were related to platelets and CD34+ megakaryocyte progenitors (Supplementary 
Table S7).

Figure 1.   Heatmap of 10,590 genes that passed the preliminary filtering criteria, showing a distinct pattern 
of expression. The 10,590 genes that passed the filtration quality check suggested a pattern of stable gene 
expression (circumscribed by the black line; Pattern 0), whereas some genes had altered expression during 
the 8-year observation period. Specifically, there was a group of genes with downregulated expression in 2016 
(circumscribed by the aqua blue line; Pattern 1) and a second group of genes with upregulated expression 
(circumscribed by the red line; Pattern 2) compared with 2008 and 2012. Blood samples from 61 individuals 
were used for each time point.

Figure 2.   Identification of 1509 non-differentially expressed genes between the years 2008, 2012, and 2016. 
Among the 10,590 pre-filtered genes, the expression of 1,509 genes did not change over time and they were 
defined as the most representative stably expressed genes (Pattern 0; F-test parametric p-value > 0.2).
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Stability and variability of whole blood cell types over time.  Next, we examined the abundance 
of specific cell types in blood and their variability over time by deconvolution analysis (CIBERSORTx). Out of 
the 22 immune cell types investigated, we found 14 cell types whose frequency was unaltered (Fig. 5a) and 8 
cell types whose frequency changed over time (Fig. 5b). The unaltered 14 cell types were as follows: NK resting 
cells, monocytes, neutrophils, CD8+ T cells, naïve CD4+ T cells, resting memory CD4+ T cells, follicular helper 
T cells, γδ T cells, resting dendritic cells, naïve B cells, M1 and M2 macrophages, resting mast cells, and eosino-
phils, which were consistent with the identified immune-mediating cells (Supplementary Table S2) related to 
the analysis of the 1,509 stably expressed genes. Regarding the 8 cell types that changed in frequency over time, 
3 cell types increased in frequency (plasma cells, regulatory T cells, and M0 macrophages), whereas 5 cell types 
decreased in frequency (B memory cells, activated memory CD4+ T cells, activated NK cells, activated dendritic 
cells, and activated mast cells, although this last population only had a tendency to decrease in frequency over 
time).

Discussion
In the present study, we observed the gene expression profiles of whole blood cells over an 8-year period in 
61 individuals. The average age at registration was approximately 50 years. We observed that the expression of 
1509 genes was stable in all individuals over this 8-year period. Biological pathway map analysis for these stably 
expressed genes indicated that they had roles in immune response-related pathways, including antigen-presenting 
cells and interferon signaling; consistently, the involved cells included antigen-presenting cells and lymphocyte-
lineage cells. In contrast, we found 3251 genes whose expression was altered over the 8-year study period; within 
these genes, we observed that there were two groups that showed either downregulated expression in 2016 (Pat-
tern 1) or upregulated expression in 2016 (Pattern 2) compared with 2008 and 2012. As a whole, the 3251 altered 
genes were involved in the signal transduction, apoptosis and survival, cell cycle, proteolysis, development, DNA 
damage, transport, cytoskeleton remodeling, blood coagulation, and neurophysiological process pathways, in 
addition to a minor contribution to immune response pathways, suggesting that the cellular machinery is the 
major altered biological process. Furthermore, by examining the abundance of specific cell types in blood and 
their variability over time using deconvolution analysis/digital cytometry, we confirmed that the cell types that 
did not change over time were related to lymphocyte-lineage cells and monocytic and granulocytic cell types. 

Figure 3.   Identification of 3251 differentially expressed genes, followed by stratification of the genes into 
downregulated (Pattern 1) or upregulated (Pattern 2) genes in the years 2008, 2012, and 2016. (a) Heatmap of 
the 3251 genes with altered expression over the 8-year monitoring period (F-test parametric p-value < 1.0 × 10–4, 
false discovery rate < 1.0 × 10–3). (b) Heatmap of the 2005 genes that were downregulated over time; the 
expression of each gene in 2016 was lower than its expression in 2008 and 2012 (Pattern 1). (c) Heatmap of the 
1093 genes that were upregulated over time; the expression of each gene in 2016 was higher than its expression 
in 2008 and 2012 (Pattern 2).
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Cell subpopulations whose frequency increased over time were represented by plasma cells, regulatory T cells, 
and M0 macrophages, whereas subpopulations whose frequency decreased over time consisted of memory B 
cells, memory CD4+ T cells, NK cells, dendritic cells, and mast cells. These cells that changed in frequency are 
interesting targets for future detailed investigations.

Blood is a very useful and convenient sample for medical examination23. It consists of white blood cells, red 
blood cells, and platelets as cellular components; among them, white blood cells contain immune-mediating 
cells that respond to abnormal endogenous or exogenous pathogens or lesions24. Their reaction to lesions is 

Figure 4.   Percentage fraction of stable and altered genes within the 10,590 genes and relative flow analysis 
chart. (a) Pie chart indicating the percentage of stably expressed genes (Pattern 0), downregulated genes (Pattern 
1), and upregulated genes (Pattern 2) within all 10,590 pre-filtered genes. (b) Analysis flow for enrichment and 
Geneset Class Comparison analyses.
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associated with alterations in gene expression25–30. Because humans have a biological system to maintain physi-
ologic homeostasis, gene expression in whole blood cells should be generally steady in the absence of disease. 
However, as humans age, there are substantial changes to the biological function of the body31. In this sense, to 
monitor the features of stable health, it is important to characterize the total stable and altered gene expression 
profiles of peripheral blood cells over a substantial period of time. Genes with stable expression in peripheral 
blood have the potential to be used for monitoring; genes whose expression is altered should be studied further 
to determine whether the involved biological processes are related to changes in the participants’ fundamental 
health condition over the 8-year study period.

The current study provided precious information suggesting important biological features; the stable expres-
sion of genes in whole peripheral blood cells was related mostly to the central immune regulation system, includ-
ing antigen-presenting cells and interferon signaling. As we mentioned above, the average age of the participants 
when the study was initiated was 50 years and the observation period was 8 years. To date, we have reported 
that gene expression analysis of whole blood cells is beneficial for understanding diseases such as cancer and 
metabolic syndrome, including diabetes mellitus4,7,12,32. From 50 to 60 years of age, various common diseases 
may develop due to increasing age33; thus, laboratory medicine using gene expression analysis of whole blood 
cells might have the potential to be a novel avant-garde tool for understanding and obtaining an early diagnosis 
of diseases. The high number of 3251 genes whose expression was altered over the 8-year study period indicated 
the general constituents of tissues or cells. The importance of these biological features should be investigated 
further in terms of intra-individual health conditions. It follows that future analyses should be focused on a 
comparison of groups stratified by specific diseases or age. Taking the present study results and our previous 
studies of changes in gene expression in cancers of the digestive system, the chronological examination of the 
gene expression profiles of whole blood has the potential to be a novel laboratory-based clinical approach.

In conclusion, we reported the long-term gene expression profiles of whole blood cells in 61 individuals 
who underwent regular medical health check-ups or outpatient clinic visits. The current findings regarding the 
existence of stably expressed genes in individuals over time might be useful for detecting unmanifested diseases, 
specifically, by observing the altered gene expression of these typically stable genes.

Table 2.   Summary table of MetaCore enrichment analyses for differentially and non-differentially (stable) 
genes.

1509 non-differentially genes (P 
value > 0.2; stable genes; Fig. 2) 3251 genes differentially expressed (P value < 1e–04, FDR < 1e–03; Fig. 3)

MetaCore enrichment by pathway 
maps of stable 1509 genes (Pattern 0; 
Supplementary Table S1)

MetaCore enrichment of all 3251 genes 
differentially expressed (Supplementary 
Table S3)

MetaCore enrichment by pathway maps 
of 2005 downregulated genes (pattern 1; 
Supplementary Table S4)

MetaCore enrichment by pathway maps 
of 1093 upregulated genes (pattern 2; 
Supplementary Table S5)

Top 16 pathways related to:
Immune response: induction of the antigen 
presentation machinery by IFN-gamma, 
IFN-alpha/beta signaling via JAK/STAT, 
IFN-alpha/beta signaling via MAPKs, 
antigen presentation by MHC class II, IFN-
gamma signaling via MAPK, inhibitory 
PD-1 signaling in T cells 
Immune relatedpathway(MetaCorenoncat
egorizedpathways): putative role of Tregs 
in COPD, role of integrins in eosinophil 
degranulation in asthma, down-regulation 
of mast cell functions through ITIM-con-
taining inhibitory receptors in asthma, SLE 
genetic marker-specific pathways in T cells, 
breakdown of CD4 + T cell peripheral toler-
ance in type 1 diabetes mellitus, maturation 
and migration of dendritic cells in skin 
sensitization, NETosis in SLE, neutrophil 
chemotaxis in asthma
Chemotaxis: SDF-1/CXCR4-induced 
chemotaxis of immune cells

Top 16 pathways related to: development: 
thromboxane A2 signaling pathway, VEGF 
signaling via VEGFR2-generic cascades, 
role of HDAC and calcium/calmodulin-
dependent kinase (CaMK) in control of 
skeletal myogenesis
Oxidative stress: ROS-induced cellular 
signalling
Cell cycle: influence of ras and rho proteins 
on G1/S
Transition signal transduction: calcium-
mediated signaling, mTORC1 downstream 
signaling, adenosine A2B receptor signaling 
pathway, PKA signaling, MIF signaling 
pathway
Immune response: platelet activating factor/
PTAFR pathway signaling, B cell antigen 
receptor (BCR) pathway
Chemotaxis: lysophosphatidic acid signaling 
via GPCRs
Apoptosis and survival: NGF/TrkA PI3K-
mediated signaling

Top 16 pathways (DOWNREGULATED) 
related to:
Signal transduction: mTORC1 downstream 
signaling, calcium-mediated signalling 
Apoptosis and survival:
role of PKR in stress-induced apoptosis, 
TNFR1 signaling pathway, endoplasmic 
reticulum stress response pathway, NGF/
TrkA PI3K-mediated signalling
Chemotaxis:
lysophosphatidic acid signaling via GPCRs
Cell cycle: influence of ras and rho proteins 
on G1/S transition
Proteolysis: Putative SUMO-1 pathway
Development: thromboxane A2 signaling 
pathway, the role of GDNF ligand family/
RET receptor in cell survival, growth and 
proliferation
DNA damage: ATM/ATR regulation of 
G2/M checkpoint: cytoplasmic signalling
Transport: RAN regulation pathway
Immune response: TLR2 and TLR4 signaling 
pathways

Top 16 pathways (UPREGULATED) 
related to:
Immune response: platelet activating factor/
PTAFR pathway signalling
Cytoskeleton remodeling: regulation of actin 
cytoskeleton organization by the kinase 
effectors of rho GTPases
Development: thromboxane A2 signaling 
pathway, thrombospondin 1 signal-
ing, WNT/Beta-catenin signaling in the 
cytoplasm
Blood coagulation: GPCRs in platelet 
aggregation
Signal transduction: adenosine A2B 
receptor signaling pathway, adenosine A3 
receptor signaling pathway, MIF signaling 
pathway, PKA signalling
Neurophysiological process: constitutive and 
regulated NMDA receptor trafficking
Apoptosis and survival: Phosphorylation in 
TNF-alpha-induced NF-kB signalling
Platelet activation as a result of endothelial 
dysfunction after stenting



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16564  | https://doi.org/10.1038/s41598-021-96078-0

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16564  | https://doi.org/10.1038/s41598-021-96078-0

www.nature.com/scientificreports/

Received: 4 June 2021; Accepted: 4 August 2021

References
	 1.	 Virella, G. Medical Immunology 7th edn. (CRC Press, 2019).
	 2.	 Park, H. J. et al. Transcriptomic analysis of human IL-7 receptor alpha (low) and (high) effector memory CD8(+) T cells reveals 

an age-associated signature linked to influenza vaccine response in older adults. Aging Cell 18, e12960. https://​doi.​org/​10.​1111/​
acel.​12960 (2019).

	 3.	 Preininger, M. et al. Blood-informative transcripts define nine common axes of peripheral blood gene expression. PLoS Genet. 9, 
e1003362. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10033​62 (2013).

	 4.	 Honda, M. et al. Differential gene expression profiling in blood from patients with digestive system cancers. Biochem. Biophys. 
Res. Commun. 400, 7–15. https://​doi.​org/​10.​1016/j.​bbrc.​2010.​07.​123 (2010).

	 5.	 Komura, T. et al. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical 
impact. Cancer Sci. 106, 672–686. https://​doi.​org/​10.​1111/​cas.​12663 (2015).

	 6.	 Sakai, Y. et al. Common transcriptional signature of tumor-infiltrating mononuclear inflammatory cells and peripheral blood 
mononuclear cells in hepatocellular carcinoma patients. Cancer Res. 68, 10267–10279. https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​
08-​0911 (2008).

	 7.	 Sakai, Y. et al. Development of novel diagnostic system for pancreatic cancer, including early stages, measuring mRNA of whole 
blood cells. Cancer Sci. 110, 1364–1388. https://​doi.​org/​10.​1111/​cas.​13971 (2019).

	 8.	 Sakai, Y. et al. Distinct chemotherapy-associated anti-cancer immunity by myeloid cells inhibition in murine pancreatic cancer 
models. Cancer Sci. 110, 903–912. https://​doi.​org/​10.​1111/​cas.​13944 (2019).

	 9.	 Takamura, T. et al. Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. 
Biochem. Biophys. Res. Commun. 361, 379–384. https://​doi.​org/​10.​1016/j.​bbrc.​2007.​07.​006 (2007).

	10.	 Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide 
array data based on variance and bias. Bioinformatics 19, 185–193. https://​doi.​org/​10.​1093/​bioin​forma​tics/​19.2.​185 (2003).

	11.	 da Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional 
analysis of large gene lists. Nucl. Acids Res. 37, 1–13. https://​doi.​org/​10.​1093/​nar/​gkn923 (2009).

	12.	 Sakai, Y. et al. Association of changes in the gene expression profile of blood cells with the local tumor inflammatory response in 
a murine tumor model. Biochem. Biophys. Res. Commun. 428, 36–43. https://​doi.​org/​10.​1016/j.​bbrc.​2012.​10.​004 (2012).

	13.	 Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution 
pipelines for transcriptomics data. Nat. Commun. 11, 5650. https://​doi.​org/​10.​1038/​s41467-​020-​19015-1 (2020).

	14.	 Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 
37, 773–782. https://​doi.​org/​10.​1038/​s41587-​019-​0114-2 (2019).

	15.	 Alarcon, B. et al. The CD3-gamma and CD3-delta subunits of the T cell antigen receptor can be expressed within distinct functional 
TCR/CD3 complexes. EMBO J. 10, 903–912 (1991).

	16.	 Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L. & Schlossman, S. F. The CD4 receptor is complexed in detergent lysates 
to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 85, 5190–5194. https://​doi.​org/​10.​
1073/​pnas.​85.​14.​5190 (1988).

	17.	 Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. & Springer, T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte che-
moattractant. Proc. Natl. Acad. Sci. U. S. A. 91, 3652–3656. https://​doi.​org/​10.​1073/​pnas.​91.9.​3652 (1994).

	18.	 Xu, L. L., Warren, M. K., Rose, W. L., Gong, W. & Wang, J. M. Human recombinant monocyte chemotactic protein and other C-C 
chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol. 60, 365–371. https://​doi.​org/​10.​1002/​
jlb.​60.3.​365 (1996).

	19.	 Nicholson, K. M. & Anderson, N. G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14, 381–395. 
https://​doi.​org/​10.​1016/​s0898-​6568(01)​00271-6 (2002).

	20.	 Rao, M., Zhu, Y., Cong, X. & Li, Q. Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. 
Oncol. Rep. 37, 3361–3368. https://​doi.​org/​10.​3892/​or.​2017.​5636 (2017).

	21.	 Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. 
Biophys. Acta. 1833, 3448–3459. https://​doi.​org/​10.​1016/j.​bbamcr.​2013.​06.​001 (2013).

	22.	 Zhao, Y. et al. PI3K positively regulates YAP and TAZ in mammary tumorigenesis through multiple signaling pathways. Mol. 
Cancer Res. 16, 1046–1058. https://​doi.​org/​10.​1158/​1541-​7786.​MCR-​17-​0593 (2018).

	23.	 Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic: Implementation issues and future challenges. Nat. Rev. 
Clin. Oncol. https://​doi.​org/​10.​1038/​s41571-​020-​00457-x (2021).

	24.	 Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119. https://​doi.​org/​10.​
1016/​s0952-​7915(00)​00191-6 (2001).

	25.	 Basu, M., Wang, K., Ruppin, E. & Hannenhalli, S. Predicting tissue-specific gene expression from whole blood transcriptome. Sci. 
Adv. https://​doi.​org/​10.​1126/​sciadv.​abd69​91 (2021).

	26.	 Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. 
Oncol. 10, 472–484. https://​doi.​org/​10.​1038/​nrcli​nonc.​2013.​110 (2013).

	27.	 Dorsey, S. G. et al. Whole blood transcriptomic profiles can differentiate vulnerability to chronic low back pain. PLoS ONE 14, 
e0216539. https://​doi.​org/​10.​1371/​journ​al.​pone.​02165​39 (2019).

	28.	 Laing, E. E. et al. Blood transcriptome based biomarkers for human circadian phase. Elife https://​doi.​org/​10.​7554/​eLife.​20214 
(2017).

	29.	 Luo, Y. et al. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma. PLoS ONE 6, e20971. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00209​71 (2011).

Figure 5.   Deconvolution analysis for the estimation of cell types in blood and variability in cell frequency over 
time. We used 10,590 genes for deconvolution analysis/digital cytometry with the analytical tool CIBERSORTx. 
Cell frequencies were obtained by using 22 reference immune cell types. Out of the 22 immune cell types 
investigated, we obtained (a) 14 cell types whose frequency remained unaltered and (b) 8 cell types whose 
frequency changed over time; the summation of the frequencies of the 22 immune cells corresponds to the 
total frequency of 100%. (a, b) n = 61 for the years 2008, 2012, and 2016. Grey boxes indicate the interquartile 
range (25–75% percentile range), the median is indicated by a horizontal line within the box, and the mean is 
indicated by the small white square; whiskers represent ± 1 SD from the mean. The Kruskal–Wallis test and post 
hoc Conover test were performed as statistical analysis and are shown under each relative graph.

▸

https://doi.org/10.1111/acel.12960
https://doi.org/10.1111/acel.12960
https://doi.org/10.1371/journal.pgen.1003362
https://doi.org/10.1016/j.bbrc.2010.07.123
https://doi.org/10.1111/cas.12663
https://doi.org/10.1158/0008-5472.CAN-08-0911
https://doi.org/10.1158/0008-5472.CAN-08-0911
https://doi.org/10.1111/cas.13971
https://doi.org/10.1111/cas.13944
https://doi.org/10.1016/j.bbrc.2007.07.006
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1016/j.bbrc.2012.10.004
https://doi.org/10.1038/s41467-020-19015-1
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1073/pnas.85.14.5190
https://doi.org/10.1073/pnas.85.14.5190
https://doi.org/10.1073/pnas.91.9.3652
https://doi.org/10.1002/jlb.60.3.365
https://doi.org/10.1002/jlb.60.3.365
https://doi.org/10.1016/s0898-6568(01)00271-6
https://doi.org/10.3892/or.2017.5636
https://doi.org/10.1016/j.bbamcr.2013.06.001
https://doi.org/10.1158/1541-7786.MCR-17-0593
https://doi.org/10.1038/s41571-020-00457-x
https://doi.org/10.1016/s0952-7915(00)00191-6
https://doi.org/10.1016/s0952-7915(00)00191-6
https://doi.org/10.1126/sciadv.abd6991
https://doi.org/10.1038/nrclinonc.2013.110
https://doi.org/10.1371/journal.pone.0216539
https://doi.org/10.7554/eLife.20214
https://doi.org/10.1371/journal.pone.0020971


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16564  | https://doi.org/10.1038/s41598-021-96078-0

www.nature.com/scientificreports/

	30.	 Plaza-Florido, A. et al. Distinct whole-blood transcriptome profile of children with metabolic healthy overweight/obesity compared 
to metabolic unhealthy overweight/obesity. Pediatr. Res. https://​doi.​org/​10.​1038/​s41390-​020-​01276-7 (2020).

	31.	 McHugh, D. & Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77. https://​doi.​
org/​10.​1083/​jcb.​20170​8092 (2018).

	32.	 Takashima, S. et al. Altered gene expression in T-cell receptor signalling in peripheral blood leucocytes in acute coronary syndrome 
predicts secondary coronary events. Open Heart 3, e000400. https://​doi.​org/​10.​1136/​openh​rt-​2016-​000400 (2016).

	33.	 Falandry, C., Bonnefoy, M., Freyer, G. & Gilson, E. Biology of cancer and aging: A complex association with cellular senescence. 
J. Clin. Oncol. 32, 2604–2610. https://​doi.​org/​10.​1200/​JCO.​2014.​55.​1432 (2014).

Acknowledgements
We thank Dr. Aiko Ubasawa for her technical assistance. We also thank Dr. Takeshi Urabe for his great assistance 
to enroll participants in this study.

Author contributions
Y.S., K.M., S.Ka.: Conception and design, data analysis and interpretation, manuscript writing and review, final 
approval of manuscript. A.N.: Data analysis and interpretation, manuscript writing and review. Y.T., M.O.: 
Conception and design, collection and assembly of data, data analysis and interpretation. S.Ki.: Data analysis 
and interpretation. M.H., T.W., S.N., T.Tak., T.Tam.: Conception and design, data analysis and interpretation, 
final approval of manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​96078-0.

Correspondence and requests for materials should be addressed to Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41390-020-01276-7
https://doi.org/10.1083/jcb.201708092
https://doi.org/10.1083/jcb.201708092
https://doi.org/10.1136/openhrt-2016-000400
https://doi.org/10.1200/JCO.2014.55.1432
https://doi.org/10.1038/s41598-021-96078-0
https://doi.org/10.1038/s41598-021-96078-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Eight-year longitudinal study of whole blood gene expression profiles in individuals undergoing long-term medical follow-up
	Methods
	Participants. 
	Study design and enrollment. 
	Whole blood RNA isolation and gene expression analysis using cDNA microarray analysis. 
	Data analysis of gene expression. 

	Results
	Clinical features and overall gene expression profiles of 61 participants over an 8-year period. 
	Biological features of genes whose expression was not altered during the 8-year study period. 
	Biological features of genes with altered expression in peripheral blood cells. 
	Stability and variability of whole blood cell types over time. 

	Discussion
	References
	Acknowledgements


