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The skin dose associated with radiotherapy may be of interest for clinical evalu-
ation or investigating the risk of late effects. However, skin dose is not intuitive 
and is difficult to measure. Our objectives were to develop and evaluate a general 
estimation technique for skin dose based on treatment parameters. The literature 
on skin dose was supplemented with measurements and Monte Carlo simulations. 
Using all available data, a general dosimetry system was developed (in the form of 
a series of equations) to estimate skin dose based on treatment parameters includ-
ing field size, the presence of a block tray, and obliquity of the treatment field. For 
out-of-field locations, the distance from the field edge was also considered. This 
dosimetry system was then compared to TLD measurements made on the surface 
of a phantom. As compared to measurements, the general dosimetry system was 
able to predict skin dose within, on average, 21% of the local dose (4% of the Dmax 
dose). Skin dose for patients receiving radiotherapy can be estimated with reason-
able accuracy using a set of general rules and equations.

PACS numbers: 87.53.-j, 87.53.Bn, 87.55.ne 
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I.	 Introduction

The skin is at risk during radiotherapy for such effects as erythema, desquamation, and necro-
sis.(1,2) Epidemiologic studies have also found an association between radiation therapy and 
basal-cell carcinoma (BCC) induction.(3-8) However, skin dosimetry is a challenge. Not only is 
there is a lack of a comprehensive overview of skin doses associated with radiotherapy in the 
literature, skin doses are also not generally intuitive compared to doses throughout the rest of 
the body, differing both in magnitude and in dependence on treatment parameters. Dosimetry 
for the skin is further complicated by the different structures of the skin (including basal and 
dermal layers), the depth of which varies not only between patients, but also between locations 
on a given patient. The International Commission on Radiological Protection recommends 
assessing the skin dose at a depth of 0.07 mm (basal layer),(9,10) while the dermal layer may 
be assessed at 1.0 mm.(11) The dose to the basal layer (0.07 mm) is often used interchangeably 
with surface dose.(12-14)

Although the skin dose may be calculated with the treatment planning system, generally 
within ± 25% accuracy,(15-17) this approach requires CT images and a calculated treatment plan. 
As such, it is not always a feasible option, for example when an initial skin dose estimate is 
sought, or when conducting retrospective epidemiology studies (e.g., evaluating BCC induc-
tion) for which CT scans are not available. 

A skin dose estimation technique is therefore of general interest. Such a method was proposed 
by Lamb and Blake(18) to estimate the skin dose on the central axis as a function of treatment 
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parameters. However, their model assessed only 6 and 10 MV beams, and is limited to the 
central axis of the beam. Therefore, this study develops, presents, and evaluates a more general 
set of guidelines for estimating the skin dose for a wider range of energies and locations on the 
patient. To facilitate model development, this work also presents a literature summary on surface 
doses, as well as our own supplemental measurements and Monte Carlo simulations. This skin 
dose model was developed to determine skin doses for epidemiologic studies of BCCs, but can 
easily be applied to clinical situations in which skin dose is of interest.

Throughout this work, percent differences may be either absolute or relative (also called 
local). Absolute refer to percent differences relative to the Dmax dose. Ten percent versus 20% 
of the Dmax dose is a 10% absolute difference or a 100% relative/local difference.

 
II.	 SKIN DOSE OVERVIEW

A.  	Literature review
A.1  Energy and field size
Dose to the entrance surface (on the central axis of open megavoltage treatment fields with 
normal beam incidence and 100 cm source-to-surface distances [SSDs]) is between ~10% and 
~45% of the Dmax dose (also known historically as the given dose or entrance dose) (Fig. 1). 
These data include numerous makes and models of accelerator, although this figure is primar-
ily based on Varian 2100/2300 accelerators; no obvious distinction was seen between different 
accelerators, although this observation was highly confounded by the differences in method-
ologies between different studies. Universally, the surface dose increases linearly with field 
size. While many studies have found a reduced surface dose at higher MV energies,(23,26,29,32) 
others have not, particularly for large field sizes,(11,31,33-35) as demonstrated with the low-energy 
(6–10 MV) and high-energy (15–18 MV) best-fit lines in Fig. 1. The crossing of the lines may 
reflect variations in measurement techniques, or may be the result of energy dependence in the 

Fig. 1.  Surface dose (as a percentage of the Dmax dose) from open megavoltage fields (6 MV–18 MV) as a function of 
the size of the edge of the equivalent square field. Included is a linear best-fit line for high-energy (15–18 MV) beams 
(thin line) as well as for low-energy (6–10 MV) beams (thick line). Data series are described by the beam energy as well 
as the corresponding reference number.
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electron contamination of the primary beam. Regardless, overall, there is only a small difference 
in surface dose with nominal beam energy. In contrast, cobalt beams produce a higher surface 
dose that also increases with field size, ranging between 20%–85% of the Dmax dose (Fig. 2).

 
A.2  Beam-modifying devices
For megavoltage beams, the surface dose increases with the presence of an acrylic or polycar-
bonate block tray (but not a metal tray(22)), particularly for larger fields. The relative increase 
is negligible for a 5 × 5 cm2 field, 10%–20% for a 25 × 25 cm2 field, and ~50% for a 40 × 
40 cm2 field.(11,13,22,31,35,38,39) 

Collimating a treatment field with blocks has only a small impact on surface dose (in addition 
to the impact from the block tray), increasing the relative dose by ~10% at 8 MV and ~25% at 
18 MV versus a treatment field defined by jaws alone.(31) However, the skin dose underneath 
a block is substantially reduced.(29) Almost no change in skin dose is observed if the treatment 
field is defined by a multileaf collimator.(31) 

Historically, block trays were not necessarily fixed to the accelerator head; the skin dose 
increases substantially as the distance between the block tray and the skin surface is reduced. For 
a cobalt beam, the skin dose (as a fraction of the Dmax dose) (D) has been described by:(40)

	
72.044.025.0 rhD 	 (1)

with h being the separation between the skin and the tray, and r being the radius of the equivalent 
circular field. Treatments with modern linear accelerators predominantly use a fixed block tray 
position. Although the distance from the block tray would certainly impact the skin dose, no 
similar equation has been derived, and such a nonstandard treatment would likely be not well 
described by a general skin dose model such as that proposed here.

Note: Data are from Jordan,(37) Rapley,(14) and Gagnon and Horton.(36)

Fig. 2.  Surface dose (as a percentage of the Dmax dose) from open cobalt fields as a function of the size of the edge of the 
equivalent square field. Included is a linear best-fit line (Eq. (3)).
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Use of a physical wedge tends to decrease surface dose relative to an open field, although this 
effect is small (generally less than a 20% relative difference, even for 60° wedges); however, 
this relationship is complicated and not always consistent between studies.(14,31) In contrast 
to physical wedges, dynamic wedges have a negligible impact on the surface dose relative to 
open fields.(14,31)

Field modulation also has little impact on surface dose; studies have found the surface dose 
to have increased or decreased, but only by an ~10% relative change.(15,26,41)

A.3  SSD and setup
Surface dose increases slightly as SSD decreases, although this effect is relatively small (~10% 
relative change with SSD change from 100 cm to either 85 or 120 cm). However, the impact 
of SSD can exceed 20% for large fields (≥ 20 × 20 cm2) when other modifying devices, such 
as blocks, are involved.(31)

The presence of a carbon fiber treatment couch increases the skin dose from posterior fields 
(Table 1).(34,42-44) Even tennis-string ribbing can slightly increase the skin dose directly under 
the ribbing.(44) In general, the increase in skin dose is more pronounced for cobalt than for 
megavoltage beams,(34) and for small fields as compared to large fields.(42) 

Similarly, immobilization devices such as thermoplastic masks increase the skin dose (e.g., 
from 16% to 40% of the Dmax dose with a lightly stretched mask).(14,27,45) Even patient cover-
ing material, such as hospital gowns or blankets, can increase skin dose when they cover the 
primary field, by up to a 10% absolute difference in clinical situations.(46)

A.4  Obliquity
Oblique beam incidence increases the surface dose. While there is little dosimetric impact from 
small angles (< 40°), the surface dose increases sharply at larger angles, the relative dose being 
50% larger at an obliquity of ~55°.(23,25) There is only small dependence on beam energy,(26,36) 
and no impact from field modulation on this increase.(15) For a surface at 90°  relative to the 
incident beam, the dose is 58%–65% of the Dmax dose for a 10 × 10 cm2 field at both 6 MV 
and cobalt energies.(20,36)

A.5  Off-axis position
Within the treatment field, surface dose is relatively uniform across the field. However, it de-
creases slightly at the edge of the field (e.g., the outer 2 cm of a 10 × 10 cm2 field).(29-32) This 
decrease is typically less than a 10% relative decrease, but can approach a 30% relative decrease 
at the edge of the treatment field in the presence of beam modifiers.(31)

A.6  Exit dose
With megavoltage treatments, substantial skin dose comes from beams exiting the patient. The 
dose to the exit surface is less than predicted by the percent depth dose (PDD) because of a 

Table 1.  Surface dose from open fields as compared to fields treated through a carbon fiber couch. 

	 Surface Dose (% of Dmax dose) 
	Energy	 Field Size (cm2)	 Open Field	 Through Couch

	Co-60	 10×10	 18	 75

	 6 MV	 10×10	 21	 51

		  10×10	 20	 68
	 8 MV	 20×20	 32	 80
		  40×40	 42	 84

	20 MV	 10×10	 20	 32

Note: 8 MV data from Yu et al.(33); other energies from Thomas and Palmer.(24)
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lack of backscatter material beyond the patient’s exit surface. The dose is lower than the PDD 
by ~15% (relative difference) for 6 MV or cobalt beams, and is not largely different for other 
megavoltage energies.(19,26,35,36) However, approximately full scatter conditions are achieved 
(i.e., the exit dose is that predicted by the PDD) with minimal material, including virtually any 
immobilization device, behind the patient.(19,35,36) 

A.7  Outside the treatment field
The out-of-field surface doses from cobalt and 6 MV beams are between ~2% and ~20% of 
the Dmax dose at 2 cm from the field edge,(29,47) being larger for larger treatment fields and for 
cobalt beams (Fig. 3).

At greater distances, less data are available regarding surface dose. It has been observed that 
out-of-field dose varies minimally with depth(48,49) except near the surface where it is highly 
elevated;(32,48-50) surface doses are a factor of 2–7 greater than the dose a few centimeters below 
the surface. The dose at depth (dose a few cm below the surface) decreases approximately 
exponentially as the distance from the field edge increases, and is approximately 1% of the 
Dmax dose at 10 cm from the field edge.(48) The ratio of the surface dose to this dose at depth 
(taken as the dose at 0.5 cm depth for cobalt and 5 cm depth for megavoltage beams) is shown 
in Fig. 4 for cobalt beams. The ratio of surface dose to dose at depth is larger for greater dis-
tances from the field edge and larger field sizes. A similar trend can be seen for megavoltage 
beams in Fig. 5.

 

Note: Data are from Starkschall et al.(47) 

Fig. 3.  Surface dose (as a percentage of the Dmax dose) 2 cm from the field edge for a Co-60 beam and a 6 MV beam. 
Dose is shown as a function of the size of the edge of the equivalent square field. 
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Note: Ds values are from Starkschall et al.,(47)  and Dd values are from Starkschall et al.(47)  and Kry et al.(56)

Fig. 4.  Ratio of the surface dose (Ds) to the dose at depth (Dd; taken at 0.5 cm depth) as a function of the distance from 
the edge of the treatment field for Co-60 beams with various field sizes. 

Notes: Measured data (circles) are shown from Starkschall et al.(47)  for a 25 ×  25 cm2 field, and from Kry et al.(49) for a 
10 × 10 cm2 field. The Monte Carlo results (lines) are from the current study. 

Fig. 5.  Ratio of the surface dose (Ds) to the dose at depth (Dd; taken at 5 cm depth) as a function of the distance from 
the edge of the treatment field for 6 MV and 18 MV beams for various field sizes. Error bars are included on the 6 MV 
data to illustrate the statistical uncertainties in the calculated values; similar uncertainties exist in the 18 MV data, but are 
excluded for visual clarity.
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B.	 Additional studies
This section outlines our additional studies to assess surface doses. 

B.1  Cobalt beam with block tray
B.1.1  Methods
We investigated the effect of a modern block tray attached to the gantry head on surface dose 
for a cobalt radiotherapy unit. Dose was measured with 5 mm × 5 mm × 0.4 mm thick flat packs 
of LiF thermoluminescence dosimeter powder (TLD-100; Quantaflux, Dayton, OH), which 
have an effective depth of measurement of 0.44 mm (based on their relative electron density 
of 2.2).(51) This thickness of TLD would slightly overestimate the true surface dose by ~15% 
of the local dose,(14,28,41) which was considered acceptable error for this study because of the 
large interstudy variability of surface dose measurements (e.g., Fig. 2).

The batch of TLD powder used in this study was previously calibrated with a cobalt-60 
source. The experimental TLD were corrected according to the batch characterization for both 
fading and linearity. These TLDs were evaluated by Radiation Dosimetry Services (RDS) 
according to a previously detailed procedure, and with an uncertainty (at a 90% confidence 
level) of ± 3.9%.(52)

Three TLD flat packs were simultaneously irradiated on the surface of a rectangular solid 
water phantom, as well as at dmax, within 5 × 5 and 30 × 30 cm2 fields, with and without an 
acrylic block tray.

B.1.2  Results
The impact on the skin dose of a block tray in a cobalt beam is shown in Table 2. For a small 
field, there was no increase in the skin dose, consistent with megavoltage beams.(31) However, 
for the large field, the skin dose decreased slightly (a 10% relative reduction) when the block 
tray was added. This is in contrast to megavoltage beams, for which the surface dose increased 
substantially, and is likely the result of the softer cobalt spectrum. In general, cobalt beams 
have a higher surface dose than megavoltage beams because of the lower energy of scattered 
photons and abundant secondary electrons. The lower energy spectrum of the scattered photons 
appears to result in a net attenuation of electrons and low-energy photons in the block tray (and, 
hence, a decrease in the surface dose), in contrast to megavoltage beams for which the block 
tray results in a net production of electrons.(31)

B.2  Out-of-field surface dose
B.2.1  Methods
As distance from the field edge increases, the out-of-field dose at depth decreases to ~1% of the 
Dmax dose at 10 cm from the field edge, and to ~0.05% of the Dmax dose at 50 cm from the field 
edge. The surface dose outside the treatment field at each of these distances is a factor of 2–7 
greater than the dose a few centimeters below the surface (where the dose becomes relatively 
constant with depth). This increase is dependent on field size and distance from the field edge, 
but these dependencies have not been well studied. Therefore, we conducted Monte Carlo 
simulations using a model of a Varian 2100 linac (Palo Alto, CA) developed in MCNPX,(53) 
and previously benchmarked (including doses near the surface).(49,50)

Table 2.  Skin dose from a cobalt beam for two field sizes as influenced by the presence of a block-tray.

	 Skin Dose (% of Dmax dose) 
	Field Size (cm2)	 No Tray	 Tray

	 5×5	 31	 32 
	 30×30	 75 	 68
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For simulated 6 MV and 18 MV beams, the dose to the surface of a water tank (at 0.5 mm 
depth) was calculated based on the electron energy deposition over the most superficial 1 mm 
of water. Although not strictly at the surface, this depth offered a reasonable compromise 
between computational accuracy and dosimetric accuracy, particularly as the dose gradient is 
not as steep near the surface for out-of-field locations.(49) To achieve sufficient precision, the 
1 mm thick tally was 4 cm wide  by 1 cm long. This surface dose was calculated up to 60 cm 
from the central axis for 5 × 5 and 30 × 30 cm2 fields. The dose was also calculated throughout 
the phantom so that the surface dose relative to the dose at depth could be readily determined. 
Two billion histories were run for each simulation, ensuring a reasonable degree of statistical 
certainty (5% on average at 1 sigma) in each tally.

B.2.2  Results
The ratio of the surface dose to the dose at depth at a given distance from the field edge varied 
little between the 6 MV and 18 MV beams (Fig. 5). Moving away from the edge of the treatment 
field, the surface dose ratio increased and remained approximately constant at large distances 
from the field edge. For the 5 × 5 cm2 field the surface dose ratio increased to approximately 
3, while for the 30 × 30 cm2 field the surface dose ratio increased to approximately 5. The 
Monte Carlo simulated surface dose ratios were consistent with previously measured values 
for a 6 MV beam (Fig. 5).

 
III.	  GENERAL DOSIMETRY SYSTEM

A.1  Formalism
In this section, guidelines are provided for general dosimetry estimates of skin dose (i.e., 
surface dose). In creating a general system, high patient-specific accuracy is unachievable, 
and is often unnecessary. Previously developed general dosimetry systems (such as the  
AAPM TG-36 data,(48) or Peridose software(54,55)) typically offer a local accuracy of approxi-
mately ± 30%.(55,56) Therefore, we considered local dosimetric accuracy of ± 30% optimal.

A.2  Energy, field size, and beam-modifying devices
Skin dose on the entrance surface within a treatment field was primarily determined by field 
size and the presence or absence of a block tray. For megavoltage beams, skin dose from any 
energy was calculated as the average of the best-fit lines in Fig. 1 modified by a tray factor (TF) 
term. This term increased with field size, from 0% for a 0 × 0 field to 50% for a 40 × 40 cm2 
field. Mathematically, the skin dose (Ds) versus the Dmax dose (Dm) was calculated within a 
megavoltage field as:

 			 
		  (2)
	

TFFSFS
D

D m
s 5.0926.063.6

100

where FS is the size of the equivalent square field (in cm, at the isocenter plane), and TF is 1 
if a tray is present and 0 if there is no tray. The skin dose within a cobalt field was similarly 
described by the best-fit line in Fig. 2, but was not impacted by a block tray. 

 			 
		  (3)
	

Ds

Dm

100
12.9 1.85 FS

Variations in block tray position relative to the skin does impact the skin dose and could be 
accounted for in Eq. (1); however, this separation is not typically reported in historical patient 
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records, and was therefore neglected here. For dosimetric evaluation within the collimator open-
ing but under a block, it was assumed that the point of interest would receive a dose similar to 
that received 2 cm outside the treatment field defined by the jaws. Dosimetry for such a point 
is described in Section A.6 below. This assumption is physically reasonable and is supported 
by the literature; Butson et al.(29 ) measured surface doses of 20%–23% of the Dmax dose under 
a block, while the dosimetry in III.A.6 predicted a dose of 20% for the same condition.

If the beam intercepts the treatment couch, the skin dose could be substantially increased. 
Historically, patients were not treated through the couch, unless a tennis racket style insert was 
used. For the purpose of an epidemiologic study therefore, we ignored the couch’s impact in 
this dosimetry system. However, as illustrated in Table 1, if the treatment fields are directed 
through the treatment couch, it would not be appropriate to ignore this effect. Similarly, im-
mobilization devices and patient coverings may substantially increase the skin dose and may 
need to be accounted for. Due to the lack of documentation on such devices in historical patient 
records, this becomes an area of increased uncertainty in surface dose estimates for retrospec-
tive evaluation.

A.3  Obliquity
Skin dose increases substantially for large oblique angles of incidence. Although this increase is 
monotonic (but nonlinear) with increasing angle, it is difficult from patient records to determine 
the angle between the beam and the skin at a particular point. Therefore, our model simply 
assumed either a normal surface or a surface lateral to the beam incidence (i.e., 900 obliquity/
tangential orientation). In the case of a lateral surface, the dose from either a megavoltage or 
cobalt beam was taken as 65% of the Dmax dose. This approach will overestimate the dose to 
surfaces at large but nonorthogonal angles to the incident beam, and is in general associated 
with greater uncertainty in the dose estimate.

A.4  Other treatment parameters
Off-axis position and SSD do have some effect on the skin dose, but these effects were ignored 
in our model because of their complex but minimal impact on the skin dose. For most scenarios, 
these treatment parameters made less than a 10% local change. However, this was not always the 
case. The SSD, in particular, when combined with other beam modifiers, could induce changes in 
the surface dose of > 20%. In general, the more complex a given scenario, the more uncertainty 
will exist with dose estimates based on a general model such as that proposed here.

A.5  Exit dose
The lack of backscatter material results in an ~15% relative reduction in dose at an exit surface. 
Although this dose perturbation is relatively small, it is easily accounted for. The skin dose at 
any exit surface from cobalt or megavoltage beams was taken as the expected dose from the 
PDD multiplied by 0.85. This applied to the exit dose within the treatment field (Ds = Dm × 
PDD × 0.85). It also applied to the exit dose under a block (Ds = block transmission × Dm × 
0.85), where the block transmission (as dose in full phantom) was 8%.(57) It also applied to the 
dose at any exit surface outside the treatment field (Ds = dose predicted at depth outside the 
treatment field × 0.85). The dose predicted at depth outside the treatment field was calculated 
with generic out-of-field data.(57) 

A.6  Out-of-field dose
Near the treatment field (~2 cm from the field edge), the entrance surface dose can be described 
in terms of the Dmax dose by the best-fit lines shown in Fig. 3 for megavoltage or cobalt beams. 
For megavoltage beams, it was assumed that the block tray would affect the out-of-field skin 
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dose in the same manner as it did within the treatment field (Eq. (2)), resulting in the follow-
ing equation:

		  (4)
	

Ds

Dm

100
0.686 0.557 FS 0.27 FS TF

while for cobalt beams:

		
(5)

	
Ds

Dm

100
1.17 0.894 FS

For distances beyond ~2 cm from the field edge, the skin dose was first described relative to 
the dose at depth (i.e., any depth deeper than a few cm). The dose at depth was calculated for 
a given distance from the field edge with previous general out-of-field dose data,(57 ) although 
several such collections of out-of-field dose data are available and could be used, such as the 
AAPM TG-36 data.(48,55)

The ratio of the surface dose to the dose at depth (Ds/Dd) is presented in Figs. 4 and 5. A 
general form for this ratio as a function of distance from the field edge (χ, in cm) and field size 
(FS, in cm) was estimated based on Figs. 4 and 5 by assuming that the dose ratio increased 
linearly as a function of field size until 12 cm from the field edge, beyond which it was as-
sumed to be constant. For small fields (5 × 5 cm2), the surface dose ratio (Ds/Dd) increased to 
a maximum of approximately 2 for both megavoltage and cobalt fields. From Fig. 4, this will 
overestimate the dose between 10–25 cm from the field edge (where Ds/Dd is actually < 2), but 
will underestimate the dose at distances > 25 cm (where Ds/Dd is > 2). For large fields (40 × 
40 cm2), the surface dose ratio increased to a maximum of 5 for megavoltage fields and 7 for 
cobalt fields, and is well described over all distances from the field edge. Mathematically, the 
surface dose ratio was described as:

			 

		
(6)

	

Ds

Dd

FS 10
x

150

FS

100
1

for megavoltage beams, and

 			 
		  (7)
	

Ds

Dd

FS x

85

FS 3

10
1

for cobalt beams. As the surface dose ratio is approximately constant at distances greater than 
12 cm, χ takes a value of 12 for any greater distances.

Out-of-field surface doses as a percent of the Dmax dose are presented in Fig. 6 for megavolt-
age beams. This figure shows the AAPM TG-36 data(48) scaled by the surface dose ratio (Eq. 
(6)) versus field size and distance from the field edge. At the field edge the surface dose is the 
in-field value (Eq. (2)), while at 2 cm from the field edge the surface dose is based on Eq. (4). 
Of note, the surface dose could exceed 10% of the Dmax dose for large fields, even relatively 
far from the field edge.

It was assumed that the block tray and other treatment parameters (such as SSD) did not 
have any impact on the out-of-field skin dose at distances beyond 2 cm from the field edge. 
While it is likely that these assumptions are not completely valid, it is also likely that any errors 
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introduced by them are relatively small compared to the uncertainty inherent in Eqs. (6) and 
(7), and generally less relevant given the smaller magnitude of the doses outside the beam. 

B. 	 Validation of general surface dosimetry system
B.1  Methods
A collection of surface doses were measured and compared to calculations with the dosimetry 
system developed in Section A. General dosimetry system above. Measurements were made 
with flat-pack TLD (as in Section B.1.1 Methods above) at several locations on anthropomor-
phic phantoms, with 2 TLD irradiated and averaged at each location for each of an AP and PA 
field. The first irradiation used a pediatric six-year-old Alderson phantom irradiated with a 15 
× 15 cm2 Co-60 field, using a block tray in the head of the machine (AECL Therac-80). The 
phantom was positioned at 80 cm SSD, and was irradiated with identical anterior and posterior 
beams. The dose was measured at 6 locations: near the center of the field (on the anterior and 
posterior surfaces), under the block, inside the treatment field but on a lateral phantom surface 
(tangential exposure), and at 2 and 10 cm outside of the treatment field (relative to the anterior 
field). For the out-of-field locations, the spectrum is softer, requiring an additional energy cor-
rection for TLD measurements.(58) Energy correction factors were taken from Scarboro et al.,(58) 
with the same relative correction factor used for both cobalt and 6 MV irradiations (this is an 
approximation for cobalt for which no specific data exists, and the uncertainty in the cobalt dose 
measurements is correspondingly increased). The dose was also calculated at each location for 
each of the anterior and posterior fields. In particular, at the center of the field, the dose (% of 
Dmax) from the entrance field was calculated from Eq. (3), and the dose from the exit field was 
calculated as Dm × PDD × 0.85 from Section III.A.5. For the measurement location under the 
block, the dose from the entrance (anterior) field was calculated from Equation 5 and the dose 
from the exit (posterior) field was calculated from Section III.A.5 (Ds = block transmission × 
Dm × 0.85). For the lateral surfaces, the dose from each of the anterior and posterior fields was 
taken as 65% of the given dose. For the location 2 cm from the field edge, the entrance dose 
was calculated by Eq. (5). Because of beam divergence, this location was actually on the edge 

Fig. 6.  Surface doses outside of the treatment field for MV beams. Plots are the AAPM TG-36 data(48) scaled by the surface 
dose ratios of Eq. (6). Data is plotted for four different field sizes.
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of the posterior treatment field (rather than 2 cm outside it), and the dose from this field was 
calculated as half of the in-field exit dose: 0.5 × Dm × PDD × 0.85. For the location 10 cm from 
the field edge, the entrance dose (from the anterior field) was calculated as the scaling factor 
(Eq. (7)) multiplied by the dose estimated at depth.(48) The exit dose (posterior field) was the 
dose estimated at depth(48) multiplied by 0.85 (accounting for the lack of backscatter).

A second irradiation used an adult anthropomorphic phantom irradiated with 6 MV (Varian 
Medical Systems, Palo Alto, CA) anterior and posterior 30 × 30 cm2 mantle fields with lung 
blocks. The dose was measured and calculated within the unblocked treatment field (anterior 
and posterior surfaces), at 2 locations under the blocks, at 2 locations on a lateral surface, 2 cm 
from the field edge, 5 cm from the field edge, and 15 cm from the field edge.

B.2  Results
For the cobalt irradiation of the pediatric phantom, the calculated dose from each of the anterior 
and posterior fields to each of the measurement locations is shown in Table 3, along with the 
measured value. 

Overall, the average magnitude of local difference between the calculated and measured 
doses was 22%. In general, the agreement was very good, except at very small doses where the 
differences could be more substantial. The average difference in terms of percent of the Dmax 
dose, which downplays the importance of large differences in small doses, was less than 3%. 

Similarly, the calculated and measured doses are shown in Table 4 for the 6 MV adult irra-
diation. The average magnitude of local difference between the calculated and measured doses 
was 21%. The largest differences were seen in high-dose gradient locations (on a lateral surface) 
and at low doses. The average difference as a percent of the Dmax dose was less than 5%.

Table 3.  Skin dose to measurement locations from cobalt irradiation of a pediatric phantom. Doses (from the anterior 
and posterior fields) are shown as compared to the measured doses. The local percent difference between each measured 
and calculated dose is also shown.

	 Skin Dose (% of Dmax dose)
			   Anterior Field	 Posterior Field
	Phantom	 Measurement			   Difference			   Difference 
	 Surface	 Location	 Calculated	 Measured	 (%)	 Calculated	 Measured	 (%)

	Anterior	 In-field	 41	 40	   0.5	 39	 37	   5.1
		  Under block	 12	 14	 -10	 6.8	 9.7	 -30
		  2 cm outside field	 12	 10	 18	 19	 16	 24
		  10 cm outside field	 7.9	 4.2	 88	 1.7	 1.1	 58
	 Lateral	 In-field	 65	 59	 11	 65	 66	 1.3
	Posterior	 In-field	 39	 35	 11	 41	 45	 -10

Table 4.  Skin dose to measurement locations from 6 MV mantle irradiation of an anthropomorphic phantom. Doses 
(from the anterior and posterior fields) are shown as compared to the measured doses. The local percent difference 
between each measured and calculated dose is also shown.

	 Skin Dose (% of Dmax dose)
			   Anterior Field	 Posterior Field
	Phantom	 Measurement			   Difference			   Difference 
	 Surface	 Location	 Calculated	 Measured	 (%)	 Calculated	 Measured	 (%)

	Anterior	 In-field	 49	 48	 2.4	 35	 28	 22
		  Under block (1)	 24	 26	 -6.6	 6.8	 8.5	 -20
		  Under block (2)	 24	 20	 19	 6.8	 10.2	 -33
		  2 cm outside field	 24	 20	 20	 18	 24	 -25
		  5 cm outside field	 16	 10	 60	 5.5	 4.0	 38
		  15 cm outside field	 5.0	 4.4	 13	 0.9	 0.8	 19
	 Lateral	 In-field (1)	 65	 56	 16	 65	 66	 -2.1
		  In-field (2)	 65	 46	 40	 65	 59	 11
	Posterior	 In-field	 44	 42	 3.2	 49	 61	 -19
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The uncertainty in the TLD measurements varied between measurement locations. The un-
derlying uncertainty in the TLD calibration protocol was less than 4% (at 1 sigma).(52) However, 
for out-of-field locations, the energy correction factor introduced additional uncertainty, on the 
order of 2%–3% for the 6 MV beam (for which approximate energy correction factors were 
available), and potentially up to 5% or more for the cobalt beam.(57)  In-field dose measure-
ments would tend to be overestimated because of the buildup of the flat-packs (as compared 
to the surface dose), by up to 15% relative dose for small MV photon fields, but by less for 
large or cobalt fields. Similarly, exit dose measurements would also tend to be overestimated 
because the thickness of the TLD would partially recover the 15% lost exit dose. Usually, the 
uncertainty in the TLD was less than the differences between the measurement and the simple 
skin dose model. That is, the percent differences in Tables 3 and 4 were generally dominated 
by the simplification of treatment parameters that went into the model, rather than uncertainty 
in the measurements.

Although there could be sizable error in individual dose calculation points, overall the 
general dosimetry system developed in Section A above was reasonably accurate and broadly 
applicable to the calculation of skin dose. The agreement with measurement of this skin model 
was comparable to the model proposed by Lamb and Blake(18) who found agreement within 
5% of the Dmax dose. However, the current model also offers skin dose estimates outside of the 
treatment field and for more treatment energies.

 
IV.	C onclusions

In this study, we reviewed the literature and conducted our own measurements to describe the 
relationship between treatment parameters and the radiotherapy dose to the patient’s skin. There 
was little difference in skin dose between MV beam energies, but substantially different doses 
resulted from cobalt beams. The skin dose within the treatment field increased substantially 
with increasing field size, and, for MV beams, increased further in the presence of a block tray. 
The skin dose also increased as obliquity between the incident photon beam and the patient 
surface increased. Outside of the treatment field, the skin dose was highly elevated relative to 
the dose at depth in the patient, by as much as a factor of 7. This increase in the out-of-field skin 
dose was maximized for large fields and large distances from the field edge, and was slightly 
greater for cobalt beams than for MV beams.

In this work, we also developed a broadly applicable dosimetry system that provides an esti-
mate of the skin dose from radiotherapy treatments. Compared to measurements, this dosimetry 
system was generally accurate within 21% (local difference), or 4% of the Dmax dose, although 
individual skin locations or treatments could have much larger local differences. While this 
dosimetry system was designed for calculating skin dose for epidemiology studies, it could be 
generally applied to a wide range of clinical situations. 
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